This study is a contribution to improving rice productivity on acidic plateau soils of the tropical rainforest zone. It is based on taking into account the cationic balances of the soil in order to optimize the phosph...This study is a contribution to improving rice productivity on acidic plateau soils of the tropical rainforest zone. It is based on taking into account the cationic balances of the soil in order to optimize the phosphorus (P) nutrition of rice on these acidic soils, where this nutrient constitutes a limiting factor for agricultural production. Three (3) pot trials were conducted in Adiopodoumé in the forested south of Côte d’Ivoire. The interactive effects of calcium carbonate (0, 25, 50 and 75 kg Ca ha<sup>−1</sup>) and magnesium sulfate (0, 25, 50 and 75 kg Mg ha<sup>−1</sup>) were evaluated on the response of NERICA 5 rice at doses 0, 25, 50 and 75 kg P ha<sup>−1</sup> of natural phosphate from Togo, applied only once at the start of the experiment. Additional fertilizers of nitrogen (N) (100 kg N ha<sup>−1</sup>) and potassium (K) (50 kg KCl ha<sup>−1</sup>) were added to each of the tests in a split-plot device. The test results revealed a paddy production potential of approximately 3 to 5 t⋅ha<sup>−1</sup> for NERICA 5 on an acidic soil, under the effect of the interaction of P, Ca and Mg. The quadratic response of rice yield to the doses of these fertilizers would be more dependent on their balance, itself influenced by Ca nutrition. For the sustainability and maintenance of rice production in agro-ecology studied, it was recommended doses of 38 kg Ca ha<sup>−1</sup>, 34 kg Mg ha<sup>−1</sup> in a Ca/Mg ratio (1/1) with intakes of 41 kg P ha<sup>−1</sup>, overall in a ratio 1/1/1 (P/Ca/Mg) more favorable to the availability of free iron considered a guiding element of mineral nutrition. Thus, these promising results should be confirmed in a real environment for better management of the fertilization of rice cultivated on acidic plateau soils in Côte d’Ivoire.展开更多
Planktonic foraminifer Globigerinoides ruber(white)and Trilobatus sacculifer are the most frequently used mixedlayer dwelling species for reconstructing past oceanic environments.Specifically,the Mg/Ca ratios of these...Planktonic foraminifer Globigerinoides ruber(white)and Trilobatus sacculifer are the most frequently used mixedlayer dwelling species for reconstructing past oceanic environments.Specifically,the Mg/Ca ratios of these two foraminiferal species have been used for reconstructing tropical/subtropical changes in sea surface temperature(SST).However,these two species have different morphotypes,of which the spatial and temporal differences in Mg/Ca ratios and their influencing factors are still unclear.Our objective is to investigate the potential differences between the Mg/Ca ratios of these different morphotypes of G.ruber(white)and T.sacculifer in the western Philippine Sea(WPS)and determine their implications for the reconstruction of SST and upper-ocean structure.Mg/Ca measurements are made on two basic morphotypes of G.ruber(white)[sensu stricto(s.s.)and sensu lato(s.l.)]and T.sacculifer[with(w)and without(w/o)a sac-like final chamber]on samples of Site MD06-3047B from the WPS.Our results reveal that Mg/Ca ratios of different G.ruber morphotypes show consistent differences;and those of T.sacculifer morphotypes show staged variations since MIS 3.It is suggested to select a single morphotype for reconstructing SST changes using the Mg/Ca ratios of G.ruber and T.sacculifer in the WPS.Furthermore,the Mg/Ca ratios between G.ruber s.s.and G.ruber s.l.[Δ(Mg/Ca)_(G.ruber s.s.-s.l.)]downcore MD06-3047B covaries with indexes of summer monsoon.Combining with the core-top results,showing regional variation of differences in theΔ(Mg/Ca)_(G.ruber s.s.-s.l.)over the western tropical Pacific,we propose thatΔ(Mg/Ca)_(G.ruber s.s.-s.l.)may tend to reflect summer mixed layer depth.展开更多
Bivalve shell fossils,cemented by authigenic carbonates,are widely spread in the Haima cold seep,Qiongdongnan Basin of the South China Sea(SCS).In this study,we examined an element profile of Gigantidas platifrons in ...Bivalve shell fossils,cemented by authigenic carbonates,are widely spread in the Haima cold seep,Qiongdongnan Basin of the South China Sea(SCS).In this study,we examined an element profile of Gigantidas platifrons in the Haima cold seeps at a water depth of 1381 m.Based on the scanning electron microscope(SEM)analyses,the prismatic layer and nacreous layer were identified,which are characterized by prismatic structure and stratified structure,respectively.In addition,the profile can be subdivided into two parts:altered and unaltered zones.Laser inductively coupled plasma mass spectrometry(LA-ICP-MS)mapping shows that the element concentrations of the altered zones were influenced by the authigenic carbonate rocks,whereas the element concentrations of unaltered zones remain stable.In-situ X-ray diffraction(XRD)analyses show that the mineral constituent of the prismatic layer is mainly composed of aragonite.Along with the growth profile,Mg/Ca ratios of unaltered zones have minor variations,ranging 0.72-0.97 mmol/mol(mean=0.87 mmol/mol),with estimated temperatures of 3.8-4.1℃,indicating that the temperature of the surrounding seawater remains constant and agree with the measured data of 3.9℃which was conducted by a conductivity-temperature-depth system(CTD).The minor variations of Ba/Ca ratios(0.01-0.06 mmol/mol;mean=0.04 mmol/mol)indicate a relatively stabilized salinity of the surrounding seawater.S/Ca ratios show large variations of 0.04-4.15 mmol/mol(mean=1.37 mmol/mol).S/Ca ratios have regular variations which generally correspond to the variations of the Mg/Ca ratios,highlighting that the S/Ca ratios of bivalve shells show the potential to reflect the growth rate of the Gigantides.However,further studies should be carried out on the understanding of the links between the S/Ca ratios and seepage intensity of cold-seep fluids.展开更多
