Though belief propagation bit-flip(BPBF)decoding improves the error correction performance of polar codes,it uses the exhaustive flips method to achieve the error correction performance of CA-SCL decoding,thus resulti...Though belief propagation bit-flip(BPBF)decoding improves the error correction performance of polar codes,it uses the exhaustive flips method to achieve the error correction performance of CA-SCL decoding,thus resulting in high decoding complexity and latency.To alleviate this issue,we incorporate the LDPC-CRC-Polar coding scheme with BPBF and propose an improved belief propagation decoder for LDPC-CRC-Polar codes with bit-freezing(LDPCCRC-Polar codes BPBFz).The proposed LDPCCRC-Polar codes BPBFz employs the LDPC code to ensure the reliability of the flipping set,i.e.,critical set(CS),and dynamically update it.The modified CS is further utilized for the identification of error-prone bits.The proposed LDPC-CRC-Polar codes BPBFz obtains remarkable error correction performance and is comparable to that of the CA-SCL(L=16)decoder under medium-to-high signal-to-noise ratio(SNR)regions.It gains up to 1.2dB and 0.9dB at a fixed BLER=10-4compared with BP and BPBF(CS-1),respectively.In addition,the proposed LDPC-CRC-Polar codes BPBFz has lower decoding latency compared with CA-SCL and BPBF,i.e.,it is 15 times faster than CA-SCL(L=16)at high SNR regions.展开更多
In this paper,we propose a doping approach to lower the error floor of Low-Density Parity-Check(LDPC)codes.The doping component is a short block code in which the information bits are selected from the coded bits of t...In this paper,we propose a doping approach to lower the error floor of Low-Density Parity-Check(LDPC)codes.The doping component is a short block code in which the information bits are selected from the coded bits of the dominant trapping sets of the LDPC code.Accordingly,an algorithm for selecting the information bits of the short code is proposed,and a specific two-stage decoding algorithm is presented.Simulation results demonstrate that the proposed doped LDPC code achieves up to 2.0 dB gain compared with the original LDPC code at a frame error rate of 10^(-6)Furthermore,the proposed design can lower the error floor of original LDPC Codes.展开更多
Space-Time Block Coded(STBC)Orthogonal Frequency Division Multiplexing(OFDM)satisfies higher data-rate requirements while maintaining signal quality in a multipath fading channel.However,conventional STBCs,including O...Space-Time Block Coded(STBC)Orthogonal Frequency Division Multiplexing(OFDM)satisfies higher data-rate requirements while maintaining signal quality in a multipath fading channel.However,conventional STBCs,including Orthogonal STBCs(OSTBCs),Non-Orthogonal(NOSTBCs),and Quasi-Orthogonal STBCs(QOSTBCs),do not provide both maximal diversity order and unity code rate simultaneously for more than two transmit antennas.This paper targets this problem and applies Maximum Rank Distance(MRD)codes in designing STBCOFDM systems.By following the direct-matrix construction method,we can construct binary extended finite field MRD-STBCs for any number of transmitting antennas.Work uses MRD-STBCs built over Phase-Shift Keying(PSK)modulation to develop an MRD-based STBC-OFDM system.The MRD-based STBC-OFDM system sacrifices minor error performance compared to traditional OSTBC-OFDM but shows improved results against NOSTBC and QOSTBC-OFDM.It also provides 25%higher data-rates than OSTBC-OFDM in configurations that use more than two transmit antennas.The tradeoffs are minor increases in computational complexity and processing delays.展开更多
Let m ≥ 2 be any natural number and let be a finite non-chain ring, where and q is a prime power congruent to 1 modulo (m-1). In this paper we study duadic codes over the ring and their extensions. A Gray map from to...Let m ≥ 2 be any natural number and let be a finite non-chain ring, where and q is a prime power congruent to 1 modulo (m-1). In this paper we study duadic codes over the ring and their extensions. A Gray map from to is defined which preserves self duality of linear codes. As a consequence self-dual, formally self-dual and self-orthogonal codes over are constructed. Some examples are also given to illustrate this.展开更多
This paper introduces a novel blind recognition of non-binary low-density parity-check(LDPC)codes without a candidate set,using ant colony optimization(ACO)algorithm over additive white Gaussian noise(AWGN)channels.Sp...This paper introduces a novel blind recognition of non-binary low-density parity-check(LDPC)codes without a candidate set,using ant colony optimization(ACO)algorithm over additive white Gaussian noise(AWGN)channels.Specifically,the scheme that effectively combines the ACO algorithm and the non-binary elements over finite fields is proposed.Furthermore,an improved,simplified elitist ACO algorithm based on soft decision reliability is introduced to recognize the parity-check matrix over noisy channels.Simulation results show that the recognition rate continuously increases with an increased signalto-noise ratio(SNR)over the AWGN channel.展开更多
