期刊文献+
共找到74篇文章
< 1 2 4 >
每页显示 20 50 100
Corrosion and in vitro cytocompatibility investigation on the designed Mg-Zn-Ag metallic glasses for biomedical application 被引量:1
1
作者 Jian Wang Lingzhong Meng +6 位作者 Weixin Xie Chen Ji Ronghua Wang Pinghu Zhang Liling Jin Liyuan Sheng Yufeng Zheng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1566-1580,共15页
In the present work,seven Mg-Zn-Ag alloys with the nominal composition of Mg_(96-x)Zn_(x)Ag_(4)(x=17,20,23,26,29,32,35 in at.%)were prepared by induction melting and single-roller melt-spinning.The X-ray diffraction(X... In the present work,seven Mg-Zn-Ag alloys with the nominal composition of Mg_(96-x)Zn_(x)Ag_(4)(x=17,20,23,26,29,32,35 in at.%)were prepared by induction melting and single-roller melt-spinning.The X-ray diffraction(XRD)analyses indicate the metallic glasses with three composition of Mg_(73)Zn_(23)Ag_(4),Mg_(70)Zn_(26)Ag_(4),and Mg_(67)Zn_(29)Ag_(4)were obtained successfully.The differential scanning calorimetry(DSC)measurement was used to obtain the characteristic temperature of Mg-Zn-Ag metallic glasses for the glass-forming ability analysis.The maximum glass transition temperature(Trg)was found to be 0.525 with a composition close to Mg_(67)Zn_(29)Ag_(4),which results in the best glass-forming ability.Moreover,the immersion test in simulated body fluid(SBF)demonstrate the relative homogeneous corrosion behavior of the Mg-Zn-Ag metallic glasses.The corrosion rate of Mg-Zn-Ag metallic glasses in SBF solution decreases with the increase of Zn content.The sample Mg_(67)Zn_(29)Ag_(4)has the lowest corrosion rate of 0.19mm/yr,which could meet the clinical application requirement well.The in vitro cell experiments show that the Madin-Darby canine kidney(MDCK)cells cultured in sample Mg_(67)Zn_(29)Ag_(4)and its extraction medium have higher activity.However,the Mg-Zn-Ag metallic glasses exhibit obvious inhibitory effect on human rhabdomyosarcoma(RD)tumor cells.The present investigations on the glass-forming ability,corrosion behavior,cytocompatibility and tumor inhibition function of the Mg-Zn-Ag based metallic glass could reveal their biomedical application possibility. 展开更多
关键词 Metallic glasses Mg-Zn-Ag Corrosion behavior In vitro cytocompatibility
下载PDF
Photo-responsive Carboxymethyl Chitosan/Laponite Hydrogel as a Potential Spinal Cord Injury Scaffold:Characterization and Cytocompatibility Study
2
作者 Jayanti Parajuli LI Yongtao +3 位作者 CHANG Likun YE Liyuan HAN Yingchao YIN Yixia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1628-1636,共9页
We synthesized photo-responsive carboxymethyl chitosan(CMC-MA)via free radical polymerization and utilized nanoclay laponite(LAP)as an inorganic crosslinking agent to develop an injectable and 3D-printable CMC-MA/LAP ... We synthesized photo-responsive carboxymethyl chitosan(CMC-MA)via free radical polymerization and utilized nanoclay laponite(LAP)as an inorganic crosslinking agent to develop an injectable and 3D-printable CMC-MA/LAP hydrogel.We determined the optimal ratio of 2.5 w/v%CMC-MA/7.5 w/v%LAP based on injection molding,compression modulus,swelling properties,rheological properties,and 3D printing properties of the hydrogel system.In-vitro cytocompatibility experiments showed that both CMC-MA and CMC-MA/LAP hydrogel had no inhibitory effect on cell proliferation and can promote cell growth when cultured on the surface of the hydrogel matrix.Moreover,the hydrogel containing LAP particles significantly facilitated cell adhesion(>60%)compared with the hydrogel without LAP(20%).Our findings demonstrate that the CMC-MA/LAP hydrogel has great potential for tissue repair in neural tissue engineering. 展开更多
关键词 neural injectable hydrogels spinal cord injury CMC-MA/LAP hydrogel cytocompatibility
下载PDF
Biocorrosion property and cytocompatibility of calcium phosphate coated Mg alloy 被引量:6
3
作者 徐丽萍 张二林 杨珂 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期2014-2020,共7页
