We consider the singular Riemann problem for the rectilinear isentropic compressible Euler equations with discontinuous flux,more specifically,for pressureless flow on the left and polytropic flow on the right separat...We consider the singular Riemann problem for the rectilinear isentropic compressible Euler equations with discontinuous flux,more specifically,for pressureless flow on the left and polytropic flow on the right separated by a discontinuity x=x(t).We prove that this problem admits global Radon measure solutions for all kinds of initial data.The over-compressing condition on the discontinuity x=x(t)is not enough to ensure the uniqueness of the solution.However,there is a unique piecewise smooth solution if one proposes a slip condition on the right-side of the curve x=x(t)+0,in addition to the full adhesion condition on its left-side.As an application,we study a free piston problem with the piston in a tube surrounded initially by uniform pressureless flow and a polytropic gas.In particular,we obtain the existence of a piecewise smooth solution for the motion of the piston between a vacuum and a polytropic gas.This indicates that the singular Riemann problem looks like a control problem in the sense that one could adjust the condition on the discontinuity of the flux to obtain the desired flow field.展开更多
This paper is concerned with the global well-posedness of the solution to the compressible Navier-Stokes/Allen-Cahn system and its sharp interface limit in one-dimensional space.For the perturbations with small energy...This paper is concerned with the global well-posedness of the solution to the compressible Navier-Stokes/Allen-Cahn system and its sharp interface limit in one-dimensional space.For the perturbations with small energy but possibly large oscillations of rarefaction wave solutions near phase separation,and where the strength of the initial phase field could be arbitrarily large,we prove that the solution of the Cauchy problem exists for all time,and converges to the centered rarefaction wave solution of the corresponding standard two-phase Euler equation as the viscosity and the thickness of the interface tend to zero.The proof is mainly based on a scaling argument and a basic energy method.展开更多
In this paper,we are concerned with a three-dimensional non-isothermal model for the compressible nematic liquid crystal flows in a periodic domain.Under some smallness and structural assumptions imposed on the time-p...In this paper,we are concerned with a three-dimensional non-isothermal model for the compressible nematic liquid crystal flows in a periodic domain.Under some smallness and structural assumptions imposed on the time-periodic force,we establish the existence of the time-periodic solutions to the system by using a regularized approximation scheme and the topological degree theory.We also prove a uniqueness result via energy estimates.展开更多
The polyurethane foam(PU)compressible layer is a viable solution to the problem of damage to the secondary lining in squeezing tunnels.Nevertheless,the mechanical behaviour of the multi-layer yielding supports has not...The polyurethane foam(PU)compressible layer is a viable solution to the problem of damage to the secondary lining in squeezing tunnels.Nevertheless,the mechanical behaviour of the multi-layer yielding supports has not been thoroughly investigated.To fill this gap,large-scale model tests were conducted in this study.The synergistic load-bearing mechanics were analyzed using the convergenceconfinement method.Two types of multi-layer yielding supports with different thicknesses(2.5 cm,3.75 cm and 5 cm)of PU compressible layers were investigated respectively.Digital image correlation(DIC)analysis and acoustic emission(AE)techniques were used for detecting the deformation fields and damage evolution of the multi-layer yielding supports in real-time.Results indicated that the loaddisplacement relationship of the multi-layer yielding supports could be divided into the crack initiation,crack propagation,strain-hardening,and failure stages.Compared with those of the stiff support,the toughness,deformability and ultimate load of the yielding supports were increased by an average of 225%,61%and 32%,respectively.Additionally,the PU compressible layer is positioned between two primary linings to allow the yielding support to have greater mechanical properties.The analysis of the synergistic bearing effect suggested that the thickness of PU compressible layer and its location significantly affect the mechanical properties of the yielding supports.The use of yielding supports with a compressible layer positioned between the primary and secondary linings is recommended to mitigate the effects of high geo-stress in squeezing tunnels.展开更多
We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the...We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the CFL number larger or equal to unity on regular Cartesian meshes for the multi-dimensional case.These kinetic models depend on a small parameter that can be seen as a"Knudsen"number.The method is asymptotic preserving in this Knudsen number.Also,the computational costs of the method are of the same order of a fully explicit scheme.This work is the extension of Abgrall et al.(2022)[3]to multidimensional systems.We have assessed our method on several problems for two-dimensional scalar problems and Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions.展开更多
