期刊文献+
共找到356篇文章
< 1 2 18 >
每页显示 20 50 100
Natural Numbers and the Strong Goldbach Conjecture
1
作者 Ramon Carbó-Dorca 《Journal of Applied Mathematics and Physics》 2024年第9期3208-3236,共29页
This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the incl... This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the inclusion of the zero element as the source of a strong Goldbach conjecture reformulation. A prime Boolean vector is defined, pinpointing the positions of prime numbers within the odd number sequence. The natural unit primality is discussed in this context and transformed into a source of quantum-like indetermination. This approach allows for rephrasing the strong Goldbach conjecture, framed within a Boolean scalar product between the prime Boolean vector and its reverse. Throughout the discussion, other intriguing topics emerge and are thoroughly analyzed. A final description of two empirical algorithms is provided to prove the strong Goldbach conjecture. 展开更多
关键词 Natural Numbers Prime Numbers Vector Description of Natural Numbers Prime Boolean Vectors Primality of the Natural Unit Strong Goldbach’s conjecture Vector Reversal Pairing conjecture Natural Matrix Squeezing
下载PDF
Presentation of the Berry-Tabor conjecture in Levy plates
2
作者 Chao Li Guo-Lin Hou 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期240-247,共8页
The Berry-Tabor(BT)conjecture is a famous statistical inference in quantum chaos,which not only establishes the spectral fluctuations of quantum systems whose classical counterparts are integrable but can also be used... The Berry-Tabor(BT)conjecture is a famous statistical inference in quantum chaos,which not only establishes the spectral fluctuations of quantum systems whose classical counterparts are integrable but can also be used to describe other wave phenomena.In this paper,the BT conjecture has been extended to Lévy plates.As predicted by the BT conjecture,level clustering is present in the spectra of Lévy plates.The consequence of level clustering is studied by introducing the distribution of nearest neighbor frequency level spacing ratios P(r),which is calculated through the analytical solution obtained by the Hamiltonian approach.Our work investigates the impact of varying foundation parameters,rotary inertia,and boundary conditions on the frequency spectra,and we find that P(r)conforms to a Poisson distribution in all cases.The reason for the occurrence of the Poisson distribution in the Lévy plates is the independence between modal frequencies,which can be understood through mode functions. 展开更多
关键词 Berry-Tabor conjecture frequency spectra Hamiltonian approach Lévy plates
下载PDF
How to Prove Riemann Conjecture by Riemann’s Four Theorems
3
作者 Chuanmiao Chen 《Advances in Pure Mathematics》 2024年第8期619-632,共15页
Riemann (1859) had proved four theorems: analytic continuation ζ(s), functional equation ξ(z)=G(s)ζ(s)(s=1/2+iz, z=t−i(σ−1/2)), product expression ξ1(z)and Riemann-Siegel formula Z(z), and proposed Riemann conjec... Riemann (1859) had proved four theorems: analytic continuation ζ(s), functional equation ξ(z)=G(s)ζ(s)(s=1/2+iz, z=t−i(σ−1/2)), product expression ξ1(z)and Riemann-Siegel formula Z(z), and proposed Riemann conjecture (RC): All roots of ξ(z)are real. We have calculated ξand ζ, and found that ξ(z)is alternative oscillation, which intuitively implies RC, and the property of ζ(s)is not good. Therefore Riemann’s direction is correct, but he used the same notation ξ(t)=ξ1(t)to confuse two concepts. So the product expression only can be used in contraction. We find that if ξhas complex roots, then its structure is destroyed, so RC holds. In our proof, using Riemann’s four theorems is sufficient, needn’t cite other results. Hilbert (1900) proposed Riemann hypothesis (RH): The non-trivial roots of ζhave real part 1/2. Of course, RH also holds, but can not be proved directly by ζ(s). 展开更多