In this paper,we innovatively associate the mutual information with the frame error rate(FER)performance and propose novel quantized decoders for polar codes.Based on the optimal quantizer of binary-input discrete mem...In this paper,we innovatively associate the mutual information with the frame error rate(FER)performance and propose novel quantized decoders for polar codes.Based on the optimal quantizer of binary-input discrete memoryless channels(BDMCs),the proposed decoders quantize the virtual subchannels of polar codes to maximize mutual information(MMI)between source bits and quantized symbols.The nested structure of polar codes ensures that the MMI quantization can be implemented stage by stage.Simulation results show that the proposed MMI decoders with 4 quantization bits outperform the existing nonuniform quantized decoders that minimize mean-squared error(MMSE)with 4 quantization bits,and yield even better performance than uniform MMI quantized decoders with 5 quantization bits.Furthermore,the proposed 5-bit quantized MMI decoders approach the floating-point decoders with negligible performance loss.展开更多
Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved s...Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved segmented belief propagation list decoding based on bit flipping(SBPL-BF) is proposed. On the one hand, the proposed algorithm makes use of the cooperative characteristic in BPL decoding such that the codeword is decoded in different BP decoders. Based on this characteristic, the unreliable bits for flipping could be split into multiple subblocks and could be flipped in different decoders simultaneously. On the other hand, a more flexible and effective processing strategy for the priori information of the unfrozen bits that do not need to be flipped is designed to improve the decoding convergence. In addition, this is the first proposal in BPL decoding which jointly optimizes the bit flipping of the information bits and the code bits. In particular, for bit flipping of the code bits, a H-matrix aided bit-flipping algorithm is designed to enhance the accuracy in identifying erroneous code bits. The simulation results show that the proposed algorithm significantly improves the errorcorrection performance of BPL decoding for medium and long codes. It is more than 0.25 d B better than the state-of-the-art BPL decoding at a block error rate(BLER) of 10^(-5), and outperforms CA-SCL decoding in the low signal-to-noise(SNR) region for(1024, 0.5)polar codes.展开更多
The dual-containing (or self-orthogonal) formalism of Calderbank-Shor-Steane (CSS) codes provides a universal connection between a classical linear code and a Quantum Error-Correcting Code (QECC). We propose a novel c...The dual-containing (or self-orthogonal) formalism of Calderbank-Shor-Steane (CSS) codes provides a universal connection between a classical linear code and a Quantum Error-Correcting Code (QECC). We propose a novel class of quantum Low Density Parity Check (LDPC) codes constructed from cyclic classes of lines in Euclidean Geometry (EG). The corresponding constructed parity check matrix has quasi-cyclic structure that can be encoded flexibility, and satisfies the requirement of dual-containing quantum code. Taking the advantage of quasi-cyclic structure, we use a structured approach to construct Generalized Parity Check Matrix (GPCM). This new class of quantum codes has higher code rate, more sparse check matrix, and exactly one four-cycle in each pair of two rows. Ex-perimental results show that the proposed quantum codes, such as EG(2,q)II-QECC, EG(3,q)II-QECC, have better performance than that of other methods based on EG, over the depolarizing channel and decoded with iterative decoding based on the sum-product decoding algorithm.展开更多