In this paper,we establish some regularity conditions on the density and velocity fields to guarantee the energy conservation of the weak solutions for the three-dimensional compressible nematic liquid crystal flow in...In this paper,we establish some regularity conditions on the density and velocity fields to guarantee the energy conservation of the weak solutions for the three-dimensional compressible nematic liquid crystal flow in the periodic domain.展开更多
We solve the Riemann problems for isentropic compressible Euler equations of polytropic gases in the class of Radon measures,and the solutions admit the concentration of mass.It is found that under the requirement of ...We solve the Riemann problems for isentropic compressible Euler equations of polytropic gases in the class of Radon measures,and the solutions admit the concentration of mass.It is found that under the requirement of satisfying the over-compressing entropy condition:(i)there is a unique delta shock solution,corresponding to the case that has two strong classical Lax shocks;(ii)for the initial data that the classical Riemann solution contains a shock wave and a rarefaction wave,or two shocks with one being weak,there are infinitely many solutions,each consists of a delta shock and a rarefaction wave;(iii)there are no delta shocks for the case that the classical entropy weak solutions consist only of rarefaction waves.These solutions are self-similar.Furthermore,for the generalized Riemann problem with mass concentrated initially at the discontinuous point of initial data,there always exists a unique delta shock for at least a short time.It could be prolonged to a global solution.Not all the solutions are self-similar due to the initial velocity of the concentrated point-mass(particle).Whether the delta shock solutions constructed satisfy the over-compressing entropy condition is clarified.This is the first result on the construction of singular measure solutions to the compressible Euler system of polytropic gases,that is strictly hyperbolic,and whose characteristics are both genuinely nonlinear.We also discuss possible physical interpretations and applications of these new solutions.展开更多
Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained ...Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained using data with Mach number Ma=3.0 and Reynolds number Re=3000 was applied to situations with different Mach numbers and Reynolds numbers.The input variables of the neural network model were the filtered velocity gradients and temperature gradients at a single spatial grid point.The a priori test showed that the FCNN model had a correlation coefficient larger than 0.91 and a relative error smaller than 0.43,with much better reconstructions of SGS unclosed terms than the dynamic Smagorinsky model(DSM).In a posteriori test,the behavior of the FCNN model was marginally better than that of the DSM in predicting the mean velocity profiles,mean temperature profiles,turbulent intensities,total Reynolds stress,total Reynolds heat flux,and mean SGS flux of kinetic energy,and outperformed the Smagorinsky model.展开更多
In this paper,we consider the weak solutions of compressible Navier-StokesLandau-Lifshitz-Maxwell(CNSLLM)system for quantum fluids with a linear density dependent viscosity in a 3D torus.By introducing the cold pressu...In this paper,we consider the weak solutions of compressible Navier-StokesLandau-Lifshitz-Maxwell(CNSLLM)system for quantum fluids with a linear density dependent viscosity in a 3D torus.By introducing the cold pressure Pc,we prove the global existence of weak solutions with the pressure P+Pc,where P=Aργwithγ≥1.Our main result extends the one in[13]on the quantum Navier-Stokes equations to the CNSLLM system.展开更多
A discrete Boltzmann model(DBM) with symmetric velocity discretization is constructed for compressible systems with an adjustable specific heat ratio in the external force field. The proposed two-dimensional(2D) nine-...A discrete Boltzmann model(DBM) with symmetric velocity discretization is constructed for compressible systems with an adjustable specific heat ratio in the external force field. The proposed two-dimensional(2D) nine-velocity scheme has better spatial symmetry and numerical accuracy than the discretized velocity model in literature [Acta Aerodyn. Sin.40 98108(2022)] and owns higher computational efficiency than the one in literature [Phys. Rev. E 99 012142(2019)].In addition, the matrix inversion method is adopted to calculate the discrete equilibrium distribution function and force term, both of which satisfy nine independent kinetic moment relations. Moreover, the DBM could be used to study a few thermodynamic nonequilibrium effects beyond the Euler equations that are recovered from the kinetic model in the hydrodynamic limit via the Chapman–Enskog expansion. Finally, the present method is verified through typical numerical simulations, including the free-falling process, Sod’s shock tube, sound wave, compressible Rayleigh–Taylor instability,and translational motion of a 2D fluid system.展开更多
An additional potential energy distribution function is introduced on the basis of previous D3Q25 model,and the equilibrium distribution function of D3Q25 is obtained by spherical function.A novel three-dimensional(3D...An additional potential energy distribution function is introduced on the basis of previous D3Q25 model,and the equilibrium distribution function of D3Q25 is obtained by spherical function.A novel three-dimensional(3D)shifted lattice model is proposed,therefore a shifted lattice model is introduced into D3Q25.Under the finite volume scheme,several typical compressible calculation examples are used to verify whether the numerical stability of the D3Q25 model can be improved by adding the shifted lattice model.The simulation results show that the numerical stability is indeed improved after adding the shifted lattice model.展开更多