关键词 Riemann conjecture ZETA-FUNCTION Xi-Function Functional Equation Product Expression CONTRADICTION
下载PDF
The Erdös-Faber-Lovász Conjecture for Gap-Restricted Hypergraphs
4
作者 Zhimin Wang 《Engineering(科研)》 2024年第2期47-59,共13页
An edge coloring of hypergraph H is a function   such that  holds for any pair of intersecting edges . The minimum number of colors in edge colorings of H is called the chromatic index of H and is ... An edge coloring of hypergraph H is a function   such that  holds for any pair of intersecting edges . The minimum number of colors in edge colorings of H is called the chromatic index of H and is denoted by . Erdös, Faber and Lovász proposed a famous conjecture that  holds for any loopless linear hypergraph H with n vertices. In this paper, we show that  is true for gap-restricted hypergraphs. Our result extends a result of Alesandroni in 2021. 展开更多
关键词 Linear Hypergraph Chromatic Index Erdös-Faber-Lovász conjecture Edge Cardinality
下载PDF
A Comparative Analysis of the New -3(-n) - 1 Remer Conjecture and a Proof of the 3n + 1 Collatz Conjecture
5
作者 Mike Remer 《Journal of Applied Mathematics and Physics》 2023年第8期2216-2220,共5页
This scientific paper is a comparative analysis of two mathematical conjectures. The newly proposed -3(-n) - 1 Remer conjecture and how it is related to and a proof of the more well known 3n + 1 Collatz conjecture. An... This scientific paper is a comparative analysis of two mathematical conjectures. The newly proposed -3(-n) - 1 Remer conjecture and how it is related to and a proof of the more well known 3n + 1 Collatz conjecture. An overview of both conjectures and their respective iterative processes will be presented. Showcasing their unique properties and behavior to each other. Through a detailed comparison, we highlight the similarities and differences between these two conjectures and discuss their significance in the field of mathematics. And how they prove each other to be true. 展开更多
关键词 -3(-n) - 1 Remer conjecture 3n + 1 Collatz conjecture Comparative Analysis PROOF Natural Numbers Integer Sequences Factorial Processes Par-tial Differential Equations Bounded Values Collatz conjecture Collatz Algo-rithm Collatz Operator Collatz Compliance And Mathematical conjectures
下载PDF
The Proofs of Legendre’s Conjecture and Three Related Conjectures
6
作者 Wing K. Yu 《Journal of Applied Mathematics and Physics》 2023年第5期1319-1336,共18页
In this paper, we prove Legendre’s conjecture: There is a prime number between n<sup>2</sup> and (n +1)<sup>2</sup> for every positive integer n. We also prove three related conjectures. The m... In this paper, we prove Legendre’s conjecture: There is a prime number between n<sup>2</sup> and (n +1)<sup>2</sup> for every positive integer n. We also prove three related conjectures. The method that we use is to analyze binomial coefficients. It is developed by the author from the method of analyzing binomial central coefficients, that was used by Paul Erdős in his proof of Bertrand’s postulate - Chebyshev’s theorem. 展开更多
关键词 Legendre’s conjecture Bertrand’s Postulate - Chebyshev’s Theorem Oppermann’s conjecture Brocard’s conjecture Andrica’s conjecture
下载PDF
Collatz Conjecture Redefinition on Prime Numbers
7
作者 Ramon Carbó-Dorca 《Journal of Applied Mathematics and Physics》 2023年第1期147-157,共11页
The definition of Collatz Operator, the mathematical avatar of the Collatz Algorithm, permits the transformation of the Collatz conjecture, which is delineated over the whole natural number set, into an equivalent inf... The definition of Collatz Operator, the mathematical avatar of the Collatz Algorithm, permits the transformation of the Collatz conjecture, which is delineated over the whole natural number set, into an equivalent inference restricted to the odd prime number set only. Based on this redefinition, one can describe an empirical-heuristic proof of the Collatz conjecture. 展开更多