Let <i>f</i>(u) and <i>g</i>(v) be two polynomials of degree <i>k</i> and <i>l</i> respectively, not both linear which split into distinct linear factors over F<sub&g...Let <i>f</i>(u) and <i>g</i>(v) be two polynomials of degree <i>k</i> and <i>l</i> respectively, not both linear which split into distinct linear factors over F<sub>q</sub>. Let <img src="Edit_83041428-d8b0-4505-8c3c-5e29f2886159.png" width="160" height="15" alt="" /> be a finite commutative non-chain ring. In this paper, we study polyadic codes and their extensions over the ring <i>R</i>. We give examples of some polyadic codes which are optimal with respect to Griesmer type bound for rings. A Gray map is defined from <img src="Edit_c75f119d-3176-4a71-a36a-354955044c09.png" width="50" height="15" alt="" /> which preserves duality. The Gray images of polyadic codes and their extensions over the ring <i>R</i> lead to construction of self-dual, isodual, self-orthogonal and complementary dual (LCD) codes over F<i><sub>q</sub></i>. Some examples are also given to illustrate this.展开更多
The evaluation of the minimum distance of linear block codes remains an open problem in coding theory, and it is not easy to determine its true value by classical methods, for this reason the problem has been solved i...The evaluation of the minimum distance of linear block codes remains an open problem in coding theory, and it is not easy to determine its true value by classical methods, for this reason the problem has been solved in the literature with heuristic techniques such as genetic algorithms and local search algorithms. In this paper we propose two approaches to attack the hardness of this problem. The first approach is based on genetic algorithms and it yield to good results comparing to another work based also on genetic algorithms. The second approach is based on a new randomized algorithm which we call 'Multiple Impulse Method (MIM)', where the principle is to search codewords locally around the all-zero codeword perturbed by a minimum level of noise, anticipating that the resultant nearest nonzero codewords will most likely contain the minimum Hamming-weight codeword whose Hamming weight is equal to the minimum distance of the linear code.展开更多
Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first...Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first an algorithm to enumerate the harmful short cycles in the protograph is designed, and then a greedy algorithm is proposed to assign proper permutation shifts to the circulant permutation submatrices in the parity check matrix after lifting. Compared with the existing deterministic edge swapping (DES) algorithms, the proposed greedy algorithm adds more constraints in the assignment of permutation shifts to improve performance. Simulation results verify that it outperforms DES in reducing short cycles. In addition, it is proved that the parity check matrices of the cyclic lifted QC-LDPC codes can be transformed into block lower triangular ones when the lifting factor is a power of 2. Utilizing this property, the QC- LDPC codes can be encoded by preprocessing the base matrices, which reduces the encoding complexity to a large extent.展开更多
Low-density parity-check(LDPC)codes are widely used due to their significant errorcorrection capability and linear decoding complexity.However,it is not sufficient for LDPC codes to satisfy the ultra low bit error rat...Low-density parity-check(LDPC)codes are widely used due to their significant errorcorrection capability and linear decoding complexity.However,it is not sufficient for LDPC codes to satisfy the ultra low bit error rate(BER)requirement of next-generation ultra-high-speed communications due to the error floor phenomenon.According to the residual error characteristics of LDPC codes,we consider using the high rate Reed-Solomon(RS)codes as the outer codes to construct LDPC-RS product codes to eliminate the error floor and propose the hybrid error-erasure-correction decoding algorithm for the outer code to exploit erasure-correction capability effectively.Furthermore,the overall performance of product codes is improved using iteration between outer and inner codes.Simulation results validate that BER of the product code with the proposed hybrid algorithm is lower than that of the product code with no erasure correction.Compared with other product codes using LDPC codes,the proposed LDPC-RS product code with the same code rate has much better performance and smaller rate loss attributed to the maximum distance separable(MDS)property and significant erasure-correction capability of RS codes.展开更多
In this article, we focus on cyclic and negacyclic codes of length 2p^s over the ring R = Fp^m + uFp^m, where p is an odd prime. On the basis of the works of Dinh (in J.Algebra 324,940-950,2010), we use the Chinese...In this article, we focus on cyclic and negacyclic codes of length 2p^s over the ring R = Fp^m + uFp^m, where p is an odd prime. On the basis of the works of Dinh (in J.Algebra 324,940-950,2010), we use the Chinese Remainder Theorem to establish the algebraic structure of cyclic and negacyclic codes of length 2p^s over the ring Fp^m + uFp^m in terms of polynomial generators. Furthermore, we obtain the number of codewords in each of those cyclic and negacyclic codes.展开更多