In this paper,we study the controllability of compressible Navier-Stokes equations with density dependent viscosities.For when the shear viscosityμis a positive constant and the bulk viscosityλis a function of the d...In this paper,we study the controllability of compressible Navier-Stokes equations with density dependent viscosities.For when the shear viscosityμis a positive constant and the bulk viscosityλis a function of the density,it is proven that the system is exactly locally controllable to a constant target trajectory by using boundary control functions.展开更多
We consider the global well-posedness of strong solutions to the Cauchy problem of compressible barotropic Navier-Stokes equations in R^(2). By exploiting the global-in-time estimate to the two-dimensional(2D for shor...We consider the global well-posedness of strong solutions to the Cauchy problem of compressible barotropic Navier-Stokes equations in R^(2). By exploiting the global-in-time estimate to the two-dimensional(2D for short) classical incompressible Navier-Stokes equations and using techniques developed in(SIAM J Math Anal, 2020, 52(2): 1806–1843), we derive the global existence of solutions provided that the initial data satisfies some smallness condition. In particular, the initial velocity with some arbitrary Besov norm of potential part Pu_0 and large high oscillation are allowed in our results. Moreover, we also construct an example with the initial data involving such a smallness condition, but with a norm that is arbitrarily large.展开更多
We investigate the low Mach number limit for the isentropic compressible NavierStokes equations with a revised Maxwell's law(with Galilean invariance) in R^(3). By applying the uniform estimates of the error syste...We investigate the low Mach number limit for the isentropic compressible NavierStokes equations with a revised Maxwell's law(with Galilean invariance) in R^(3). By applying the uniform estimates of the error system, it is proven that the solutions of the isentropic Navier-Stokes equations with a revised Maxwell's law converge to that of the incompressible Navier-Stokes equations as the Mach number tends to zero. Moreover, the convergence rates are also obtained.展开更多
A high-order gas kinetic flux solver(GKFS)is presented for simulating inviscid compressible flows.The weighted essentially non-oscillatory(WENO)scheme on a uniform mesh in the finite volume formulation is combined wit...A high-order gas kinetic flux solver(GKFS)is presented for simulating inviscid compressible flows.The weighted essentially non-oscillatory(WENO)scheme on a uniform mesh in the finite volume formulation is combined with the circular function-based GKFS(C-GKFS)to capture more details of the flow fields with fewer grids.Different from most of the current GKFSs,which are constructed based on the Maxwellian distribution function or its equivalent form,the C-GKFS simplifies the Maxwellian distribution function into the circular function,which ensures that the Euler or Navier-Stokes equations can be recovered correctly.This improves the efficiency of the GKFS and reduces its complexity to facilitate the practical application of engineering.Several benchmark cases are simulated,and good agreement can be obtained in comparison with the references,which demonstrates that the high-order C-GKFS can achieve the desired accuracy.展开更多
The numerical solution of compressible flows has become more prevalent than that of incompressible flows.With the help of the artificial compressibility approach,incompressible flows can be solved numerically using th...The numerical solution of compressible flows has become more prevalent than that of incompressible flows.With the help of the artificial compressibility approach,incompressible flows can be solved numerically using the same methods as compressible ones.The artificial compressibility scheme is thus widely used to numerically solve incompressible Navier-Stokes equations.Any numerical method highly depends on its accuracy and speed of convergence.Although the artificial compressibility approach is utilized in several numerical simulations,the effect of the compressibility factor on the accuracy of results and convergence speed has not been investigated for nanofluid flows in previous studies.Therefore,this paper assesses the effect of this factor on the convergence speed and accuracy of results for various types of thermo-flow.To improve the stability and convergence speed of time discretizations,the fifth-order Runge-Kutta method is applied.A computer program has been written in FORTRAN to solve the discretized equations in different Reynolds and Grashof numbers for various grids.The results demonstrate that the artificial compressibility factor has a noticeable effect on the accuracy and convergence rate of the simulation.The optimum artificial compressibility is found to be between 1 and 5.These findings can be utilized to enhance the performance of commercial numerical simulation tools,including ANSYS and COMSOL.展开更多