Calcium phosphate coated Mg alloy was prepared. The phase constitute and surface morphology were identified and observed by X-ray diffractometer (XRD) and SEM. The results show that the coating is composed of flake-... Calcium phosphate coated Mg alloy was prepared. The phase constitute and surface morphology were identified and observed by X-ray diffractometer (XRD) and SEM. The results show that the coating is composed of flake-like CaHPO4-2H2O crystals. The corrosion resistance of the coated Mg alloy was measured by electrochemical polarization and immersion test in comparison with uncoated Mg alloy. Cytocompatibility was designed by observing the attachment, growth and proliferation of L929 cell on both coated and uncoated Mg alloy samples. The results display that the corrosion resistance of the coated Mg alloy is better than that of uncoated one. The immersion test also shows that the calcium phosphate coating can mitigate the corrosion of Mg alloy substrate, and tends to transform into hydroxyapatite (HA). Compared with uncoated Mg alloy, L929 cells exhibit good adherence, growth and proliferation characteristics on the coated Mg alloy, indicating that the cytocompatibility is significantly improved with the calcium phosphate coating. 展开更多
关键词 biodegradable Mg surface modification corrosion cytocompatibility
下载PDF
Cytocompatibility with osteogenic cells and enhanced in vivo anti-infection potential of quaternized chitosan-loaded titania nanotubes 被引量:9
4
作者 Ying Yang Haiyong Ao +5 位作者 Yugang Wang Wentao Lin Shengbing Yang Shuhong Zhang Zhifeng Yu Tingting Tang 《Bone Research》 SCIE CAS CSCD 2016年第3期140-153,共14页
Infection is one of the major causes of failure of orthopedic implants. Our previous study demonstrated that nanotube modification of the implant surface, together with nanotubes loaded with quaternized chitosan (hyd... Infection is one of the major causes of failure of orthopedic implants. Our previous study demonstrated that nanotube modification of the implant surface, together with nanotubes loaded with quaternized chitosan (hydroxypropyltrimethyl ammonium chloride chitosan, HACC), could effectively inhibit bacterial adherence and biofilm formation in vitro. Therefore, the aim of this study was to further investigate the in vitro cytocompatibility with osteogenic cells and the in vivo anti-infection activity of titanium implants with HACC-loaded nanotubes (NT-H). The titanium implant (Ti), nanotubes without polymer loading (NT), and nanotubes loaded with chitosan (NT-C) were fabricated and served as controls. Firstly, we evaluated the cytocompatibility of these specimens with human bone marrow-derived mesenchymal stem cells in vitro. The observation of cell attachment, proliferation, spreading, and viability in vitro showed that NT-H has improved osteogenic activity compared with Ti and NT-C. A prophylaxis rat model with implantation in the femoral medullary cavity and inoculation with methiciUin-resistant Staphylococcus aureus was established and evaluated by radiographical, microbiological, and histopathological assessments. Our in vivo study demonstrated that NT-H coatings exhibited significant anti-infection capability compared with the Ti and NT-C groups. In conclusion, HACC-loaded nanotubes fabricated on a titanium substrate show good compatibility with osteogenic cells and enhanced anti-infection ability in vivo, providing a good foundation for clinical application to combat orthopedic implant-associated infections. 展开更多
关键词 NT cytocompatibility with osteogenic cells and enhanced in vivo anti-infection potential of quaternized chitosan-loaded titania nanotubes HACC
下载PDF
Superhydrophobic fluoride conversion coating on bioresorbable magnesium alloy——fabrication,characterization,degradation and cytocompatibility with BMSCs 被引量:4
5
作者 Chunyan Zhanga Shiyu Zhang +3 位作者 Dongwei Sun Jiajia Lin Fancheng Meng Huinan Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第4期1252-1266,共15页
A micro-nano structure CaF_(2)chemical conversion layer was prepared on fluoride-treated AZ31 alloy,then the composite fluoride conversion film(CaF_(2)/MgF_(2))was modified by stearic acid(SA)and fabricated a superhyd... A micro-nano structure CaF_(2)chemical conversion layer was prepared on fluoride-treated AZ31 alloy,then the composite fluoride conversion film(CaF_(2)/MgF_(2))was modified by stearic acid(SA)and fabricated a superhydrophobic surface.The fluoride-treated magnesium,fluoride conversion film and superhydrophobic coating were characterized by SEM,EDS,XRD and FTIR.The properties of coatings1 adhesion and corrosion resistance were evaluated via tape test and electrochemical measurement.The cytocompatibility of the MgF_(2),CaF_(2)and superhydrophobic CaF_(2)/SA surface was investigated with bone marrow-derived mesenchymal stem cells(BMSCs)by direct culture for 24 h.The results showed that the superhydrophobic fluoride conversion coating composed of inner MgF_(2)layer and the outer CaF_(2)/SA