In relay-assisted multi-user system, relay coding is important to enhance the robustness and reliability of cooperative transmission. For better adaptability and efficiency, two joint network and fountain coding(JNFC)...In relay-assisted multi-user system, relay coding is important to enhance the robustness and reliability of cooperative transmission. For better adaptability and efficiency, two joint network and fountain coding(JNFC) schemes are proposed. When the condition of all direct channels is worse, JNFC scheme based on distributed LT(DLT) codes is used. Otherwise, JNFC scheme based on multi-dimensional LT(MD-LT) codes is suited. For both two above-mentioned schemes, the united degree distribution design method for short-length fountain codes is proposed. For the latter scheme, MD-LT codes are proposed for equal error protection(EEP) of each user. Simulation results and analysis show that the united degree distribution need less decoding overhead compared with other degree distribution for short-length fountain codes. And then, all users are protected equally in despite of asymmetric uplinks.展开更多
In this article, cyclic codes and negacyclic codes over formal power series rings are studied. The structure of cyclic codes over this class of rings is given, and the relationship between these codes and cyclic codes...In this article, cyclic codes and negacyclic codes over formal power series rings are studied. The structure of cyclic codes over this class of rings is given, and the relationship between these codes and cyclic codes over finite chain rings is obtained. Using an isomorphism between cyclic and negacyclic codes over formal power series rings, the structure of negacyclic codes over the formal power series rings is obtained.展开更多
By constructing a Gray map, constacyclic codes of arbitrary lengths over ring R =Z p m +vZ pmare studied, wherev 2=v. The structure of constacyclic codes over R and their dual codes are obtained. A necessary and suffi...By constructing a Gray map, constacyclic codes of arbitrary lengths over ring R =Z p m +vZ pmare studied, wherev 2=v. The structure of constacyclic codes over R and their dual codes are obtained. A necessary and sufficient condition for a linear code to be self-dual constacyclic is given. In particular,(1 +(v +1)ap)-constacyclic codes over R are classified in terms of generator polynomial, where a is a unit of Z m.展开更多
In this paper,an efficient unequal error protection(UEP)scheme for online fountain codes is proposed.In the buildup phase,the traversing-selection strategy is proposed to select the most important symbols(MIS).Then,in...In this paper,an efficient unequal error protection(UEP)scheme for online fountain codes is proposed.In the buildup phase,the traversing-selection strategy is proposed to select the most important symbols(MIS).Then,in the completion phase,the weighted-selection strategy is applied to provide low overhead.The performance of the proposed scheme is analyzed and compared with the existing UEP online fountain scheme.Simulation results show that in terms of MIS and the least important symbols(LIS),when the bit error ratio is 10-4,the proposed scheme can achieve 85%and 31.58%overhead reduction,respectively.展开更多
The codes of formal power series rings R_∞=F[[r]]={sum from i=0 to ∞(a_lr^l|a_l∈F)}and finite chain rings R_i={a_0+a_1r+…+a_(i-1)r^(i-1)|a_i∈F}have close relationship in lifts and projection.In this paper,we stud...The codes of formal power series rings R_∞=F[[r]]={sum from i=0 to ∞(a_lr^l|a_l∈F)}and finite chain rings R_i={a_0+a_1r+…+a_(i-1)r^(i-1)|a_i∈F}have close relationship in lifts and projection.In this paper,we study self-dual codes over R_∞by means of self-dual codes over Ri,and give some characterizations of self-dual codes over R_∞.展开更多
Abraham Lempel et al made a connection between linear codes and systems of bilinear forms over finite fields. In this correspondence, a new simple proof of a theorem in [1] is presented; in addition, the encoding proc...Abraham Lempel et al made a connection between linear codes and systems of bilinear forms over finite fields. In this correspondence, a new simple proof of a theorem in [1] is presented; in addition, the encoding process and the decoding procedure of RS codes are simplified via circulant matrices. Finally, the results show that the correspondence between bilinear forms and linear codes is not unique.展开更多
In this paper,we exhibit a free monoid containing all prefix codes in connection with the sets of i-th powers of primitive words for all i≥2.This extends two results given by Shyr and Tsai in 1998 at the same time.