Inventors:Xiujun Cai,Mingyu Chen,Chen Lu,Yifan Wang,Diyu Huang,Hepan Zhu,Yibin Zhu,Bin Zhang Applicant:Zhejiang University,Zhejiang,China Patent No.:US 10,980,541 B2 Date of Patent:Apr.20,2021 An absorbable and unidir...Inventors:Xiujun Cai,Mingyu Chen,Chen Lu,Yifan Wang,Diyu Huang,Hepan Zhu,Yibin Zhu,Bin Zhang Applicant:Zhejiang University,Zhejiang,China Patent No.:US 10,980,541 B2 Date of Patent:Apr.20,2021 An absorbable and unidirectionally compressible intestinal anastomosis device includes a first through pipe portion and a second through pipe portion including large ends and small ends,respectively;the large ends are used for fixing an intestinal canal,and the small end of the second through pipe portion is inserted into the small end of the first through pipe portion.The two large ends are drawn close to each other to achieve an intestineeintestine anastomosis.The outer sides of circular rings at the ends of the small ends of the first through pipe portion and the second through pipe portion are provided with gradually expanded elastic horn-shaped openings.The device can make two stapled intestinal canals rest relatively,thereby avoiding adjustments required in other assembly modes.展开更多
This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data i...This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data is assumed to be radially symmetric and the initial density contains vacuum, we obtain that classical solution, especially the density, will blow up on finite time. The results also reveal that damping can really delay the singularity formation.展开更多
High-speed rotor rotation under the low-density condition creates a special low-Reynolds compressible flow around the rotor blade airfoil where the compressibility effect on the laminar separated shear layer occurs. H...High-speed rotor rotation under the low-density condition creates a special low-Reynolds compressible flow around the rotor blade airfoil where the compressibility effect on the laminar separated shear layer occurs. However, the compressibility effect and shock wave generation associated with the increase in the Mach number (M) and the trend change due to their interference have not been clarified. The purpose is to clear the compressibility effect and its impact of shock wave generation on the flow field and aerodynamics. Therefore, we perform a two-dimensional unsteady calculation by Computational fluid dynamics (CFD) analysis using the CLF5605 airfoil used in the Mars helicopter Ingenuity, which succeeded in its first flight on Mars. The calculation conditions are set to the Reynolds number (Re) at 75% rotor span in hovering (Re = 15,400), and the Mach number was varied from incompressible (M = 0.2) to transonic (M = 1.2). The compressible fluid dynamics solver FaSTAR developed by the Japan aerospace exploration agency (JAXA) is used, and calculations are performed under multiple conditions in which the Mach number and angle of attack (α) are swept. The results show that a flow field is similar to that in the Earth’s atmosphere above M = 1.0, such as bow shock at the leading edge, whereas multiple λ-type shock waves are observed over the separated shear layer above α = 3° at M = 0.80. However, no significant difference is found in the C<sub>p</sub> distribution around the airfoil between M = 0.6 and M = 0.8. From the results, it is found that multiple λ-type shock waves have no significant effect on the airfoil surface pressure distribution, the separated shear layer effect is dominant in the surface pressure change and aerodynamic characteristics.展开更多
The flow around airfoil NACA0012 enwrapped by the body-fitted grid is simulated by a coupled doubledistribution-function (DDF) lattice Boltzmann method (LBM) for the compressible Navier-Stokes equations. Firstly, ...The flow around airfoil NACA0012 enwrapped by the body-fitted grid is simulated by a coupled doubledistribution-function (DDF) lattice Boltzmann method (LBM) for the compressible Navier-Stokes equations. Firstly, the method is tested by simulating the low Reynolds number flow at Ma =0. 5,a=0. 0, Re=5 000. Then the simulation of flow around the airfoil is carried out at Ma:0. 5, 0. 85, 1.2; a=-0.05, 1.0, 0.0, respectively. And a better result is obtained by using a local refined grid. It reduces the error produced by the grid at Ma=0. 85. Though the inviscid boundary condition is used to avoid the problem of flow transition to turbulence at high Reynolds numbers, the pressure distribution obtained by the simulation agrees well with that of the experimental results. Thus, it proves the reliability of the method and shows its potential for the compressible flow simulation. The suecessful application to the flow around airfoil lays a foundation of the numerical simulation of turbulence.展开更多
基金supported by the National Natural Science Foundation of China(11871218,12071298)in part by the Science and Technology Commission of Shanghai Municipality(21JC1402500,22DZ2229014)。
文摘We consider the singular Riemann problem for the rectilinear isentropic compressible Euler equations with discontinuous flux,more specifically,for pressureless flow on the left and polytropic flow on the right separated by a discontinuity x=x(t).We prove that this problem admits global Radon measure solutions for all kinds of initial data.The over-compressing condition on the discontinuity x=x(t)is not enough to ensure the uniqueness of the solution.However,there is a unique piecewise smooth solution if one proposes a slip condition on the right-side of the curve x=x(t)+0,in addition to the full adhesion condition on its left-side.As an application,we study a free piston problem with the piston in a tube surrounded initially by uniform pressureless flow and a polytropic gas.In particular,we obtain the existence of a piecewise smooth solution for the motion of the piston between a vacuum and a polytropic gas.This indicates that the singular Riemann problem looks like a control problem in the sense that one could adjust the condition on the discontinuity of the flux to obtain the desired flow field.