composite layer had an average water contact angle of 152°.SA infiltrated into the micro-nano structure CaF_(2)layer and formed a strong adhesion with CaF_(2)layer.Furthermore,the super-hydrophobic coating showed higher barrier properties and corrosion resistance compared with the fluoride conversion film and fluoride-treated AZ31 alloy.The BMSC adhesion test results demonstrated MgF_(2)CaF_(2)and CaF_(2)/SA coatings were all nontoxic to BMSC.At the condition of in direct contact with cells,MgF_(2)showed higher cell density and enhanced the BMSCs proliferation,while CaF_(2)and CaF_(2)/SA coating showed no statistically difference in cell density compared with glass reference but the CaF_(2)and CaF_(2)/SA coating were not conducive to BMSCs adhesion. 展开更多
关键词 BIODEGRADABLE Magnesium alloy SUPERHYDROPHOBIC Fluoride conversion film cytocompatibility
下载PDF
In vitro evaluation of degradation,cytocompatibility and antibacterial property of polycaprolactone/hydroxyapatite composite coating on bioresorbable magnesium alloy 被引量:1
6
作者 Zhang Chunyan Cheng Lan +3 位作者 Lin Jiajia Sun Dongwei Zhang Jun Liu Huinan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第8期2252-2265,共14页
Polycaprolactone/hydroxyapatite(PCL/HA)composite coating was fabricated by a combination of hydrothermal and dipping methods to delay the degradation of Mg alloy AZ31 as bioresorbable materials.The PCL/HA coating was ... Polycaprolactone/hydroxyapatite(PCL/HA)composite coating was fabricated by a combination of hydrothermal and dipping methods to delay the degradation of Mg alloy AZ31 as bioresorbable materials.The PCL/HA coating was composed of nano rod-shape HA crystals and PCL filled in the space of HA crystals.Compared with the single HA coating,the binding strength between the PCL/HA composite coating and Mg alloy was obviously improved and the PCL/HA coating still adhered to the surface of AZ31 substrate even after 38 days of immersion.The electrochemical corrosion rate of HA coated sample was reduced by ten times after being filled by PCL.The electrochemical impedance spectroscopy(EIS)and immersion test results showed that the PCL/HA composite coating could provide a more effective barrier for Mg substrate than the HA coating alone.The cytocompatibility and the antibacterial property of HA coating and PCL/HA coating were evaluated by culturing with bone marrow-derived mesenchymal stem cells(BMSCs)and methicillin-resistant staphylococcus aureus(MRSA)for 24 h under direct culture conditions,respectively.The PCL/HA composite coating showed better BMSC cell compatibility,more suitable for BMSC adhesion than HA coating alone and showed a potential application prospect as a biological materials.However,from the perspective of clinical applications,the antibacterial property of PCL/HA composite coating needs to be further improved. 展开更多
关键词 Mg alloy PCL/HA coating Corrosion resistance cytocompatibility Antibacterial property
下载PDF
Promoted Cytocompatibility of Silk Fibroin Fiber Vascular Graft through Chemical Grafting with Bioactive Molecules 被引量:1
7
作者 关国平 ELAHI Md Fazley +4 位作者 王璐 沈高天 陈肖会 周浩 徐睿 《Journal of Donghua University(English Edition)》 EI CAS 2013年第5期362-366,共5页
Natural silk from Bombyx mori has been used as medical sutures for several decades,and regenerated silk fibroin( RSF)based biomaterials have been increasingly studied in the past thirty years. However,vascular graft d... Natural silk from Bombyx mori has been used as medical sutures for several decades,and regenerated silk fibroin( RSF)based biomaterials have been increasingly studied in the past thirty years. However,vascular graft derived from silk fibroin fiber has been explored in recent several years with development of textile science and engineering. Moreover,endothelialization of vascular graft has been seen as an ideal strategy for preventing thrombosis and getting higher patency in a long term. Therefore,in the present work silk fibroin fiber vascular graft( SF) was chemically grafted with bioactive molecules such as heparin and RSF to improve the cytocompatibility. 3-aminopropyl-triethoxysilane(APTES),1-ethyl-3-(3-dimethylaminopropyl) carbodiie hydrochlide( EDC · HCl),and N-hydroxysuccinimide( NHS) have been employed as coupling agent and crosslinking agents,respectively. Microscopy and ATRFTIR were used to characterize the surface changes and the structure of the grafts after treatment,respectively. Cell culture in vitro and MTT assay were conducted to determine the improvement of cell affinity to the graft. Furthermore,mechanical properties of the grafts before and after treatment were compared. The results showed that the chemical grafting was an effective method for improving the cytocompatibility of SF without significant loss of mechanical properties. 展开更多
