期刊文献+
共找到4,720篇文章
< 1 2 236 >
每页显示 20 50 100
Synthesis of Core-shell ZSM-5@ Ordered Mesoporous Silica by Tetradecylamine Surfactant
1
作者 马扩彦 ZHAO Pengxian +4 位作者 YI Hongyu 俞海军 ZHOU Moxi ZHANG Lingling LIU Yupu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期332-336,共5页
A core-shell composite consisting of ZSM-5 zeolite as the core and ordered mesoporous silica as the shell was prepared by a surfactant-controlled sol-gel process and using tetradecylamine(TDA) as the template and Tetr... A core-shell composite consisting of ZSM-5 zeolite as the core and ordered mesoporous silica as the shell was prepared by a surfactant-controlled sol-gel process and using tetradecylamine(TDA) as the template and Tetraethylorthosilicate(TEOS) as the silica precursor.The pores of the silica shell were found to be ordered and perpendicular to the crystal faces of the zeolite core.The thickness of the shell in the coreshell structured composite can be adjusted in the range of 20-90 nm,while the surface morphology and the pore size distribution were modified by changing the mass ratio of TEOS to zeolite.The composite molecular sieves have higher surface area for capturing molecules than ZSM-5,and with the increase of mesoporous shell layer,the ZSM-5@SiO_(2)-x composites show stronger adsorption capacity of butyraldehyde.However,when the shell thickness exceeds 90 nm,the adsorption capacity of butyraldehyde decreases instead.The composites have a huge potential for environmental applications. 展开更多
关键词 core-shell COMPOSITE tetradecylamine SURFACTANT ADSORPTION
下载PDF
Core-Shell Semiconductor-Graphene Nanoarchitectures for Efficient Photocatalysis:State of the Art and Perspectives
2
作者 Jinshen Lan Shanzhi Qu +6 位作者 Xiaofang Ye Yifan Zheng Mengwei Ma Shengshi Guo Shengli Huang Shuping Li Junyong Kang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期553-588,共36页
Semiconductor photocatalysis holds great promise for renewable energy generation and environment remediation,but generally suffers from the serious drawbacks on light absorption,charge generation and transport,and str... Semiconductor photocatalysis holds great promise for renewable energy generation and environment remediation,but generally suffers from the serious drawbacks on light absorption,charge generation and transport,and structural stability that limit the performance.The core-shell semiconductorgraphene(CSSG)nanoarchitectures may address these issues due to their unique structures with exceptional physical and chemical properties.This review explores recent advances of the CSSG nanoarchitectures in the photocatalytic performance.It starts with the classification of the CSSG nanoarchitectures by the dimensionality.Then,the construction methods under internal and external driving forces were introduced and compared with each other.Afterward,the physicochemical properties and photocatalytic applications of these nanoarchitectures were discussed,with a focus on their role in photocatalysis.It ends with a summary and some perspectives on future development of the CSSG nanoarchitectures toward highly efficient photocatalysts with extensive application.By harnessing the synergistic capabilities of the CSSG architectures,we aim to address pressing environmental and energy challenges and drive scientific progress in these fields. 展开更多
关键词 core-shell semiconductor-graphene Nanoarchitecture PHOTOCATALYSIS Driving force Interface
下载PDF
Recent advances in core-shell organic framework-based photocatalysts for energy conversion and environmental remediation
3
作者 Qibing Dong Ximing Li +9 位作者 Yanyan Duan Qingyun Tian Xinxin Liang Yiyin Zhu Lin Tian Junjun Wang Atif Sial Yongqian Cui Ke Zhao Chuanyi Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期168-199,I0004,共33页
Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materi... Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materials developed as photocatalysts,the core-shell metal/covalent-organic framework(MOF or COF)photocatalysts have garnered significant attention due to their highly porous structure and the adjustability in both structure and functionality.The existing reviews on core-shell organic framework photocatalytic materials have mainly focused on core-shell MOF materials.However,there is still a lack of indepth reviews specifically addressing the photocatalytic performance of core-shell COFs and MOFs@COFs.Simultaneously,there is an urgent need for a comprehensive review encompassing these three types of core-shell structures.Based on this,this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable core-shell organic framework photocatalysts towards appropriate photocatalytic energy conversion and environmental governance.Firstly,the classification,synthesis,formation mechanisms,and reasonable regulation of core-shell organic framework were summarized.Then,the photocatalytic applications of these three kinds of core-shell structures in different areas,such as H_(2)evolution,CO_(2)reduction,and pollutants degradation are emphasized.Finally,the main challenges and development prospects of core-shell organic framework photocatalysts were introduced.This review aims to provide insights into the development of a novel generation of efficient and stable core-shell organic framework materials for energy conversion and environmental remediation. 展开更多
关键词 Organic framework core-shell structure PHOTOCATALYSIS Energy conversion Environmental remediation
下载PDF
Amorphous core-shell NiMoP@CuNWs rod-like structure with hydrophilicity feature for efficient hydrogen production in neutral media
4
作者 Jiayong Xiao Chao Jiang +3 位作者 Hui Zhang Zhuo Xing Ming Qiu Ying Yu 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期154-163,共10页
Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst onl... Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst only requires an overpotential of 35 mV to reach a current density of 10 mA cm^(-2).The exceptional hydrogen evolution reaction(HER)activity is attributed to the unique amorphous rod-like nature of NiMoP@CuNWs,which possesses a special hydrophilic feature,en-hances mass transfer,promotes effective contact between the electrode and electrolyte solution,and exposes more active sites during the catalytic process.Density functional theory revealed that the introduction of Mo weakens the binding strength of the Ni site on the catalyst surface with the H atom and promotes the desorption process of the H_(2) product significantly.Owing to its facile syn-thesis,low cost,and high catalytic performance,this electrocatalyst is a promising option for com-mercial applications as a water electrolysis catalyst. 展开更多
关键词 AMORPHOUS Three-dimensional core-shell Electrodeposition Neutral electrolyte ELECTROCATALYST Hydrogen evolution reaction
下载PDF
A novel Ag/ZnO core-shell structure for efficient sterilization synergizing antibiotics and subsequently removing residuals
5
作者 Wenmei Han Wenli Wang +4 位作者 Jie Fan Runping Jia Xuchun Yang Tong Wu Qingsheng Wu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期366-377,共12页
The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by ... The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by increasing its bactericidal performance,the emergence of drug resistance is certainly delayed,so that there's not enough time for developing drug resistance during treatment.Therefore,we selected typical representative materials of metal Ag and semiconductor ZnO nano-bactericides to design and synthesize Ag/ZnO hollow core-shell structures(AZ for short).Antibiotics are grafted on the surface of AZ through rational modification to form a composite sterilization system.The research results show that the antibacterial efficiency of the composite system is significantly increased,from the sum(34.7%+22.8%-57.5%)of the antibacterial efficiency of AZ and gentamicin to 80.2%,net synergizes 22.7%,which fully reflects the effect of 1+1>2.Therefore,the dosage of antibiotics can be drastically reduced in this way,which makes both the possibility of bacterial resistance and medical expenses remarkably decrease.Subsequently,residual antibiotics can be degraded under simple illumination using AZ-self as a photocatalyst,which cuts off the path of environmental pollution.In short,such an innovative route has guiding significance for drug resistance. 展开更多
关键词 Ag/ZnO hollow core-shell structures ANTIBIOTICS GENTAMYCIN Synergistic sterilization PHOTODEGRADATION
下载PDF
Fe-N_(x) sites coupled with core-shell FeS@C nanoparticles to boost the oxygen catalysis for rechargeable Zn-air batteries
6
作者 Katam Srinivas Zhuo Chen +3 位作者 Anran Chen Fei Ma Ming-qiang Zhu Yuanfu Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期565-577,I0013,共14页