基金partially supported by the National Key Research and Development Project under Grant 2020YFB1806805。
文摘Though belief propagation bit-flip(BPBF)decoding improves the error correction performance of polar codes,it uses the exhaustive flips method to achieve the error correction performance of CA-SCL decoding,thus resulting in high decoding complexity and latency.To alleviate this issue,we incorporate the LDPC-CRC-Polar coding scheme with BPBF and propose an improved belief propagation decoder for LDPC-CRC-Polar codes with bit-freezing(LDPCCRC-Polar codes BPBFz).The proposed LDPCCRC-Polar codes BPBFz employs the LDPC code to ensure the reliability of the flipping set,i.e.,critical set(CS),and dynamically update it.The modified CS is further utilized for the identification of error-prone bits.The proposed LDPC-CRC-Polar codes BPBFz obtains remarkable error correction performance and is comparable to that of the CA-SCL(L=16)decoder under medium-to-high signal-to-noise ratio(SNR)regions.It gains up to 1.2dB and 0.9dB at a fixed BLER=10-4compared with BP and BPBF(CS-1),respectively.In addition,the proposed LDPC-CRC-Polar codes BPBFz has lower decoding latency compared with CA-SCL and BPBF,i.e.,it is 15 times faster than CA-SCL(L=16)at high SNR regions.
基金supported in part by China NSF under Grants No.61771081 and 62072064the Fundamental Research Funds for the Central Universities(China)under Grant cstc2019jcyjmsxmX0110+2 种基金the Project of Chongqing Natural Science Foundation under Grant CSTB2022NSCQ-MSX0990Science and Technology Research Project of Chongqing Education Commission under Grant KJQN202000612the Venture and Innovation Support Program for Chongqing Overseas Returnees under Grant cx2020070.
文摘In this paper,we propose a doping approach to lower the error floor of Low-Density Parity-Check(LDPC)codes.The doping component is a short block code in which the information bits are selected from the coded bits of the dominant trapping sets of the LDPC code.Accordingly,an algorithm for selecting the information bits of the short code is proposed,and a specific two-stage decoding algorithm is presented.Simulation results demonstrate that the proposed doped LDPC code achieves up to 2.0 dB gain compared with the original LDPC code at a frame error rate of 10^(-6)Furthermore,the proposed design can lower the error floor of original LDPC Codes.
基金supported by the Excellent Foreign Student scholarship program,Sirindhorn International Institute of Technology.
文摘Space-Time Block Coded(STBC)Orthogonal Frequency Division Multiplexing(OFDM)satisfies higher data-rate requirements while maintaining signal quality in a multipath fading channel.However,conventional STBCs,including Orthogonal STBCs(OSTBCs),Non-Orthogonal(NOSTBCs),and Quasi-Orthogonal STBCs(QOSTBCs),do not provide both maximal diversity order and unity code rate simultaneously for more than two transmit antennas.This paper targets this problem and applies Maximum Rank Distance(MRD)codes in designing STBCOFDM systems.By following the direct-matrix construction method,we can construct binary extended finite field MRD-STBCs for any number of transmitting antennas.Work uses MRD-STBCs built over Phase-Shift Keying(PSK)modulation to develop an MRD-based STBC-OFDM system.The MRD-based STBC-OFDM system sacrifices minor error performance compared to traditional OSTBC-OFDM but shows improved results against NOSTBC and QOSTBC-OFDM.It also provides 25%higher data-rates than OSTBC-OFDM in configurations that use more than two transmit antennas.The tradeoffs are minor increases in computational complexity and processing delays.
文摘Let m ≥ 2 be any natural number and let be a finite non-chain ring, where and q is a prime power congruent to 1 modulo (m-1). In this paper we study duadic codes over the ring and their extensions. A Gray map from to is defined which preserves self duality of linear codes. As a consequence self-dual, formally self-dual and self-orthogonal codes over are constructed. Some examples are also given to illustrate this.