关键词 cytocompatibility SILK fibroin VASCULAR GRAFT surface MODIFICATION
下载PDF
Preparation,Rheological Properties and Primary Cytocompatibility of TPU/PLA Blends as Biomedical Materials 被引量:2
8
作者 洪华 YANG Lili +4 位作者 YUAN Yuan QU Xue CHEN Fangping 魏杰 刘昌胜 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第1期211-218,共8页
A polymer blends containing thermoplastic polyurethane(TPU) and poly(lactic acid)(PLA) as a biomedical material were prepared by a process of modifying thermally induced phase separation(MTIPS) and melt blendi... A polymer blends containing thermoplastic polyurethane(TPU) and poly(lactic acid)(PLA) as a biomedical material were prepared by a process of modifying thermally induced phase separation(MTIPS) and melt blending.The influences of composition,shear frequency,and temperature on the rheological behaviors of the blends were investigated by small amplitude oscillatory shear rheology.The results revealed that the addition of TPU into PLA significantly decreased the non-Newtonian index of the blends,and increased the sensitivity of the blends on shear rate,suggesting that optimization of the shear rate and temperature could improve the flowability of the blend melts in the extrusion process.In addition,the results of SEM images revealed that TPU distributed well into PLA matrix and showed good compatibility between the TPU and PLA,which made the blends with good toughness.The primary cytocompatibility of the blends was evaluated using C2C12 cells.The results suggested that the TPU/PLA blends did not affect cell growth,showing no cytotoxicity.In short,the TPU/PLA blends with excellent toughness had potential application as biomedical devices. 展开更多
关键词 TPU PLA blends cytocompatibility biomedical devices
下载PDF
Preparation of Silk Fibroin Microspheres and Its Cytocompatibility 被引量:1
9
作者 Jing Qu Lu Wang +3 位作者 Yongpei Hu Lingshuang Wang Renchuan You Mingzhong Li 《Journal of Biomaterials and Nanobiotechnology》 2013年第1期84-90,共7页
The goal of this proof-of-concept study was the fabrication of porous silk fibroin (SF) microspheres which could be used as cell culture carriers under very mild processing conditions. The SF solution was differentiat... The goal of this proof-of-concept study was the fabrication of porous silk fibroin (SF) microspheres which could be used as cell culture carriers under very mild processing conditions. The SF solution was differentiated into droplets which were induced by a syringe needle in the high-voltage electrostatic field. They were collected and frozen in liquid nitrogen and water in droplets formed ice crystals which sublimated during lyophilization and a great quantity of micropores shaped in SF microspheres. Finally, the microspheres were treated in ethanol so as to transfer the molecular conformation into β-sheet and then they were insoluble in water. SF particles were spherical in shape with diameters in the range of 208.4 μm to 727.3 μm, while the pore size on the surface altered from 0.3 μm to 10.7 μm. In vitro, the performances of SF microspheres were assessed by culturing L-929 fibroblasts cells. Cells were observed to be tightly adhered and fully extended;also a large number of connections were established between cells. After 5-day culture, it could be observed under a confocal laser scanning microscope that the porous microenvironment offered by SF particles accelerated proliferation of cells significantly. Furthermore, porous SF particles with smaller diameters (200 - 300 μm) might promote cell growth better. These new porous SF microspheres hold a great potential for cell culture carriers and issue engineering scaffolds. 展开更多
关键词 SILK Fibroin MICROSPHERES HIGH-VOLTAGE ELECTROSTATIC FIELD cytocompatibility
下载PDF
Cytocompatibility of Highly Dispersed Nano Hydroxyapatite Sol 被引量:1
10
作者 MAOXuan WUPei-zhu TANGShun-qing YANYan-ling DAIYun 《Chinese Journal of Biomedical Engineering(English Edition)》 2004年第1期1-6,共6页