The development of efficient single-atom catalysts(SACs) for the oxygen reduction reaction(ORR)remains a formidable challenge,primarily due to the symmetric charge distribution of metal singleatom sites(M-N_(4)).To ad... The development of efficient single-atom catalysts(SACs) for the oxygen reduction reaction(ORR)remains a formidable challenge,primarily due to the symmetric charge distribution of metal singleatom sites(M-N_(4)).To address such issue,herein,Fe-N_(x) sites coupled synergistic catalysts fabrication strategy is presented to break the uniform electronic distribution,thus enhancing the intrinsic catalytic activity.Precisely,atomically dispersed Fe-N_(x) sites supported on N/S-doped mesoporous carbon(NSC)coupled with FeS@C core-shell nanoparticles(FAS-NSC@950) is synthesized by a facile hydrothermal reaction and subsequent pyrolysis.Due to the presence of an in situ-grown conductive graphitic layer(shell),the FeS nanoparticles(core) effectively adjust the electronic structure of single-atom Fe sites and facilitate the ORR kinetics via short/long-range coupling interactions.Consequently,FAS-NSC@950displays a more positive half-wave potential(E_(1/2)) of 0.871 V with a significantly boosted ORR kinetics(Tafel slope=52.2 mV dec^(-1)),outpacing the commercial Pt/C(E_(1/2)=0.84 V and Tafel slope=54.6 mV dec^(-1)).As a bifunctional electrocatalyst,it displays a smaller bifunctional activity parameter(ΔE) of 0.673 V,surpassing the Pt/C-RuO_(2) combination(ΔE=0.724 V).Besides,the FAS-NSC@950-based zincair battery(ZAB) displays superior power density,specific capacity,and long-term cycling performance to the Pt/C-Ir/C-based ZAB.This work significantly contributes to the field by offering a promising strategy to enhance the catalytic activity of SACs for ORR,with potential implications for energy conversion and storage technologies. 展开更多
关键词 Fe-N_(x)sites core-shell FeS@C Synergistic interactions Oxygen reduction reaction Zn-air battery
下载PDF
Exploring the Core-shell Structure of BaTiO3-based Dielectric Ceramics Using Machine Learning Models and Interpretability Analysis
7
作者 孙家乐 XIONG Peifeng +1 位作者 郝华 LIU Hanxing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期561-569,共9页
A machine learning(ML)-based random forest(RF)classification model algorithm was employed to investigate the main factors affecting the formation of the core-shell structure of BaTiO_(3)-based ceramics and their inter... A machine learning(ML)-based random forest(RF)classification model algorithm was employed to investigate the main factors affecting the formation of the core-shell structure of BaTiO_(3)-based ceramics and their interpretability was analyzed by using Shapley additive explanations(SHAP).An F1-score changed from 0.8795 to 0.9310,accuracy from 0.8450 to 0.9070,precision from 0.8714 to 0.9000,recall from 0.8929 to 0.9643,and ROC/AUC value of 0.97±0.03 was achieved by the RF classification with the optimal set of features containing only 5 features,demonstrating the high accuracy of our model and its high robustness.During the interpretability analysis of the model,it was found that the electronegativity,melting point,and sintering temperature of the dopant contribute highly to the formation of the core-shell structure,and based on these characteristics,specific ranges were delineated and twelve elements were finally obtained that met all the requirements,namely Si,Sc,Mn,Fe,Co,Ni,Pd,Er,Tm,Lu,Pa,and Cm.In the process of exploring the structure of the core-shell,the doping elements can be effectively localized to be selected by choosing the range of features. 展开更多
关键词 machine learning BaTiO_(3) core-shell structure random forest classifier
下载PDF
Core-shell mesoporous carbon hollow spheres as Se hosts for advanced Al-Se batteries
8
作者 Haiping Lei Tianwei Wei +1 位作者 Jiguo Tu Shuqiang Jiao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期899-906,共8页
Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challen... Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challenges due to the dissolution of intermediate reaction products.In this work,we aim to harness the advantages of Se while reducing its limitations by preparing a core-shell mesoporous carbon hollow sphere with a titanium nitride(C@TiN)host to load 63.9wt%Se as the positive electrode material for Al-Se batteries.Using the physical and chemical confinement offered by the hollow mesoporous carbon and TiN,the obtained core-shell mesoporous carbon hollow spheres coated with Se(Se@C@TiN)display superior utilization of the active material and remarkable cycling stability.As a result,Al-Se batteries equipped with the as-prepared Se@C@TiN composite positive electrodes show an initial discharge specific capacity of 377 mAh·g^(-1)at a current density of 1000 mA·g^(-1)while maintaining a discharge specific capacity of 86.0 mAh·g^(-1)over 200 cycles.This improved cycling performance is ascribed to the high electrical conductivity of the core-shell mesoporous carbon hollow spheres and the unique three-dimensional hierarchical architecture of Se@C@TiN. 展开更多
关键词 aluminum-selenium batteries intermediate products core-shell mesoporous carbon hollow sphere cycling performance
下载PDF
Interfacial reinforcement of core-shell HMX@energetic polymer composites featuring enhanced thermal and safety performance
9
作者 Binghui Duan Hongchang Mo +3 位作者 Bojun Tan Xianming Lu Bozhou Wang Ning Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期387-399,共13页
The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves... The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves the pretreatment of HMX to endow—OH groups on the surface via polyalcohol bonding agent modification and in situ coating with nitrate ester-containing polymer,was proposed to address the problem.Two types of energetic polyether—glycidyl azide polymer(GAP)and nitrate modified GAP(GNP)were grafted onto HMX crystal based on isocyanate addition reaction bridged through neutral polymeric bonding agent(NPBA)layer.The morphology and structure of the HMX-based composites were characterized in detail and the core-shell structure was validated.The grafted polymers obviously enhanced the adhesion force between HMX crystals and fluoropolymer(F2314)binder.Due to the interfacial reinforcement among the components,the two HMX-based composites exhibited a remarkable increment of phase transition peak temperature by 10.2°C and 19.6°C with no more than 1.5%shell content,respectively.Furthermore,the impact and friction sensitivity of the composites decreased significantly as a result of the barrier produced by the grafted polymers.These findings will enhance the future prospects for the interface design of energetic composites aiming to solve the weak interface and safety concerns. 展开更多
关键词 HMX crystals Polyalcohol bonding agent Energetic polymer core-shell structure Interfacial reinforcement
下载PDF
Synergistic Tuning of Nickel Cobalt Selenide@Nickel Telluride Core-Shell Heteroarchitectures for Boosting Overall Urea Electrooxidation and Electrochemical Supercapattery
10
作者 Diab Khalafallah Weibo Huang +1 位作者 Mingjia Zhi Zhanglian Hong 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期301-312,共12页
Herein,we demonstrate the synthesis of bifunctional nickel cobalt selenide@nickel telluride(Ni_(x)Co_(12-x)Se@NiTe)core-shell heterostructures via an electrodeposition approach for overall urea electrolysis and superc... Herein,we demonstrate the synthesis of bifunctional nickel cobalt selenide@nickel telluride(Ni_(x)Co_(12-x)Se@NiTe)core-shell heterostructures via an electrodeposition approach for overall urea electrolysis and supercapacitors.The 3D vertically orientated NiTe dendritic frameworks induce the homogeneous nucleation of 2D Ni_(x)Co_(12-x)Se nanosheet arrays along similar crystal directions and bring a strong interfacial binding between the integrated active components.In particular,the optimized Ni_(6)Co_(6)Se@NiTe with an interface coupling effect works in concert to tune the intrinsic activity.It only needs a low overpotential of 1.33 V to yield a current density of 10 mA cm^(-2)for alkaline urea electrolysis.Meanwhile,the full urea catalysis driven only by Ni_(6)Co_(6)Se@NiTe achieves 10 mA cm^(-2)at a potential of 1.38 V and can approach a constant level of the current response for 40 h.Besides,the integrated Ni_(6)Co_(6)Se@NiTe electrode delivers an enhanced specific capacity(223 mA h g^(-1)at 1 A g^(-1))with a high cycling stability.Consequently,a hybrid asymmetric supercapacitor(HASC)device based on Ni_(6)Co_(6)Se@NiTe exhibits a favorable rate capability and reaches a high energy density of 67.7 Wh kg^(-1)and a power density of 724.8 W kg^(-1)with an exceptional capacity retention of 92.4%after sequential 12000 cycles at 5 A g^(-1). 展开更多