关键词 Natural Numbers Prime Numbers Pseudospaces Collatz conjecture Collatz Algorithm Collatz Operator Collatz Compliance Syracuse Algorithm
下载PDF
Proof of Riemann Conjecture Based on Contradiction between Xi-Function and Its Product Expression
8
作者 Chuanmiao Chen 《Advances in Pure Mathematics》 2023年第7期463-472,共10页
Riemann proved three results: analytically continue ζ(s) over the whole complex plane s =σ + it with a pole s =1;(Theorem A) functional equation ξ(t) = G(s<sub>0</sub>)ζ (s<sub>0</sub>), s&... Riemann proved three results: analytically continue ζ(s) over the whole complex plane s =σ + it with a pole s =1;(Theorem A) functional equation ξ(t) = G(s<sub>0</sub>)ζ (s<sub>0</sub>), s<sub>0</sub> =1/2 + it and (Theorem B) product expression ξ<sub>1</sub>(t) by all roots of ξ(t). He stated Riemann conjecture (RC): All roots of ξ (t) are real. We find a mistake of Riemann: he used the same notation ξ(t) in two theorems. Theorem B must contain complex roots;it conflicts with RC. Thus theorem B can only be used by contradiction. Our research can be completed on s<sub>0</sub> =1/2 + it. Using all real roots r<sub>k</sub><sub> </sub>and (true) complex roots z<sub>j</sub> = t<sub>j</sub> + ia<sub>j</sub> of ξ (z), define product expressions w(t), w(0) =ξ(0) and Q(t) > 0, Q(0) =1 respectively, so ξ<sub>1</sub>(t) = w(t)Q(t). Define infinite point-set L(ω) = {t : t ≥10 and |ζ(s<sub>0</sub>)| =ω} for small ω > 0. If ξ(t) has complex roots, then ω =ωQ(t) on L(ω). Finally in a large interval of the first module |z<sub>1</sub>|>>1, we can find many points t ∈ L(ω) to make Q(t) . This contraction proves RC. In addition, Riemann hypothesis (RH) ζ for also holds, but it cannot be proved by ζ. 展开更多
关键词 Riemann conjecture Xi-Function Functional Equation Product Expression Multiplicative Group CONTRADICTION
下载PDF
A New Method to Study Goldbach Conjecture 被引量:2
9
作者 Ke Li 《Applied Mathematics》 2022年第1期68-76,共9页
This paper does not claim to prove the Goldbach conjecture, but it does provide a new way of proof (LiKe sequence);And in detailed introduces the proof process of this method: by indirect transformation, Goldbach conj... This paper does not claim to prove the Goldbach conjecture, but it does provide a new way of proof (LiKe sequence);And in detailed introduces the proof process of this method: by indirect transformation, Goldbach conjecture is transformed to prove that, for any odd prime sequence (3, 5, 7, <span style="font-size:12px;white-space:nowrap;">&#8230;</span>, <em>P<sub>n</sub></em>), there must have no LiKe sequence when the terms must be less than 3 <span style="font-size:12px;white-space:nowrap;">&#215;</span> <em>P<sub>n</sub></em>. This method only studies prime numbers and corresponding composite numbers, replaced the relationship between even numbers and indeterminate prime numbers. In order to illustrate the importance of the idea of transforming the addition problem into the multiplication problem, we take the twin prime conjecture as an example and know there must exist twin primes in the interval [3<em>P<sub>n</sub></em>, <span><em>P</em></span><sup>2</sup><sub style="margin-left:-8px;"><em>n</em></sub>]. This idea is very important for the study of Goldbach conjecture and twin prime conjecture. It’s worth further study. 展开更多
关键词 Goldbach conjecture LiKe Sequence Twin Prime conjecture Number Theory
下载PDF
AN EQUIVALENT PROPOSITION TO THE CONJECTURE OF GOLDBACH
10
作者 王友菁 刘宗杰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1999年第1期93-95,共3页
In this paper,a formula is given. The formula gives the number of prime number solutions of the indefinite equation p 1+p 2=2n , and based on it, an equivalent proposition to the conjecture of Goldbach is obtained.