Nano hydroxyapatite (HA) crystals were prepared and dispersed in water to form HA sol by simple methods. The cytotoxicity of the sols were tested by MTT assay and lymphocytotoxicity test. Results show that the average... Nano hydroxyapatite (HA) crystals were prepared and dispersed in water to form HA sol by simple methods. The cytotoxicity of the sols were tested by MTT assay and lymphocytotoxicity test. Results show that the average secondary particle size of the sol containing uncalcined HA crystals is around 750 nm, within micrograde; while the sol of calcined HA contains over 88% nanoparticles with the size between 65~86 nm, in which nano HA crystals are highly dispersed. Both the HA sols have no toxicity on the proliferation of 3T3 cells and lymphocytes. It demonstrates that the nano sol is safe for the application of drug delivery. 展开更多
关键词 HYDROXYAPATITE SOL cytocompatibility
下载PDF
Polyurethane/poly(vinyl alcohol) hydrogel coating improves the cytocompatibility of neural electrodes
11
作者 Mei Li Hai-han Zhou +3 位作者 Tao Li Cheng-yan Li Zhong-yuan Xia Yanwen Y.Duan 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第12期2048-2053,共6页
Neural electrodes,the core component of neural prostheses,are usually encapsulated in polydimethylsiloxane(PDMS).However,PDMS can generate a tissue response after implantation.Based on the physicochemical properties... Neural electrodes,the core component of neural prostheses,are usually encapsulated in polydimethylsiloxane(PDMS).However,PDMS can generate a tissue response after implantation.Based on the physicochemical properties and excellent biocompatibility of polyurethane(PU)and poly(vinyl alcohol)(PVA)when used as coating materials,we synthesized PU/PVA hydrogel coatings and coated the surface of PDMS using plasma treatment,and the cytocompatibility to rat pheochromocytoma(PC12)cells was assessed.Protein adsorption tests indicated that the amount of protein adsorption onto the PDMS substrate was reduced by 92%after coating with the hydrogel.Moreover,the PC12 cells on the PU/PVA-coated PDMS showed higher cell density and longer and more numerous neurites than those on the uncoated PDMS.These results indicate that the PU/PVA hydrogel is cytocompatible and a promising coating material for neural electrodes to improve their biocompatibility. 展开更多
关键词 nerve regeneration cerebral injury neural electrodes hydrogel coatings POLYURETHANE polydimethylsiloxane poly(vinyl alcohol) cytocompatibility protein adsorption nerve growth factor mt pheochromocytoma cells synaptic differentiation neural regeneration
下载PDF
Cytocompatibility of Self-assembled Hydrogel from IKVAV-containing Peptide Amphiphile with Neural Stem Cells
12
作者 宋玉林 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第5期753-756,共4页
Neural Stem Cells (NSCs) were incubated with self-assembled hydrogel from IKVAV-containing peptide amphiphile (IKVAV-PA) for one week. The cytocompatibility of hydrogel was evaluated. NSCs were seeded in three-dim... Neural Stem Cells (NSCs) were incubated with self-assembled hydrogel from IKVAV-containing peptide amphiphile (IKVAV-PA) for one week. The cytocompatibility of hydrogel was evaluated. NSCs were seeded in three-dimensional (3D) hydrogels (Experimental Group, EG) or surface of coverslips (Control Group, CG), double-labeled with Calcein-AM and PI. A growth curve of cells was obtained according to CCK-8. TEM study of hydrogel revealed a network of nanofibers. NSCs began to proliferate after 24 h of incubation, and formed bigger neurospheres at 48 h in EG than in CG. Cell proliferation activity was higher in EG than in CG (P〈0.05). The self-assembled Hydrogel had good cytocompatibility and promoted the proliferation of NSCs. 展开更多
关键词 IKVAV HYDROGEL cytocompatibility proliferation
下载PDF
Comparison of nickle release and cytocompatibility between porous and dense NiTi alloy
13
作者 Ben-quan YU Wen-hui YUAN +6 位作者 Qiang XU Yun-fang-zi GU Ming-ming XIAO Guo-fu XU Zhou LI Zhu XIAO Zi-an XIAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第12期3814-3820,共7页
The porous NiTi(pNiTi)samples were produced by sintering evaporation using Ti−50.8Ni(at.%)gasatomized powders.The samples were analyzed by metallographic microscope and X-ray dispersive spectroscopy(XRD).A comparison ... The porous NiTi(pNiTi)samples were produced by sintering evaporation using Ti−50.8Ni(at.%)gasatomized powders.The samples were analyzed by metallographic microscope and X-ray dispersive spectroscopy(XRD).A comparison of nickel(Ni)release and cytocompatibility between pNiTi and dense NiTi(dNiTi)was made.The results showed that the pNiTi has good mechanical properties.Ni releases from pNiTi in vitro and in vivo are more serious than those form dNiTi.The proliferation and differentiation of cells cultured with the pNiTi extracting liquid are significantly worse,and the rate of early apoptosis is higher.In conclusion,pNiTi is mechanically similar to bone,but pNiTi releases more Ni and interferes with cell proliferation and differentiation.A significantly cautious approach should be adopted when using it as a medical implant. 展开更多