文摘This paper introduces a novel blind recognition of non-binary low-density parity-check(LDPC)codes without a candidate set,using ant colony optimization(ACO)algorithm over additive white Gaussian noise(AWGN)channels.Specifically,the scheme that effectively combines the ACO algorithm and the non-binary elements over finite fields is proposed.Furthermore,an improved,simplified elitist ACO algorithm based on soft decision reliability is introduced to recognize the parity-check matrix over noisy channels.Simulation results show that the recognition rate continuously increases with an increased signalto-noise ratio(SNR)over the AWGN channel.
基金financially supported in part by National Key R&D Program of China(No.2018YFB1801402)in part by Huawei Technologies Co.,Ltd.
文摘In this paper,we innovatively associate the mutual information with the frame error rate(FER)performance and propose novel quantized decoders for polar codes.Based on the optimal quantizer of binary-input discrete memoryless channels(BDMCs),the proposed decoders quantize the virtual subchannels of polar codes to maximize mutual information(MMI)between source bits and quantized symbols.The nested structure of polar codes ensures that the MMI quantization can be implemented stage by stage.Simulation results show that the proposed MMI decoders with 4 quantization bits outperform the existing nonuniform quantized decoders that minimize mean-squared error(MMSE)with 4 quantization bits,and yield even better performance than uniform MMI quantized decoders with 5 quantization bits.Furthermore,the proposed 5-bit quantized MMI decoders approach the floating-point decoders with negligible performance loss.
基金funded by the Key Project of NSFC-Guangdong Province Joint Program(Grant No.U2001204)the National Natural Science Foundation of China(Grant Nos.61873290 and 61972431)+1 种基金the Science and Technology Program of Guangzhou,China(Grant No.202002030470)the Funding Project of Featured Major of Guangzhou Xinhua University(2021TZ002).
文摘Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved segmented belief propagation list decoding based on bit flipping(SBPL-BF) is proposed. On the one hand, the proposed algorithm makes use of the cooperative characteristic in BPL decoding such that the codeword is decoded in different BP decoders. Based on this characteristic, the unreliable bits for flipping could be split into multiple subblocks and could be flipped in different decoders simultaneously. On the other hand, a more flexible and effective processing strategy for the priori information of the unfrozen bits that do not need to be flipped is designed to improve the decoding convergence. In addition, this is the first proposal in BPL decoding which jointly optimizes the bit flipping of the information bits and the code bits. In particular, for bit flipping of the code bits, a H-matrix aided bit-flipping algorithm is designed to enhance the accuracy in identifying erroneous code bits. The simulation results show that the proposed algorithm significantly improves the errorcorrection performance of BPL decoding for medium and long codes. It is more than 0.25 d B better than the state-of-the-art BPL decoding at a block error rate(BLER) of 10^(-5), and outperforms CA-SCL decoding in the low signal-to-noise(SNR) region for(1024, 0.5)polar codes.
基金Supported by the National Natural Science Foundation ofChina (No. 61071145,41074090)the Specialized Research Fund for the Doctoral Program of Higher Education (200802880014)
文摘The dual-containing (or self-orthogonal) formalism of Calderbank-Shor-Steane (CSS) codes provides a universal connection between a classical linear code and a Quantum Error-Correcting Code (QECC). We propose a novel class of quantum Low Density Parity Check (LDPC) codes constructed from cyclic classes of lines in Euclidean Geometry (EG). The corresponding constructed parity check matrix has quasi-cyclic structure that can be encoded flexibility, and satisfies the requirement of dual-containing quantum code. Taking the advantage of quasi-cyclic structure, we use a structured approach to construct Generalized Parity Check Matrix (GPCM). This new class of quantum codes has higher code rate, more sparse check matrix, and exactly one four-cycle in each pair of two rows. Ex-perimental results show that the proposed quantum codes, such as EG(2,q)II-QECC, EG(3,q)II-QECC, have better performance than that of other methods based on EG, over the depolarizing channel and decoded with iterative decoding based on the sum-product decoding algorithm.