关键词 bifunctional Ni_(x)Co_(12-x)Se@NiTe core-shell electrodeposition heterointerfaces supercapacitors UOR
下载PDF
Fabrication of Core-Shell Hydrogel Bead Based on Sodium Alginate and Chitosan for Methylene Blue Adsorption
11
作者 Xiaoyu Chen 《Journal of Renewable Materials》 EI CAS 2024年第4期815-826,共12页
A novel core-shell hydrogel bead was fabricated for effective removal of methylene blue dye from aqueous solutions.The core,made of sodium alginate-g-polyacrylamide and attapulgite nanofibers,was cross-linked by Calci... A novel core-shell hydrogel bead was fabricated for effective removal of methylene blue dye from aqueous solutions.The core,made of sodium alginate-g-polyacrylamide and attapulgite nanofibers,was cross-linked by Calcium ions(Ca^(2+)).The shell,composed of a chitosan/activated carbon mixture,was then coated onto the core.Fourier transform infrared spectroscopy confirmed the grafting polymerization of acrylamide onto sodium alginate.Scanning electron microscopy images showed the core-shell structure.The core exhibited a high water uptake ratio,facilitating the diffusion of methylene blue into the core.During the diffusion process,the methylene blue was first adsorbed by the shell and then further adsorbed by the core.Adsorption tests showed that the coreshell structure had a larger adsorption capacity than the core alone.The shell effectively enhanced the adsorption capacity to methylene blue compared to the single core.Methylene blue was adsorbed by activated carbon and chitosan in the shell,and the residual methylene blue diffused into the core and was further adsorbed. 展开更多
关键词 core-shell structure hydrogel bead attapulgite nanofiber sodium alginate POLYACRYLAMIDE methylene blue adsorption material
下载PDF
Fabrication of Cu_2O@Cu_2O core-shell nanoparticles and conversion to Cu_2O@Cu core-shell nanoparticles in solution 被引量:2
12
作者 杨爱玲 李顺嫔 +3 位作者 王玉金 王乐乐 包西昌 杨仁强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3643-3650,共8页
Cu2O@Cu2O core-shell nanoparticles (NPs) were prepared by using solution phase strategy. It was found that Cu2O@Cu2O NPs were easily converted to Cu2O@Cu NPs with the help of polyvinylpyrrolidine (PVP) and excessive a... Cu2O@Cu2O core-shell nanoparticles (NPs) were prepared by using solution phase strategy. It was found that Cu2O@Cu2O NPs were easily converted to Cu2O@Cu NPs with the help of polyvinylpyrrolidine (PVP) and excessive ascorbic acid (AA) in air at room temperature, which was an interesting phenomenon. The features of the two kinds of NPs were characterized by XRD, TEM and extinction spectra. Cu2O@Cu NPs with different shell thicknesses showed wide tunable optical properties for the localized surface plasmon (LSP) in metallic Cu. But Cu2O@Cu2O NPs did not indicate this feature. FTIR results reveal that Cu+ ions on the surface of Cu2O shell coordinate with N and O atoms in PVP and are further reduced to metallic Cu by excessive AA and then form a nucleation site on the surface of Cu2O nanocrystalline. PVP binds onto different sites to proceed with the reduction utill all the Cu sources in Cu2O shell are completely assumed. 展开更多
关键词 Cu2O@Cu2O core-shell nanoparticles Cu2O@Cu core-shell nanoparticles solution phase strategy reducing agent tunable optical properties polyvinylpyrrolidine
下载PDF
Surface treatment effect on the photocatalytic hydrogen generation of CdS/ZnS core-shell microstructures 被引量:7
13
作者 苏进展 张涛 +2 位作者 王璐 师进文 陈玉彬 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第3期489-497,共9页
CdS/ZnS core-shell microparticles were prepared by a simple two-step method combining ultrasonic spray pyrolysis and chemical bath deposition.The core-shell structures showed enhanced photocatalytic properties compare... CdS/ZnS core-shell microparticles were prepared by a simple two-step method combining ultrasonic spray pyrolysis and chemical bath deposition.The core-shell structures showed enhanced photocatalytic properties compared with those of CdS or ZnS spherical particles.CdS/ZnS photocatalysts with different amount of ZnS loaded as shells were prepared by adjusting the concentrations of Zn and S precursors during synthesis.The optical properties and photocatalytic activity for hydrogen production