关键词 porous nitinol alloy mechanical property nickel release cytocompatibility
下载PDF
Surface Modification of Polyglycolic Acid Fibers by Hydrogen Peroxide for Enhancing Hydrophilicity and Cytocompatibility
14
作者 王碧峤 张佩华 +1 位作者 赵莉 何晨光 《Journal of Donghua University(English Edition)》 EI CAS 2017年第6期768-773,共6页
Hydrogen peroxide( H_2O_2) is applied for surface modification of polyglycolic acid( PGA) fibers in order to enhance the hydrophilicity and cytocompatibility of PGA fibers effectively,and maintain the breaking strengt... Hydrogen peroxide( H_2O_2) is applied for surface modification of polyglycolic acid( PGA) fibers in order to enhance the hydrophilicity and cytocompatibility of PGA fibers effectively,and maintain the breaking strength as the same time. PGA fibers are dipped in H_2O_2 solution a certain time for modification. Scanning electron microscopy( SEM) was used to observe the surface morphology of PGA fibers before and after modification. The varying of PGA macromolecule was examined with Fourier transform infrared spectroscopy( FTIR) analyses. X-ray diffraction( XRD) and differential scanning calorimetry( DSC) analysis showed that crystallinity slightly decreases. Mechanical performance test showed tensile force of modified PGA fiber was increased. The water contact angle test indicated the improving of hydrophilic. A cell proliferation assay showed that fibroblast cells attach and proliferate well on the fibers, which meant the modified fibers possess good cytocompatibility. These results suggest that H_2O_2 surface modification is easy to operate and a advantageous modification method for PGA fibers. 展开更多
关键词 polyglycolic acid(PGA) hydrogen peroxide(H2O2) surface modification HYDROPHILICITY cytocompatibility
下载PDF
The Cytocompatibility of Genipin-Crosslinked Silk Fibroin Films
15
作者 Lingshuang Wang Yiyu Wang +3 位作者 Jing Qu Yongpei Hu Renchuan You Mingzhong Li 《Journal of Biomaterials and Nanobiotechnology》 2013年第3期213-221,共9页
There is an increasing demand for crosslinking methods of silk fibroin (SF) scaffolds in biomedical applications that could maintain the biocompatibility, bioactivity as well as improve the water resistance and mechan... There is an increasing demand for crosslinking methods of silk fibroin (SF) scaffolds in biomedical applications that could maintain the biocompatibility, bioactivity as well as improve the water resistance and mechanical properties of SF materials. In this study, SF was crosslinked effectively with genipin which is a naturally occurring iridoid glucoside and the crosslinking mechanism was investigated through FTIR and amino acid analysis. The results showed that genipin could react with the -NH2 groups on the side chains of SF macromolecules and to form inter- and intra-molecular covalent bonds, and improved the stability of SF materials significantly. In vitro, the performances of genipin-crosslinked SF films were assessed by seeding L929 cells and compared with ethanol-processed SF films, glutaraldehyde and polyethylene glycol diglycidyl ether crosslinked ones. The genipin-crosslinked SF films showed a similar affinity to cells as ethanol-processed ones, and a higher bioactivity in promoting cell growth and proliferation, inhibition of cell apoptosis, and maintenance of normal cell cycle compared with glutaraldehyde and polyethylene glycol diglycidyl ether crosslinked SF films. These features, combined with the decrease of brittleness of SF films crosslinked with chemical methods, substantiated genipin as an effective and biocompatible agent for the manufacturing of bioactive SF materials which used as tissue engineering scaffolds and drug delivery carriers. 展开更多
关键词 SILK Fibroin FILMS GENIPIN cytocompatibility
下载PDF
Cytocompatibility of Three Corneal Cell Types with Amniotic Membrane
16
作者 CHENJian-su CHENRui XUJin-tang DINGYong ZHAOSong-bin LISui-lian 《Chinese Journal of Biomedical Engineering(English Edition)》 2004年第3期118-125,共8页