关键词 prime numbers indefinite equation prime number solution conjecture of Goldbach equivalent proposition
下载PDF
YAU'S UNIFORMIZATION CONJECTURE FOR MANIFOLDS WITH NON-MAXIMAL VOLUME GROWTH 被引量:3
11
作者 Binglong CHEN Xiping ZHU 《Acta Mathematica Scientia》 SCIE CSCD 2018年第5期1468-1484,共17页
The well-known Yau's uniformization conjecture states that any complete noncompact Kahler manifold with positive bisectional curvature is bi-holomorphic to the Euclidean space. The conjecture for the case of maximal ... The well-known Yau's uniformization conjecture states that any complete noncompact Kahler manifold with positive bisectional curvature is bi-holomorphic to the Euclidean space. The conjecture for the case of maximal volume growth has been recently confirmed, by G. Liu in [23]. In the first part, we will give a survey on thc progress. In the second part, we will consider Yau's conjecture for manifolds with non-maximal volume growth. We will show that the finiteness of the first Chern number Cn1 is an essential condition to solve Yau's conjecture by using algebraic embedding method. Moreover, we prove that, under bounded curvature conditions, Cn1 is automatically finite provided that there exists a positive line bundle with finite Chern number. In particular, we obtain a partial answer to Yau's uniformization conjecture on Kahler manifolds with minimal volume growth. 展开更多
关键词 uniformization conjecture non-maximal volume growth Chern number
下载PDF
On Kendall's Conjecture for an Extended Birth-death Q-processes with Instantaneous State and Catastrophes 被引量:3
12
作者 WUQun-ying 《Chinese Quarterly Journal of Mathematics》 CSCD 2004年第1期41-46,共6页
A new structure with the special property that instantaneous state and catas-trophes is imposed to ordinary birth-death processes is considered. Kendall's conjecture forthe processes is proved to be right.
关键词 extended birth-death process instantaneous state Kendall's conjecture
下载PDF
Local Geometric Proof of Riemann Conjecture 被引量:3
13
作者 Chuanmiao Chen 《Advances in Pure Mathematics》 2020年第10期589-610,共22页
Riemann hypothesis (RH) is a difficult problem. So far one doesn’t know how to go about it. Studying <i>ζ</i> and using analysis method likely are two incor-rect guides. Actually, a unique hope may study... Riemann hypothesis (RH) is a difficult problem. So far one doesn’t know how to go about it. Studying <i>ζ</i> and using analysis method likely are two incor-rect guides. Actually, a unique hope may study Riemann function <img alt="" src="Edit_8fcdfff5-6b95-42a4-8f47-2cabe2723dfc.bmp" />, <img alt="" src="Edit_6ce3a4bd-4c68-49e5-aabe-dec3e904e282.bmp" />, <img alt="" src="Edit_29ea252e-a81e-4b21-a41c-09209c780bb2.bmp" /> by geometric analysis, which has the symmetry: v=0 if <i>β</i>=0, and basic expression <img alt="" src="Edit_bc7a883f-312d-44fd-bcdd-00f25c92f80a.bmp" />. We show that |u| is single peak in each root-interval <img alt="" src="Edit_d7ca54c7-4866-4419-a4bd-cbb808b365af.bmp" /> of <i>u</i> for fixed <em>β</em> ∈(0,1/2]. Using the slope u<sub>t</sub>, we prove that <i>v</i> has opposite signs at two end-points of I<sub>j</sub>. There surely exists an inner point such that , so {|u|,|v|/<em>β</em>} form a local peak-valley structure, and have positive lower bound <img alt="" src="Edit_bac1a5f6-673e-49b6-892c-5adff0141376.bmp" /> in I<sub>j</sub>. Because each <i>t</i> must lie in some I<sub>j</sub>, then ||<em>ξ</em>|| > 0 is valid for any <i>t</i> (<i>i.e.</i> RH is true). Using the positivity <img alt="" src="Edit_83c3d2cf-aa7e-4aba-89f5-0eb44659918a.bmp" /> of Lagarias (1999), we show the strict monotone <img alt="" src="Edit_87eb4e9e-bc7b-43e3-b316-5dcf0efaf0d5.bmp" /> for <i>β</i> > <i>β</i><sub>0</sub> ≥ 0 , and the peak-valley structure is equiva-lent to RH, which may be the geometric model expected by Bombieri (2000). This research follows Liuhui’s methodology: “Computing can detect the un-known and method”.</i> 展开更多
