文章模拟了CO_(2)与绿氢合成甲醇的过程,提出了CO_(2)储能密度指标,研究了多个参数对甲醇储能性能的影响。研究结果表明:系统能效和甲醇能量产率随着电解水效率、单程CO_(2)转化率、电解水压力和CO_(2)初始压力的升高而升高,随着甲醇合...文章模拟了CO_(2)与绿氢合成甲醇的过程,提出了CO_(2)储能密度指标,研究了多个参数对甲醇储能性能的影响。研究结果表明:系统能效和甲醇能量产率随着电解水效率、单程CO_(2)转化率、电解水压力和CO_(2)初始压力的升高而升高,随着甲醇合成压力的升高而降低;CO_(2)储能密度随以上参数的变化趋势与系统能效和甲醇能量产率相反;电解水效率和单程CO_(2)转化率是敏感关键的参数;在最优组合工况下,基于甲醇高位和低位热值的系统能效分别为68.0%和59.6%,CO_(2)储能密度为6.07 k W·h/kg,能量产率为0.108 kg/(k W·h),表明以CO_(2)为原料的电制甲醇的系统能效不够理想,但储能密度优势显著。展开更多
Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derive...Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derived from shale gas,serves as an alternative olefins production route.Concurrently,the target of realizing carbon neutrality promotes the comprehensive utilization of greenhouse gas.The integrated process of light alkanes dehydrogenation and carbon dioxide reduction(CO_(2)-ODH)can produce light olefins and realize resource utilization of CO_(2),which has gained wide popularity.With the introduction of CO_(2),coke deposition and metal reduction encountered in alkanes dehydrogenation reactions can be effectively suppressed.CO_(2)-assisted alkanes dehydrogenation can also reduce the risk of potential explosion hazard associated with O_(2)-oxidative dehydrogenation reactions.Recent investigations into various metal-based catalysts including mono-and bi-metallic alloys and oxides have displayed promising performances due to their unique properties.This paper provides the comprehensive review and critical analysis of advancements in the CO_(2)-assisted oxidative dehydrogenation of light alkanes(C2-C4)on metal-based catalysts developed in recent years.Moreover,it offers a comparative summary of the structural properties,catalytic activities,and reaction mechanisms over various active sites,providing valuable insights for the future design of dehydrogenation catalysts.展开更多
文摘文章模拟了CO_(2)与绿氢合成甲醇的过程,提出了CO_(2)储能密度指标,研究了多个参数对甲醇储能性能的影响。研究结果表明:系统能效和甲醇能量产率随着电解水效率、单程CO_(2)转化率、电解水压力和CO_(2)初始压力的升高而升高,随着甲醇合成压力的升高而降低;CO_(2)储能密度随以上参数的变化趋势与系统能效和甲醇能量产率相反;电解水效率和单程CO_(2)转化率是敏感关键的参数;在最优组合工况下,基于甲醇高位和低位热值的系统能效分别为68.0%和59.6%,CO_(2)储能密度为6.07 k W·h/kg,能量产率为0.108 kg/(k W·h),表明以CO_(2)为原料的电制甲醇的系统能效不够理想,但储能密度优势显著。
文摘Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derived from shale gas,serves as an alternative olefins production route.Concurrently,the target of realizing carbon neutrality promotes the comprehensive utilization of greenhouse gas.The integrated process of light alkanes dehydrogenation and carbon dioxide reduction(CO_(2)-ODH)can produce light olefins and realize resource utilization of CO_(2),which has gained wide popularity.With the introduction of CO_(2),coke deposition and metal reduction encountered in alkanes dehydrogenation reactions can be effectively suppressed.CO_(2)-assisted alkanes dehydrogenation can also reduce the risk of potential explosion hazard associated with O_(2)-oxidative dehydrogenation reactions.Recent investigations into various metal-based catalysts including mono-and bi-metallic alloys and oxides have displayed promising performances due to their unique properties.This paper provides the comprehensive review and critical analysis of advancements in the CO_(2)-assisted oxidative dehydrogenation of light alkanes(C2-C4)on metal-based catalysts developed in recent years.Moreover,it offers a comparative summary of the structural properties,catalytic activities,and reaction mechanisms over various active sites,providing valuable insights for the future design of dehydrogenation catalysts.