文摘Let <i>f</i>(u) and <i>g</i>(v) be two polynomials of degree <i>k</i> and <i>l</i> respectively, not both linear which split into distinct linear factors over F<sub>q</sub>. Let <img src="Edit_83041428-d8b0-4505-8c3c-5e29f2886159.png" width="160" height="15" alt="" /> be a finite commutative non-chain ring. In this paper, we study polyadic codes and their extensions over the ring <i>R</i>. We give examples of some polyadic codes which are optimal with respect to Griesmer type bound for rings. A Gray map is defined from <img src="Edit_c75f119d-3176-4a71-a36a-354955044c09.png" width="50" height="15" alt="" /> which preserves duality. The Gray images of polyadic codes and their extensions over the ring <i>R</i> lead to construction of self-dual, isodual, self-orthogonal and complementary dual (LCD) codes over F<i><sub>q</sub></i>. Some examples are also given to illustrate this.
文摘The evaluation of the minimum distance of linear block codes remains an open problem in coding theory, and it is not easy to determine its true value by classical methods, for this reason the problem has been solved in the literature with heuristic techniques such as genetic algorithms and local search algorithms. In this paper we propose two approaches to attack the hardness of this problem. The first approach is based on genetic algorithms and it yield to good results comparing to another work based also on genetic algorithms. The second approach is based on a new randomized algorithm which we call 'Multiple Impulse Method (MIM)', where the principle is to search codewords locally around the all-zero codeword perturbed by a minimum level of noise, anticipating that the resultant nearest nonzero codewords will most likely contain the minimum Hamming-weight codeword whose Hamming weight is equal to the minimum distance of the linear code.
基金The National Key Technology R&D Program of China during the 12th Five-Year Plan Period(No.2012BAH15B00)
文摘Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first an algorithm to enumerate the harmful short cycles in the protograph is designed, and then a greedy algorithm is proposed to assign proper permutation shifts to the circulant permutation submatrices in the parity check matrix after lifting. Compared with the existing deterministic edge swapping (DES) algorithms, the proposed greedy algorithm adds more constraints in the assignment of permutation shifts to improve performance. Simulation results verify that it outperforms DES in reducing short cycles. In addition, it is proved that the parity check matrices of the cyclic lifted QC-LDPC codes can be transformed into block lower triangular ones when the lifting factor is a power of 2. Utilizing this property, the QC- LDPC codes can be encoded by preprocessing the base matrices, which reduces the encoding complexity to a large extent.
基金This work was supported in part by National Natural Science Foundation of China(No.61671324)the Director’s Funding from Pilot National Laboratory for Marine Science and Technology(Qingdao)(QNLM201712).
文摘Low-density parity-check(LDPC)codes are widely used due to their significant errorcorrection capability and linear decoding complexity.However,it is not sufficient for LDPC codes to satisfy the ultra low bit error rate(BER)requirement of next-generation ultra-high-speed communications due to the error floor phenomenon.According to the residual error characteristics of LDPC codes,we consider using the high rate Reed-Solomon(RS)codes as the outer codes to construct LDPC-RS product codes to eliminate the error floor and propose the hybrid error-erasure-correction decoding algorithm for the outer code to exploit erasure-correction capability effectively.Furthermore,the overall performance of product codes is improved using iteration between outer and inner codes.Simulation results validate that BER of the product code with the proposed hybrid algorithm is lower than that of the product code with no erasure correction.Compared with other product codes using LDPC codes,the proposed LDPC-RS product code with the same code rate has much better performance and smaller rate loss attributed to the maximum distance separable(MDS)property and significant erasure-correction capability of RS codes.
基金supported by the Natural ScienceFoundation of Hubei Province(D2014401)the Natural Science Foundation of Hubei Polytechnic University(12xjz14A)
文摘In this article, we focus on cyclic and negacyclic codes of length 2p^s over the ring R = Fp^m + uFp^m, where p is an odd prime. On the basis of the works of Dinh (in J.Algebra 324,940-950,2010), we use the Chinese Remainder Theorem to establish the algebraic structure of cyclic and negacyclic codes of length 2p^s over the ring Fp^m + uFp^m in terms of polynomial generators. Furthermore, we obtain the number of codewords in each of those cyclic and negacyclic codes.