Rabbit limbal corneal epithelial cells,corneal endothelial cells and keratocytes were cultured on amniotic membrane. Phase contrast microscope examination was performed daily. Histological and scan electron microscopi... Rabbit limbal corneal epithelial cells,corneal endothelial cells and keratocytes were cultured on amniotic membrane. Phase contrast microscope examination was performed daily. Histological and scan electron microscopic examinations were carried out to observe the growth,arrangement and adhesion of cultivated cells. Results showed that three corneal cell types seeded on amniotic membrane grew well and had normal cell morphology. Cultured cells attached firmly on the surface of amniotic membrane. Corneal epithelial cells showed singular layer or stratification. Cell boundaries were formed and tightly opposed. Corneal endothelial cells showed cobblestone or polygonal morphologic characteristics that appeared uniform in size. The cellular arrangement was compact. Keratocytes elongated and showed triangle or dendritic morphology with many intercellular joints which could form networks. In conclusion,amniotic membrane has good scaffold property,diffusion effect and compatibility with corneal cells. The basement membrane side of amniotic membrane facilitated the growth of corneal epithelial cells and endothelial cells and cell junctions were tightly developed. The spongy layer of amniotic membrane facilitated the growth of keratocytes and intercellular joints were rich. Amniotic membrane is an ideal biomaterial for layering tissue engineered cornea. 展开更多
关键词 CORNEA CELLS Amniotic membrane CULTURE cytocompatibility
下载PDF
Optimization of the in vitro biodegradability,cytocompatibility,and wear resistance of the AZ31B alloy by micro-arc oxidation coatings doped with zinc phosphate
17
作者 Chao Yang Suihan Cui +7 位作者 Ricky KYFu Liyuan Sheng Min Wen Daokui Xu Ying Zhao Yufeng Zheng Paul KChu Zhongzhen Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第12期224-239,共16页
As implanted bone fixation materials,magnesium(Mg)alloys have significant advantages because the density and elastic modulus are closest to those of the human bone and they can bio-degrade in the physiological environ... As implanted bone fixation materials,magnesium(Mg)alloys have significant advantages because the density and elastic modulus are closest to those of the human bone and they can bio-degrade in the physiological environment.However,Mg alloys degrade too rapidly and uncontrollably thus hampering clinical adoption.In this study,a highly corrosion-resistant zinc-phosphate-doped micro-arc oxidation(MAO)coating is prepared on the AZ31B alloy,and the degradation process is assessed in vitro.With increasing zinc phosphate concentrations,both the corrosion potentials and charge transfer resistance of the AZ31B alloy coated with MAO coatings increase gradually,while the corrosion current densities di-minish gradually.Immersion tests in the simulated body fluid(SBF)reveal that the increased zinc phos-phate concentration in MAO coating decreases the degradation rate,consequently reducing the release rates of Mg^(2+)and OH-in the physiological micro-environment,which obtains the lowest weight loss of only 5.22%after immersion for 56 days.Effective regulation of degradation provides a weak alkaline environment that is suitable for long-term cell growth and subsequent promotion of bone proliferation,differentiation,mineralization,and cytocompatibility.In addition,the zinc-phosphate-doped MAO coat-ings show an improved wear resistance as manifested by a wear rate of only 3.81 x 10^(-5) mm^(3) N^(-1) m^(-1).The results reveal a suitable strategy to improve the properties of biodegradable Mg alloys to balance tissue healing with mechanical degradation. 展开更多
关键词 Mg alloys MAO coatings Degradation regulation cytocompatibility Wear resistance
原文传递
Hemocompatibility and cytocompatibility of diblock copolymer poly(2-ethyl-2-oxazoline)-poly(D,L-lactide)-based micelles 被引量:3
18
作者 马淑金 李艳芳 +7 位作者 赵勇 周艳霞 李晋文 高雅杰 李雨书 李馨儒 刘艳 王杏林 《Journal of Chinese Pharmaceutical Sciences》 CAS CSCD 2014年第10期674-680,共7页