基金supported by the National Natural Science Foundation of China(12361044)supported by the National Natural Science Foundation of China(12171024,11971217,11971020)supported by the Academic and Technical Leaders Training Plan of Jiangxi Province(20212BCJ23027)。
文摘This paper is concerned with the global well-posedness of the solution to the compressible Navier-Stokes/Allen-Cahn system and its sharp interface limit in one-dimensional space.For the perturbations with small energy but possibly large oscillations of rarefaction wave solutions near phase separation,and where the strength of the initial phase field could be arbitrarily large,we prove that the solution of the Cauchy problem exists for all time,and converges to the centered rarefaction wave solution of the corresponding standard two-phase Euler equation as the viscosity and the thickness of the interface tend to zero.The proof is mainly based on a scaling argument and a basic energy method.
基金partially supported by the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202100523,KJQN202000536)the National Natural Science Foundation of China(12001074)+3 种基金the Natural Science Foundation of Chongqing(cstc2020jcyj-msxmX0606)supported by the National Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0278)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-K202100503)the Research Project of Chongqing Education Commission(CXQT21014)。
文摘In this paper,we are concerned with a three-dimensional non-isothermal model for the compressible nematic liquid crystal flows in a periodic domain.Under some smallness and structural assumptions imposed on the time-periodic force,we establish the existence of the time-periodic solutions to the system by using a regularized approximation scheme and the topological degree theory.We also prove a uniqueness result via energy estimates.
基金supported by the National Key Research and Development Program of China (Grant No.2021YFB2600800)the National Key Research and Development 451 Program of China (Grant No.2021YFC3100803)the Guangdong Innovative and Entrepreneurial Research Team Program (Grant No.2016ZT06N340).
文摘The polyurethane foam(PU)compressible layer is a viable solution to the problem of damage to the secondary lining in squeezing tunnels.Nevertheless,the mechanical behaviour of the multi-layer yielding supports has not been thoroughly investigated.To fill this gap,large-scale model tests were conducted in this study.The synergistic load-bearing mechanics were analyzed using the convergenceconfinement method.Two types of multi-layer yielding supports with different thicknesses(2.5 cm,3.75 cm and 5 cm)of PU compressible layers were investigated respectively.Digital image correlation(DIC)analysis and acoustic emission(AE)techniques were used for detecting the deformation fields and damage evolution of the multi-layer yielding supports in real-time.Results indicated that the loaddisplacement relationship of the multi-layer yielding supports could be divided into the crack initiation,crack propagation,strain-hardening,and failure stages.Compared with those of the stiff support,the toughness,deformability and ultimate load of the yielding supports were increased by an average of 225%,61%and 32%,respectively.Additionally,the PU compressible layer is positioned between two primary linings to allow the yielding support to have greater mechanical properties.The analysis of the synergistic bearing effect suggested that the thickness of PU compressible layer and its location significantly affect the mechanical properties of the yielding supports.The use of yielding supports with a compressible layer positioned between the primary and secondary linings is recommended to mitigate the effects of high geo-stress in squeezing tunnels.
基金funded by the SNF project 200020_204917 entitled"Structure preserving and fast methods for hyperbolic systems of conservation laws".