关键词 Riemann conjecture Local Geometric Proof Symmetry Peak-Valley Struc-ture EQUIVALENCE Liuhui’s Methodology
下载PDF
Helliwell-Konkowski Conjecture and the Singularities of Cauchy Horizons in 1 + 1-Dimensional Black Holes 被引量:1
14
作者 WANG Bin SU Ru-keng 《Chinese Physics Letters》 SCIE CAS CSCD 1996年第9期718-720,共3页
The stability conjecture of Cauchy horizons of black holes suggested by Helliwell and Konkowski is used to investigate the 1+1-dimensional(2D)black holes under perturbations of infalling null dust and of both infallin... The stability conjecture of Cauchy horizons of black holes suggested by Helliwell and Konkowski is used to investigate the 1+1-dimensional(2D)black holes under perturbations of infalling null dust and of both infalling and outgoing null dust.The result given by this conjecture agrees with that from mass inflation scenario for 2D charged dilaton black hole.For 2D black holes,we show that the Cauchy horizons are unstable and the corresponding singularities exist. 展开更多
关键词 CAUCHY conjecture PERTURBATIONS
下载PDF
THE WEINSTEIN CONJECTURE IN PRODUCT OF SYMPLECTIC MANIFOLDS 被引量:1
15
作者 丁岩峭 胡建勋 《Acta Mathematica Scientia》 SCIE CSCD 2016年第5期1245-1261,共17页
In this paper, using pseudo-holomorphic curve method, one proves the Weinstein conjecture in the product P;×P;of two strongly geometrically bounded symplectic manifolds under some conditions with P;. In particula... In this paper, using pseudo-holomorphic curve method, one proves the Weinstein conjecture in the product P;×P;of two strongly geometrically bounded symplectic manifolds under some conditions with P;. In particular, if N is a closed manifold or a noncompact manifold of finite topological type, our result implies that the Weinstein conjecture in CP;×T*N holds. 展开更多
关键词 Weinstein conjecture J-holomorphic sphere geometrically bounded
下载PDF
Geometric Proof of Riemann Conjecture 被引量:2
16
作者 Chuanmiao Chen 《Advances in Pure Mathematics》 2021年第4期334-345,共12页
This paper proves Riemann conjecture (RH), <em>i.e</em>., that all the zeros in critical region of Riemann <span style="white-space:nowrap;"><em><span style="white-space:nowra... This paper proves Riemann conjecture (RH), <em>i.e</em>., that all the zeros in critical region of Riemann <span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><em>ξ</em><span style="white-space:normal;"> </span></span></em></span>-function lie on symmetric line <span style="white-space:nowrap;"><em>σ</em></span> =1/2 . Its proof is based on two important properties: the symmetry and alternative oscillation for <span style="white-space:nowrap;"><em><em>ξ</em><span style="white-space:normal;"> </span></em>=<em> u </em>+<em> iv</em></span> . Denote <img src="Edit_317839cd-bad0-44d8-b081-c473bcb336f1.png" width="170" height="15" alt="" />. Riemann proved that u is real and <em>v</em> <span style="white-space:nowrap;">≡ </span>0 for <span style="white-space:nowrap;"><em><span style="white-space:nowrap;">β</span></em> =0</span> (the symmetry). We prove that the zeros of u and v for <em>β</em> <span style="white-space:nowrap;">> 0</span> are alternative, so <span style="white-space:nowrap;"><em>u</em> (<em>t</em>,0)</span> is the single peak. A geometric model was proposed. <img src="Edit_27688061-de42-4bce-ad80-6fb3dd1e3d4b.png" width="85" height="27" alt="" /> is called the root-interval of <em>u </em>(<em>t</em>,<em style="white-space:normal;">β</em>) , if |<span style="white-space:nowrap;"><em>u</em>| <em>> </em>0</span> is inside <em>I</em><sub><em>j</em> </sub>and <span style="white-space:nowrap;"><em>u</em> = 0</span> is at its two ends. If |<em>u</em> (<em style="white-space:normal;">t</em><span style="white-space:normal;">,</span><em