were investigated and the amount of ZnS loaded as shell was optimized.Thermal annealing and hydrothermal sulfurization treatments were applied to the core-shell structure and both treatments enhanced the material's photocatalytic activity and stability by eliminating crystalline defects and surface states.The result showed that thermal annealing treatment improved the bulk crystallinity and hydrothermal sulfurization improved the surface properties.The sample subjected to both treatments showed the highest photocatalytic activity.These results indicate that CdS/ZnS core-shell microspheres are a simple structure that can be used as efficient photocatalysts.The hydrothermal sulfurization treatment may also be a useful surface treatment for metal sulfide photocatalysts.The simple two-step method provides a promising approach to the large-scale synthesis of core-shell microsphere catalysts. 展开更多
关键词 core-shell microstructure PHOTOCATALYSIS Surface treatment Hydrogen production Low-cost synthesis
下载PDF
Ni@Pd core-shell nanoparticles supported on a metal-organic framework as highly efficient catalysts for nitroarenes reduction 被引量:7
14
作者 简思平 李映伟 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第1期91-97,共7页
Ni@Pd core-shell nanoparticles with a mean particle size of 8–9 nm were prepared by solvothermal reduction of bivalent nickel and palladium in oleylamine and trioctylphosphine.Subsequently,the first-ever deposition o... Ni@Pd core-shell nanoparticles with a mean particle size of 8–9 nm were prepared by solvothermal reduction of bivalent nickel and palladium in oleylamine and trioctylphosphine.Subsequently,the first-ever deposition of Ni@Pd core-shell nanoparticles having different compositions on a metal-organic framework(MIL-101)was accomplished by wet impregnation in n-hexane.The Ni@Pd/MIL-101 materials were characterized by powder X-ray diffraction,Fourier transform infrared spectroscopy,transmission electron microscopy,and energy-dispersive X-ray spectroscopy and also investigated as catalysts for the hydrogenation of nitrobenzene under mild reaction conditions.At 30 °C and 0.1 MPa of H2 pressure,the Ni@Pd/MIL-101 gives a TOF as high as 375 h–1 for the hydrogenation of nitrobenzene and is applicable to a wide range of substituted nitroarenes.The exceptional performance of this catalyst is believed to result from the significant Ni-Pd interaction in the core-shell structure,together with promotion of the conversions of aromatics by uncoordinated Lewis acidic Cr sites on the MIL-101 support. 展开更多
关键词 Nickel PALLADIUM core-shell nanoparticle Metal-organic framework NITROARENE HYDROGENATION Heterogeneous catalysis
下载PDF
Fabricating Core-Shell WC@C/Pt Structures and its Enhanced Performance for Methanol Electrooxidation 被引量:1
15
作者 陈赵扬 段隆发 +3 位作者 褚有群 盛江峰 林文锋 马淳安 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第4期450-456,I0002,共8页
The spray-dried spheres within a W/Pt multi-separation can be used to prepare discrete core-shell WC@C/Pt catalysts through a typical carburization production mechanism at 800 ℃. In contrast with previous studies of ... The spray-dried spheres within a W/Pt multi-separation can be used to prepare discrete core-shell WC@C/Pt catalysts through a typical carburization production mechanism at 800 ℃. In contrast with previous studies of the WC/Pt synthesis, the reaction observed here proceeds through an indirect annealing thereby resulting in core-shell structure, and mechanism at 600℃ wherein species diffuse, Pt nanoparticles were successfully dispersed in size/shape and randomly scattered across the in situ produced C spheres. Through direct carburization or at higher initial hydrochloroplatiuic acid concentrations, however, complete reaction with core-shell spheres was not observed. Indirect carburization reduces the strain felt by the bonds featuring the larger WC WC and Pt nanoparticles to be reserved, stability toward methanol oxidation. particles and allows the motion of carbon around influencing the eleetrocatalytic performance and 展开更多
关键词 Self-disperse core-shell structure Carbon-resist Tungsten carbide Methanol oxidation
下载PDF
Preparation and characterization of ZnSe/CdSe core-shell microspheres
16
作者 段雨露 周丽旗 +3 位作者 徐国富 张慧颖 李旭 刘小鹤 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1559-1567,共9页