文摘We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the CFL number larger or equal to unity on regular Cartesian meshes for the multi-dimensional case.These kinetic models depend on a small parameter that can be seen as a"Knudsen"number.The method is asymptotic preserving in this Knudsen number.Also,the computational costs of the method are of the same order of a fully explicit scheme.This work is the extension of Abgrall et al.(2022)[3]to multidimensional systems.We have assessed our method on several problems for two-dimensional scalar problems and Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions.
基金support by the NSFC(12071391,12231016)the Guangdong Basic and Applied Basic Research Foundation(2022A1515010860)support by the China Postdoctoral Science Foundation(2023M742401)。
文摘In this paper,we establish some regularity conditions on the density and velocity fields to guarantee the energy conservation of the weak solutions for the three-dimensional compressible nematic liquid crystal flow in the periodic domain.
基金supported by the National Natural Science Foundation of China under Grants No.11871218,No.12071298the Science and Technology Commission of Shanghai Municipality under Grant No.18dz2271000.
文摘We solve the Riemann problems for isentropic compressible Euler equations of polytropic gases in the class of Radon measures,and the solutions admit the concentration of mass.It is found that under the requirement of satisfying the over-compressing entropy condition:(i)there is a unique delta shock solution,corresponding to the case that has two strong classical Lax shocks;(ii)for the initial data that the classical Riemann solution contains a shock wave and a rarefaction wave,or two shocks with one being weak,there are infinitely many solutions,each consists of a delta shock and a rarefaction wave;(iii)there are no delta shocks for the case that the classical entropy weak solutions consist only of rarefaction waves.These solutions are self-similar.Furthermore,for the generalized Riemann problem with mass concentrated initially at the discontinuous point of initial data,there always exists a unique delta shock for at least a short time.It could be prolonged to a global solution.Not all the solutions are self-similar due to the initial velocity of the concentrated point-mass(particle).Whether the delta shock solutions constructed satisfy the over-compressing entropy condition is clarified.This is the first result on the construction of singular measure solutions to the compressible Euler system of polytropic gases,that is strictly hyperbolic,and whose characteristics are both genuinely nonlinear.We also discuss possible physical interpretations and applications of these new solutions.
基金Financial support provided by the National Natural Science Foundation of China(Grant Nos.11702042 and 91952104)。
文摘Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained using data with Mach number Ma=3.0 and Reynolds number Re=3000 was applied to situations with different Mach numbers and Reynolds numbers.The input variables of the neural network model were the filtered velocity gradients and temperature gradients at a single spatial grid point.The a priori test showed that the FCNN model had a correlation coefficient larger than 0.91 and a relative error smaller than 0.43,with much better reconstructions of SGS unclosed terms than the dynamic Smagorinsky model(DSM).In a posteriori test,the behavior of the FCNN model was marginally better than that of the DSM in predicting the mean velocity profiles,mean temperature profiles,turbulent intensities,total Reynolds stress,total Reynolds heat flux,and mean SGS flux of kinetic energy,and outperformed the Smagorinsky model.
基金partially supported by the National Natural Sciences Foundation of China(11931010,12061003)。
文摘In this paper,we consider the weak solutions of compressible Navier-StokesLandau-Lifshitz-Maxwell(CNSLLM)system for quantum fluids with a linear density dependent viscosity in a 3D torus.By introducing the cold pressure Pc,we prove the global existence of weak solutions with the pressure P+Pc,where P=Aργwithγ≥1.Our main result extends the one in[13]on the quantum Navier-Stokes equations to the CNSLLM system.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 51806116, U2242214, and 11875329)Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022A1515012116)the Natural Science Foundation of Fujian Province, China (Grant Nos. 2021J01652 and 2021J01655)。
文摘A discrete Boltzmann model(DBM) with symmetric velocity discretization is constructed for compressible systems with an adjustable specific heat ratio in the external force field. The proposed two-dimensional(2D) nine-velocity scheme has better spatial symmetry and numerical accuracy than the discretized velocity model in literature [Acta Aerodyn. Sin.40 98108(2022)] and owns higher computational efficiency than the one in literature [Phys. Rev. E 99 012142(2019)].In addition, the matrix inversion method is adopted to calculate the discrete equilibrium distribution function and force term, both of which satisfy nine independent kinetic moment relations. Moreover, the DBM could be used to study a few thermodynamic nonequilibrium effects beyond the Euler equations that are recovered from the kinetic model in the hydrodynamic limit via the Chapman–Enskog expansion. Finally, the present method is verified through typical numerical simulations, including the free-falling process, Sod’s shock tube, sound wave, compressible Rayleigh–Taylor instability,and translational motion of a 2D fluid system.