style="white-space:normal;">β</em>)| has only one peak on each <em style="white-space:normal;">I</em><sub style="white-space:normal;"><em>j</em></sub>, which is called the single peak, else called multiple peaks (it will be proved that the multiple peaks do not exist). The important expressions of u and v for <em style="white-space:normal;">β</em><span style="white-space:normal;"> </span>> 0 were derived. By <img src="Edit_b6369c2e-6a6d-4e1a-8a75-00d743cecaf1.png" width="240" height="28" alt="" />, the peak <em style="white-space:normal;">u </em><span style="white-space:normal;">(</span><em style="white-space:normal;">t</em><span style="white-space:normal;">,</span><em style="white-space:normal;">β</em><span style="white-space:normal;">)</span> will develop toward its convex direction. Besides, <em style="white-space:normal;">u<sub>t</sub> </em><span style="white-space:normal;">(</span><em style="white-space:normal;">t</em><span style="white-space:normal;">,</span><em style="white-space:normal;">β</em><span style="white-space:normal;">)</span> has opposite signs at two ends <em>t</em> = <em>t<sub>j</sub></em><sub> </sub>, <em>t<sub>j+1</sub></em> of <em>I<sub>j </sub></em>, <img src="Edit_be3f0d63-1d24-4165-ac2c-141c9a47d1c8.png" width="145" height="28" alt="" /> also does, then there exists some inner point <span style="white-space:nowrap;"><em>t</em>′</span> such that <span style="white-space:nowrap;"><em>v</em><em></em> (<em>t′</em>,<em>β</em>) = 0</span>. Therefore {|<em>u</em>|,|<em>v</em>|/<em>β</em>} in <em>I<sub>j</sub></em><sub> </sub>form a peak-valley structure such that <img src="Edit_70bb530a-662f-464a-b3c8-4d5625fbf679.png" width="180" height="22" alt="" /> has positive lower bound independent of <em>t</em> <span style="white-space:nowrap;">∈ </span><em>I<sub>j</sub></em><sub> </sub>(<em>i.e</em>. RH holds in <em style="white-space:normal;">I<sub>j</sub></em><sub style="white-space:normal;"> </sub>). As <em style="white-space:normal;">u </em><span style="white-space:normal;">(</span><em style="white-space:normal;">t</em><span style="white-space:normal;">,</span><em style="white-space:normal;">β</em><span style="white-space:normal;">)</span> does not have the finite condensation point (unless <span style="white-space:nowrap;"><em>u</em> = <em>cons</em><em>t</em>.</span>), any finite t surely falls in some <em style="white-space:normal;">I<sub>j</sub></em><sub style="white-space:normal;"> </sub>, then <img src="Edit_166a9981-aac8-476b-a29a-496763297b35.png" width="50" height="23" alt="" /> holds for any t (RH is proved). Our previous paper “Local geometric proof of Riemann conjecture” (APM, V.10:8, 2020) has two defects, this paper has amended these defects and given a complete proof of RH. 展开更多
关键词 Riemann conjecture Geometric Analysis SYMMETRY Alternative Oscillation Single Peak Peak-Valley Structure
下载PDF
Inequalities relating to L_p-version of Petty's conjectured projection inequality 被引量:1
17
作者 王卫东 冷岗松 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第2期269-276,共8页
Petty's conjectured projection inequality is a famous open problem in the theory of convex bodies. In this paper, it is shown that an inequality relating to Lp-version of the Petty's conjectured projection inequalit... Petty's conjectured projection inequality is a famous open problem in the theory of convex bodies. In this paper, it is shown that an inequality relating to Lp-version of the Petty's conjectured projection inequality is developed by using the notions of the Lp-mixed volume and the Lp-dual mixed volume, the relation of the Lp-projection body and the geometric body Г-pK, the Bourgain-Milman inequality and the Lp-Bnsemann-Petty inequality. In addition, for each origin-symmetric convex body, by applying the Jensen inequality and the monotonicity of the geometric body Г-pK, the reverses of Lp-version of the Petty's conjectured projection inequality and the Lp-Petty projection inequality are given, respectively. 展开更多