The preparation of Zn Se/Cd Se core-shell structure nanocomposites by using the re-prepared Zn Se microspheres as the template under the hydrothermal condition was presented. The influence of different mole ratios of ... The preparation of Zn Se/Cd Se core-shell structure nanocomposites by using the re-prepared Zn Se microspheres as the template under the hydrothermal condition was presented. The influence of different mole ratios of ZnS e to Cd(NO3)2 on the morphology and structure of the final product was investigated. And the performances of ZnS e/Cd Se core-shell structure nanocomposites were characterized by the means of X-ray diffraction(XRD) analyses, scanning electron microscopy(SEM), transmission electron microscopy(TEM) and photoluminescence(PL) spectroscopy. The results indicate that the core-shell structure product can be prepared, when the mole ratio of Zn Se to Cd(NO3)2 is larger than 1:1; and the product will be ball solid structure, when the mole ratio of Zn Se to Cd(NO3)2 is equal to 1:1. The photo luminescence results show that Zn Se/Cd Se core-shell structures have high photo luminescence emission properties, and the product with mole ratio of Zn Se to Cd(NO3)2 being 1:0.5 has the best luminescence properties. 展开更多
关键词 hydrothermal methed core-shell nanocomposite ZNSE CDSE optical property
下载PDF
ZnO@MOF@PANI core-shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes 被引量:10
17
作者 Chunmei Zhu Ying He +3 位作者 Yijun Liu Natalia Kazantseva Petr Saha Qilin Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第8期124-131,I0005,共9页
Hierarchical ZnO@metal-organic framework @polyaniline(ZnO@MOF@PANI) core-shell nanorod arrays on carbon cloth has been fabricated by combining electrodeposition and hydrothermal method. Well-ordered Zn O nanorods not ... Hierarchical ZnO@metal-organic framework @polyaniline(ZnO@MOF@PANI) core-shell nanorod arrays on carbon cloth has been fabricated by combining electrodeposition and hydrothermal method. Well-ordered Zn O nanorods not only act as a scaffold for growth of MOF/PANI shell but also as Zn source for the formation of MOF. The morphology of ZnO@MOF@PANI composite is greatly influenced by the number of PANI electrodeposition cycles. Their structural and electrochemical properties were characterized with different techniques. The results indicate that the Zn O@MOF@PANI with 13 CV cycles of PANI deposition demonstrates the maximum specific capacitance of 340.7 F g-1 at 1.0 A g-1, good rate capability with84.3% capacitance retention from 1.0 to 10 A g-1 and excellent cycling life of 82.5% capacitance retention after 5000 cycles at high current density of 2.0 A g-1. This optimized core-shell nanoarchitecture endows the composite electrode with short ion diffusion pathway, rapid ion/electron transfer and high utilization of active materials, which thus result in excellent electrochemical performance of the ternary composite. 展开更多
关键词 Metal-oragnic framework POLYANILINE core-shell NANOARRAYS SUPERCAPACITOR Electrochemical properties
下载PDF
Synthesis and Characterization of Fluorine-containing Polyacrylate Emulsion with Core-Shell Structure 被引量:29
18
作者 肖新颜 刘健飞 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第4期626-630,共5页
A fluorine-containing polyacrylate copolymer emulsion was synthesized by a seed emulsion polymerization method, in which methyl methacrylate (MMA) and butyl acrylate (BA) were used as main monomers and hexafluorob... A fluorine-containing polyacrylate copolymer emulsion was synthesized by a seed emulsion polymerization method, in which methyl methacrylate (MMA) and butyl acrylate (BA) were used as main monomers and hexafluorobutyl methacrylate (HFMA) as fluorine-containing monomer. The structure and properties were characterized by Fourier transform infrared spectrum (FT-IR), transmission electron microscopy (TEM), particle size analysis, X-ray photoelectron spectroscopy (XPS), contact angle (CA), differential scanning calorimetry (DSC) and thermogravimetry (TG) analysis. The FTIR and TEM results showed that HFMA was effectively involved in the emulsion copolymerization, and the formed emulsion particles had a core-shell structure and a narrow particle size distribution. XPS and CA analysis revealed that a gradient concentration of fluorine existed in the depth profile of fluorine-containing emulsion film which was richer in fluorine and more hydrophobic in one side. DSC and TG analysis also showed that a clear core-shell structure existed in the fluorine-containing emulsion particles, and their film showed higher thermal stability than that of fluorine-free emulsion. 展开更多