基金the Youth Program of the National Natural Science Foundation of China(Grant Nos.11972272,12072246,and 12202331)the National Key Project,China(Grant No.GJXM92579)the Natural Science Basic Research Program of Shaanxi Province,China(Program No.2022JQ-028)。
文摘An additional potential energy distribution function is introduced on the basis of previous D3Q25 model,and the equilibrium distribution function of D3Q25 is obtained by spherical function.A novel three-dimensional(3D)shifted lattice model is proposed,therefore a shifted lattice model is introduced into D3Q25.Under the finite volume scheme,several typical compressible calculation examples are used to verify whether the numerical stability of the D3Q25 model can be improved by adding the shifted lattice model.The simulation results show that the numerical stability is indeed improved after adding the shifted lattice model.
基金partially supported by the National Science Foundation of China(11971320,11971496)the National Key R&D Program of China(2020YFA0712500)the Guangdong Basic and Applied Basic Research Foundation(2020A1515010530)。
文摘In this paper,we study the controllability of compressible Navier-Stokes equations with density dependent viscosities.For when the shear viscosityμis a positive constant and the bulk viscosityλis a function of the density,it is proven that the system is exactly locally controllable to a constant target trajectory by using boundary control functions.
基金Zhai was partially supported by the Guangdong Provincial Natural Science Foundation (2022A1515011977)the Science and Technology Program of Shenzhen(20200806104726001)+1 种基金Zhong was partially supported by the NNSF of China (11901474, 12071359)the Exceptional Young Talents Project of Chongqing Talent (cstc2021ycjh-bgzxm0153)。
文摘We consider the global well-posedness of strong solutions to the Cauchy problem of compressible barotropic Navier-Stokes equations in R^(2). By exploiting the global-in-time estimate to the two-dimensional(2D for short) classical incompressible Navier-Stokes equations and using techniques developed in(SIAM J Math Anal, 2020, 52(2): 1806–1843), we derive the global existence of solutions provided that the initial data satisfies some smallness condition. In particular, the initial velocity with some arbitrary Besov norm of potential part Pu_0 and large high oscillation are allowed in our results. Moreover, we also construct an example with the initial data involving such a smallness condition, but with a norm that is arbitrarily large.
基金Yuxi HU was supported by the NNSFC (11701556)the Yue Qi Young Scholar ProjectChina University of Mining and Technology (Beijing)。
文摘We investigate the low Mach number limit for the isentropic compressible NavierStokes equations with a revised Maxwell's law(with Galilean invariance) in R^(3). By applying the uniform estimates of the error system, it is proven that the solutions of the isentropic Navier-Stokes equations with a revised Maxwell's law converge to that of the incompressible Navier-Stokes equations as the Mach number tends to zero. Moreover, the convergence rates are also obtained.
基金Project supported by the National Natural Science Foundation of China(No.12072158)。
文摘A high-order gas kinetic flux solver(GKFS)is presented for simulating inviscid compressible flows.The weighted essentially non-oscillatory(WENO)scheme on a uniform mesh in the finite volume formulation is combined with the circular function-based GKFS(C-GKFS)to capture more details of the flow fields with fewer grids.Different from most of the current GKFSs,which are constructed based on the Maxwellian distribution function or its equivalent form,the C-GKFS simplifies the Maxwellian distribution function into the circular function,which ensures that the Euler or Navier-Stokes equations can be recovered correctly.This improves the efficiency of the GKFS and reduces its complexity to facilitate the practical application of engineering.Several benchmark cases are simulated,and good agreement can be obtained in comparison with the references,which demonstrates that the high-order C-GKFS can achieve the desired accuracy.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the Large Groups Project under grant number RGP.2/235/43.