关键词 Lp-version Petty projection inequality Petty's conjectured projectioninequality Lp-projection body REVERSE
下载PDF
THE WEINSTEIN CONJECTURE ON C^1-SMOOTH HYPERSURFACE OF CONTACT TYPE 被引量:1
18
作者 卢广存 《Acta Mathematica Scientia》 SCIE CSCD 2002年第4期557-563,共7页
In this note a symplectic capacity of Hofer-Zehnder type that is only invariant under C-1-symplectomorphisms is defined and all computation formulae for Hofer-Zehnder symplectic capacity obtained at present are proved... In this note a symplectic capacity of Hofer-Zehnder type that is only invariant under C-1-symplectomorphisms is defined and all computation formulae for Hofer-Zehnder symplectic capacity obtained at present are proved still holding for it. As a consequence some results on Weinstein conjecture are generalized to C-1-smooth hypersurface of contact type. 展开更多
关键词 Hofer-Zehnder symplectic capacity Weinstein conjecture
下载PDF
Proof of Riemann Conjecture 被引量:1
19
作者 Chuanmiao Chen 《Advances in Pure Mathematics》 2022年第5期374-391,共18页
Using translation β = σ &#8722;1/2 and rotation s =σ + it = 1/2 + iz, z = t &#8722;iβ, Riemann got two results: (Theorem A) the functional equation ξ(z) = G(s)ξ(s), where , and (Theorem B) the product ex... Using translation β = σ &#8722;1/2 and rotation s =σ + it = 1/2 + iz, z = t &#8722;iβ, Riemann got two results: (Theorem A) the functional equation ξ(z) = G(s)ξ(s), where , and (Theorem B) the product expression , where z<sub>j</sub> are all roots of ξ(z), including complex roots. He proposed Riemann conjecture (RC): All roots of ξ(z) are real. As the product expression can only be used as a tool of contradiction, we prove RC by contradiction. To avoid the zeros of ξ(1/2 + it), define a subset . We have basic estimate , on L (R). One can construct by all real roots t<sub>j</sub> of ξ(t). If ξ has no complex roots, then w(t) = G(s)ξ(s) for s = 1/2 + it. If the product expression has a complex root z'=t' &#8722;iα, where 0 a ≤ 1/2, R' = |z′| > 10, then ξ(z) has four complex roots ±(t′ ± iα), and should contain fourth order factor p(z), i.e. ξ(z) = w(z)p(z). But p(z) can not be contained in ξ(s), as we have on L(R) and p(t) ≥ 0.5(t/R)<sup>4</sup> . As a result, we can rewrite ξ(t) = w(t)p(t) =G(s)ξ(s)p(t) on and get This contradicts the basic estimate. Therefore ξ(z) has no complex roots and RC holds. 展开更多
关键词 Riemann conjecture Distribution of Zeros Entire Function SYMMETRY Functional Equation Product Expression
下载PDF
The Proof of the 3X + 1 Conjecture 被引量:1
20
作者 Maoze Wang Yongbao Yang +1 位作者 Zhenxiang He Meiyi Wang 《Advances in Pure Mathematics》 2022年第1期10-28,共19页
In this paper, we use two new effective tools and ingenious methods to prove the 3X + 1 conjecture. By using the recursive method, we firstly prove that any positive integer can be turned into an element of fourth col... In this paper, we use two new effective tools and ingenious methods to prove the 3X + 1 conjecture. By using the recursive method, we firstly prove that any positive integer can be turned into an element of fourth column of the infinite-row-six-column-matrix after a finite times operation, thus we convert “the 3X + 1 conjecture” into an equivalent conjecture, which is: Any positive integer n must become 1 after finite operations under formation of <span style="white-space:nowrap;">&#963;(<em>n</em>)</span> , where <img src="Edit_dad9267d-3c54-455b-b30e-63819c207e54.png" width="300" height="117" alt="" /> Then, with the help of the infinite-row-four-column-matrix, we continue to use the recursive method to prove this conjecture strictly. 展开更多
关键词 The 3X + 1 conjecture (Z+)∞x6 (Z+)∞x4 Transformation Module
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部