基金supported in part by a grant from the Ph.D. Programs Foundation of Ministry of Education of China under Grants No. 20094307110004National Natural Science Foundation of China under Grants No.61372098, No.61101074Natural Science Foundation of Hunan Province, China under Grants No.12jj2037
文摘In relay-assisted multi-user system, relay coding is important to enhance the robustness and reliability of cooperative transmission. For better adaptability and efficiency, two joint network and fountain coding(JNFC) schemes are proposed. When the condition of all direct channels is worse, JNFC scheme based on distributed LT(DLT) codes is used. Otherwise, JNFC scheme based on multi-dimensional LT(MD-LT) codes is suited. For both two above-mentioned schemes, the united degree distribution design method for short-length fountain codes is proposed. For the latter scheme, MD-LT codes are proposed for equal error protection(EEP) of each user. Simulation results and analysis show that the united degree distribution need less decoding overhead compared with other degree distribution for short-length fountain codes. And then, all users are protected equally in despite of asymmetric uplinks.
基金supported by SRF for ROCS,SEM,the Key Project of Chinese Ministry of Education (108099)CCNU Project (CCNU09Y01003)
文摘In this article, cyclic codes and negacyclic codes over formal power series rings are studied. The structure of cyclic codes over this class of rings is given, and the relationship between these codes and cyclic codes over finite chain rings is obtained. Using an isomorphism between cyclic and negacyclic codes over formal power series rings, the structure of negacyclic codes over the formal power series rings is obtained.
基金Supported by the National Natural Science Foundation of China(No.61370089)
文摘By constructing a Gray map, constacyclic codes of arbitrary lengths over ring R =Z p m +vZ pmare studied, wherev 2=v. The structure of constacyclic codes over R and their dual codes are obtained. A necessary and sufficient condition for a linear code to be self-dual constacyclic is given. In particular,(1 +(v +1)ap)-constacyclic codes over R are classified in terms of generator polynomial, where a is a unit of Z m.
基金supported by the National Natural Science Foundation of China(61601147)the Beijing Natural Science Foundation(L182032)。
文摘In this paper,an efficient unequal error protection(UEP)scheme for online fountain codes is proposed.In the buildup phase,the traversing-selection strategy is proposed to select the most important symbols(MIS).Then,in the completion phase,the weighted-selection strategy is applied to provide low overhead.The performance of the proposed scheme is analyzed and compared with the existing UEP online fountain scheme.Simulation results show that in terms of MIS and the least important symbols(LIS),when the bit error ratio is 10-4,the proposed scheme can achieve 85%and 31.58%overhead reduction,respectively.
基金Foundation item: Supported by the Scientific Research Foundation of Hubei Provincial Education Depart- ment(B2013069) Supported by the National Science Foundation of Hubei Polytechnic University(12xjzl4A, 11yjz37B)
文摘The codes of formal power series rings R_∞=F[[r]]={sum from i=0 to ∞(a_lr^l|a_l∈F)}and finite chain rings R_i={a_0+a_1r+…+a_(i-1)r^(i-1)|a_i∈F}have close relationship in lifts and projection.In this paper,we study self-dual codes over R_∞by means of self-dual codes over Ri,and give some characterizations of self-dual codes over R_∞.
基金She was with the Department of Mathematics in Wuhan University while writting this paper.
文摘Abraham Lempel et al made a connection between linear codes and systems of bilinear forms over finite fields. In this correspondence, a new simple proof of a theorem in [1] is presented; in addition, the encoding process and the decoding procedure of RS codes are simplified via circulant matrices. Finally, the results show that the correspondence between bilinear forms and linear codes is not unique.
基金Supported by the National Natural Science Foundation of China(11861071).
文摘In this paper,we exhibit a free monoid containing all prefix codes in connection with the sets of i-th powers of primitive words for all i≥2.This extends two results given by Shyr and Tsai in 1998 at the same time.