文摘The numerical solution of compressible flows has become more prevalent than that of incompressible flows.With the help of the artificial compressibility approach,incompressible flows can be solved numerically using the same methods as compressible ones.The artificial compressibility scheme is thus widely used to numerically solve incompressible Navier-Stokes equations.Any numerical method highly depends on its accuracy and speed of convergence.Although the artificial compressibility approach is utilized in several numerical simulations,the effect of the compressibility factor on the accuracy of results and convergence speed has not been investigated for nanofluid flows in previous studies.Therefore,this paper assesses the effect of this factor on the convergence speed and accuracy of results for various types of thermo-flow.To improve the stability and convergence speed of time discretizations,the fifth-order Runge-Kutta method is applied.A computer program has been written in FORTRAN to solve the discretized equations in different Reynolds and Grashof numbers for various grids.The results demonstrate that the artificial compressibility factor has a noticeable effect on the accuracy and convergence rate of the simulation.The optimum artificial compressibility is found to be between 1 and 5.These findings can be utilized to enhance the performance of commercial numerical simulation tools,including ANSYS and COMSOL.
文摘Inventors:Xiujun Cai,Mingyu Chen,Chen Lu,Yifan Wang,Diyu Huang,Hepan Zhu,Yibin Zhu,Bin Zhang Applicant:Zhejiang University,Zhejiang,China Patent No.:US 10,980,541 B2 Date of Patent:Apr.20,2021 An absorbable and unidirectionally compressible intestinal anastomosis device includes a first through pipe portion and a second through pipe portion including large ends and small ends,respectively;the large ends are used for fixing an intestinal canal,and the small end of the second through pipe portion is inserted into the small end of the first through pipe portion.The two large ends are drawn close to each other to achieve an intestineeintestine anastomosis.The outer sides of circular rings at the ends of the small ends of the first through pipe portion and the second through pipe portion are provided with gradually expanded elastic horn-shaped openings.The device can make two stapled intestinal canals rest relatively,thereby avoiding adjustments required in other assembly modes.
文摘This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data is assumed to be radially symmetric and the initial density contains vacuum, we obtain that classical solution, especially the density, will blow up on finite time. The results also reveal that damping can really delay the singularity formation.
文摘High-speed rotor rotation under the low-density condition creates a special low-Reynolds compressible flow around the rotor blade airfoil where the compressibility effect on the laminar separated shear layer occurs. However, the compressibility effect and shock wave generation associated with the increase in the Mach number (M) and the trend change due to their interference have not been clarified. The purpose is to clear the compressibility effect and its impact of shock wave generation on the flow field and aerodynamics. Therefore, we perform a two-dimensional unsteady calculation by Computational fluid dynamics (CFD) analysis using the CLF5605 airfoil used in the Mars helicopter Ingenuity, which succeeded in its first flight on Mars. The calculation conditions are set to the Reynolds number (Re) at 75% rotor span in hovering (Re = 15,400), and the Mach number was varied from incompressible (M = 0.2) to transonic (M = 1.2). The compressible fluid dynamics solver FaSTAR developed by the Japan aerospace exploration agency (JAXA) is used, and calculations are performed under multiple conditions in which the Mach number and angle of attack (α) are swept. The results show that a flow field is similar to that in the Earth’s atmosphere above M = 1.0, such as bow shock at the leading edge, whereas multiple λ-type shock waves are observed over the separated shear layer above α = 3° at M = 0.80. However, no significant difference is found in the C<sub>p</sub> distribution around the airfoil between M = 0.6 and M = 0.8. From the results, it is found that multiple λ-type shock waves have no significant effect on the airfoil surface pressure distribution, the separated shear layer effect is dominant in the surface pressure change and aerodynamic characteristics.
基金Supported by the Aeronautical Science Foundation of China(20061453020)Foundation for Basic Research of Northwestern Polytechnical University(03)~~
文摘The flow around airfoil NACA0012 enwrapped by the body-fitted grid is simulated by a coupled doubledistribution-function (DDF) lattice Boltzmann method (LBM) for the compressible Navier-Stokes equations. Firstly, the method is tested by simulating the low Reynolds number flow at Ma =0. 5,a=0. 0, Re=5 000. Then the simulation of flow around the airfoil is carried out at Ma:0. 5, 0. 85, 1.2; a=-0.05, 1.0, 0.0, respectively. And a better result is obtained by using a local refined grid. It reduces the error produced by the grid at Ma=0. 85. Though the inviscid boundary condition is used to avoid the problem of flow transition to turbulence at high Reynolds numbers, the pressure distribution obtained by the simulation agrees well with that of the experimental results. Thus, it proves the reliability of the method and shows its potential for the compressible flow simulation. The suecessful application to the flow around airfoil lays a foundation of the numerical simulation of turbulence.