A synthetic diblock copolymer poly(2-ethyl-2-oxazoline)-poly(D,L-lactide) (PEOz-PLA) can self-assemble into micelles with an increased efficiency of drug delivery. However, the interactions of blood-micelles and... A synthetic diblock copolymer poly(2-ethyl-2-oxazoline)-poly(D,L-lactide) (PEOz-PLA) can self-assemble into micelles with an increased efficiency of drug delivery. However, the interactions of blood-micelles and cell-micelles remain unclear. In the present study, we aimed to assess the hemocompatibility and cytocompatibility of PEOz-PLA micelles in order to clarify its potentials as carriers for drug delivery. Blood compatibility of the micelles was evaluated by hemolysis analysis, coagulation test, platelet activation investigation and assessment of their interaction with protein. The results revealed that PEOz-PLA micelles had a favorable blood compatibility. In addition, PEOz-PLA micelles showed a good cytocompatibility through SRB assay, presenting only negligible cytotoxicity when incubated with KBv cells. Taken together, PEOz-PLA micelles could be used as a hemocompatible and cytocompatible drug carrier for intravenous administration. 展开更多
关键词 Hemocompatibility cytocompatibility PEOz-PLA micelles HEMOLYSIS Blood clotting Platelet activation Protein adsorption
原文传递
Antibacterial ability and cytocompatibility of Cu-incorporated Ni–Ti–O nanopores on NiTi alloy 被引量:13
19
作者 Jia-Ming Zhang Yong-Hua Sun +4 位作者 Ya Zhao Yan-Lian Liu Xiao-Hong Yao Bin Tang Rui-Qiang Hang 《Rare Metals》 SCIE EI CAS CSCD 2019年第6期552-560,共9页
Nearly equiatomic nickel–titanium(NiTi) alloy is an ideal implant biomaterial because of its shape memory effect, superelasticity, low elastic modulus as well as other desirable properties.However, it is prone to inf... Nearly equiatomic nickel–titanium(NiTi) alloy is an ideal implant biomaterial because of its shape memory effect, superelasticity, low elastic modulus as well as other desirable properties.However, it is prone to infection because of its poor antibacterial ability.The present work incorporated Cu into Ni–Ti–O nanopores(NP–Cu) anodically grown on the NiTi alloy to enhance its antibacterial ability, which was realized through electrodeposition.Our results show that incorporation of Cu(0.78 at%–2.37 at%)has little influence on the NP diameter, length and morphology.The release level of Cu ions is in line with loadage which may be responsible for the improved antibacterial ability of the NiTi alloy to combat possible bacterial infection in vivo.Meanwhile, the NP–Cu shows better cytocompatibility and even can promote proliferation of bone marrow mesenchymal stem cells(BMSCs),up-regulate collagen secretion and extracellular matrix mineralization when compared with Cu-free sample.Better antibacterial ability and cytocompatibility of the NP–Cu render them to be promising when serving as NiTi implant coatings. 展开更多
关键词 Nickel–titanium alloy Nickel–titanium–oxygen NANOPORES Copper ANTIBACTERIAL ABILITY cytocompatibility
原文传递
Cytocompatibility of regenerated silk fibroin film:a medical biomaterial applicable to wound healing 被引量:16
20
作者 Tie-lian LIU Jing-cheng MIAO +4 位作者 Wei-hua SHENG Yu-feng XIE Quan HUANG Yun-bo SHAN Ji-cheng YANG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2010年第1期10-16,共7页
Objective: To explore the feasibility of using regenerated silk fibroin membrane to construct artificial skin substitutes for wound healing, it is necessary to evaluate its cytocompatibility. Methods: The effects of... Objective: To explore the feasibility of using regenerated silk fibroin membrane to construct artificial skin substitutes for wound healing, it is necessary to evaluate its cytocompatibility. Methods: The effects of regenerated silk fibroin film on cytotoxicity, adhesion, cell cycle, and apoptosis of L929 cells, growth and vascular endothelial growth factor (VEGF) expression of ECV304 cells, and VEGF, angiopoietin-1 (Ang-1), platelet-derived growth factor (PDGF) and fibroblast growth factor 2 (FGF2) expression of WI-38 cells were assessed by 3-(4,5)-dimethylthiahiazo (-z-yl)-3,5-di-phenytetrazoliumromide (MTT) assay, viable cell counting, flow cytometry (FCM), and enzyme-linked immunosorbant assay (ELISA). Results: We showed that the regenerated silk fibroin film was not cytotoxic to L929 cells and had no adverse influence on their adhesion, cell cycle or apoptosis; it had no adverse influence on the growth and VEGF secretion of ECV304 cells and no effect on the secretion of VEGF, Ang-1, PDGF and FGF2 by WI-38 cells. Conclusion: The regenerated silk fibroin film should be an excellent biomaterial with good cytocompatibility, providing a framework for reparation after trauma in clinical applications. 展开更多
关键词 Regenerated silk fibroin film cytocompatibility CYTOTOXICITY
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部