关键词 fluorine-containing polyacrylate emulsion core-shell structure seed emulsion polymerization
下载PDF
Efficient microwave absorption achieved through in situ construction of core-shell Co Fe_(2)O_(4)@mesoporous carbon hollow spheres 被引量:12
19
作者 Lianggui Ren Yiqun Wang +2 位作者 Xin Zhang Qinchuan He Guanglei Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第3期504-514,共11页
Cobalt ferrite(CoFe_(2)O_(4)),with good chemical stability and magnetic loss,can be used to prepare composites with a unique structure and high absorption.In this study,CoFe_(2)O_(4)@mesoporous carbon hollow spheres(M... Cobalt ferrite(CoFe_(2)O_(4)),with good chemical stability and magnetic loss,can be used to prepare composites with a unique structure and high absorption.In this study,CoFe_(2)O_(4)@mesoporous carbon hollow spheres(MCHS)with a core-shell structure were prepared by introducing CoFe_(2)O_(4)magnetic particles into hollow mesoporous carbon through a simple in situ method.Then,the microwave absorption performance of the CoFe_(2)O_(4)@MCHS composites was investigated.Magnetic and dielectric losses can be effectively coordinated by constructing the porous structure and adjusting the ratio of MCHS and CoFe_(2)O_(4).Results show that the impedance matching and absorption properties of the Co Fe_(2)O_(4)@MCHS composites can be altered by tweaking the mass ratio of MCHS and CoFe_(2)O_(4).The minimum reflection loss of the Co Fe_(2)O_(4)@MCHS composites reaches-29.7 dB at 5.8 GHz.In addition,the effective absorption bandwidth is 3.7 GHz,with the thickness being 2.5 mm.The boosted microwave absorption can be ascribed to the porous core-shell structure and introduction of magnetic particles.The coordination between the microporous morphology and the core-shell structure is conducive to improving the attenuation coefficient and achieving good impedance matching.The porous core-shell structure provides large solid-void and CoFe_(2)O_(4)-C interfaces to induce interfacial polarization and extend the electromagnetic waves’multiple scattering and reflection.Furthermore,natural resonance,exchange resonance,and eddy current loss work together for the magnetic loss.This method provides a practical solution to prepare core-shell structure microwave absorbents. 展开更多
关键词 porous core-shell structure microwave absorption interface polarization FERRITE structure-controllable
下载PDF
Synthesis of a Novel Core-shell Type Acrylic-polyurethane Hybrid Emulsion Containing Siloxane and Fluorine as well as Water and the Oil Resistances of Cured Film 被引量:7
20
作者 Jing CHAO Xing Yuan ZHANG Jia Bing DAI Zhen GE Lin Lin FENG 《Chinese Chemical Letters》 SCIE CAS CSCD 2006年第8期1121-1124,共4页
Siliconated polyurethane (Si-PU) was synthesized using isophorone diisocyanate (IPDI), hydroxybutyl-terminated polydimethylsiloxane (PDMS), polytetramethylene ether glycol (PTMG), polypropylene glycol (PPG),... Siliconated polyurethane (Si-PU) was synthesized using isophorone diisocyanate (IPDI), hydroxybutyl-terminated polydimethylsiloxane (PDMS), polytetramethylene ether glycol (PTMG), polypropylene glycol (PPG), 1,6-hexanediol (HDO), dimethylol propionic acid (DMPA) and triethylamine (TEA). Based on butyl acrylate (BA), 2, 2, 2-trifluoroethylmethacrylate (TFEMA) and Si-PU as a seed emulsion, a novel core-shell type acrylic-polyurethane hybrid emulsion, containing siloxane and fluorine (F-Si-PU), was prepared by seeded emulsion polymerization. The contents of siloxane and fluorine were determined according to the feed ratio. Fourier transform infrared spectroscopy (FTIR) was used to identify the chain structures of Si-PU and F-Si-PU. Investigation of transmission electron microscopy (TEM) confirmed the core-shell structure of F-Si-PU emulsion. Measurement results of water contact angle and the swelling ratio in water and n-octane for cured film showed that the water and the oil resistances for F-Si-PU had been significantly improved at a suitable content of fluorine and siloxane. 展开更多
关键词 core-shell SILOXANE FLUORINE acrylic-polyurethane water and oil resistance.
下载PDF
上一页 1 2 236 下一页 到第
使用帮助 返回顶部