Compound casting is an efficient method for bonding dissimilar metals,in which a dramatic reaction can occur between the melt and solid.The centrifugal casting process,a type of compound casting,was applied to cast Al...Compound casting is an efficient method for bonding dissimilar metals,in which a dramatic reaction can occur between the melt and solid.The centrifugal casting process,a type of compound casting,was applied to cast Al/Mg dissimilar bimetals.Magnesium melt was poured at 700 °C,with melt-to-solid volume ratios(Vm/Vs) of 1.5 and 3,into a preheated hollow aluminum cylinder.The preheating temperatures of the solid part were 320,400,and 450 °C,and the constant rotational speed was 1,600 rpm.The cast parts were kept inside the casting machine until reaching the cooling temperature of 150 °C.The result showed that an increase in preheating temperature from 320 to 450 °C led to an enhanced reaction layer thickness.In addition,an increase in the Vm/Vs from 1.5 to 3 resulted in raising the interface thickness from 1.2 to 1.8 mm.Moreover,the interface was not continuously formed when a Vm/Vs of 3 was selected.In this case,the force of contraction overcame the resultant acting force on the interface.An interface formed at the volume ratio of 1.5 was examined using scanning electron microscopy(SEM) equipped with energy-dispersive X-ray spectroscopy(EDS),and the results demonstrated the formation of Al_(3)Mg_(2),Al_(12)Mg_(17) and(δ+Al_(12)Mg_(17)) eutectic structures in the interface.展开更多
1 Introduction Lake Qinghai,famous as the largest inland saline lake in China,located on the high-altitude northeastern Tibetan Plateau,and four junctional zones of the East Asian summer monsoon(EASM),Indian summer mo...1 Introduction Lake Qinghai,famous as the largest inland saline lake in China,located on the high-altitude northeastern Tibetan Plateau,and four junctional zones of the East Asian summer monsoon(EASM),Indian summer monsoon(ISM),East Asian winter monsoon and the westerly jet stream prevail,making it sensitive to global climate change展开更多
The electrochemical behaviors and corrosion resistance of the wrought Mg–Y–Zn based alloys with high Y/Zn mole ratio have been investigated in details.The results show that the corrosion resistance of the investigat...The electrochemical behaviors and corrosion resistance of the wrought Mg–Y–Zn based alloys with high Y/Zn mole ratio have been investigated in details.The results show that the corrosion resistance of the investigated Mg–Y–Zn based alloys are dependent on the modified arrangement of LPSO phase by adjusting Y/Zn mole ratios.Increasing the Y/Zn mole ratio not only greatly decreases the size of LPSO phase plates,but also leads to the precipitation of Mg_(24)Y_(5) phase.The corrosion rate of Mg–Y–Zn based alloys greatly increases from 7.4 mg·cm^(−2)·day^(−1) to 11.3 mg·cm^(−2)·day^(−1) with increasing the Y/Zn mole ratio up to 3.It should be attributed to the decreasing size of LPSO phase plates as cathodes,further increasing the hydrogen evolution kinetics.The related corrosion mechanism is discussed in details.展开更多
Hydration mechanism of tabular alumina carbon composites reinforced by Al4C3 in situ reaction with Mg and Al was researched in water steam using super automatic thermostatic water bath from 25 ℃ to 85 ℃. It is shown...Hydration mechanism of tabular alumina carbon composites reinforced by Al4C3 in situ reaction with Mg and Al was researched in water steam using super automatic thermostatic water bath from 25 ℃ to 85 ℃. It is shown that hydration mechanism of the composites is chemical reaction control at 44.3 ℃-84 ℃ in H2O(g). The hydration was controlled by diffusion from 24.7 ℃ to 33 ℃. The ratio of added Mg/Al influences the HMOR of the composites.The mechanism of HMOR of the composites with different ratios of Mg/Al can be discovered by means of SEM analysis. The active Mg/Al powder and flake graphite inside give the composites outstanding hot strength resulting from the interlocking structure of Al4C3 crystals at high temperature. Besides, the matrix changes into the Al4C3 with high refractoriness. The method of preventing the hydration of tabular alumina carbon composites reinforced by Al4C3 in situ reaction was immersed in the wax at suitable temperature or storing them below 33 ℃ in a dry place or storing them with paraffin-coating.展开更多
文摘This study is a contribution to improving rice productivity on acidic plateau soils of the tropical rainforest zone. It is based on taking into account the cationic balances of the soil in order to optimize the phosphorus (P) nutrition of rice on these acidic soils, where this nutrient constitutes a limiting factor for agricultural production. Three (3) pot trials were conducted in Adiopodoumé in the forested south of Côte d’Ivoire. The interactive effects of calcium carbonate (0, 25, 50 and 75 kg Ca ha<sup>−1</sup>) and magnesium sulfate (0, 25, 50 and 75 kg Mg ha<sup>−1</sup>) were evaluated on the response of NERICA 5 rice at doses 0, 25, 50 and 75 kg P ha<sup>−1</sup> of natural phosphate from Togo, applied only once at the start of the experiment. Additional fertilizers of nitrogen (N) (100 kg N ha<sup>−1</sup>) and potassium (K) (50 kg KCl ha<sup>−1</sup>) were added to each of the tests in a split-plot device. The test results revealed a paddy production potential of approximately 3 to 5 t⋅ha<sup>−1</sup> for NERICA 5 on an acidic soil, under the effect of the interaction of P, Ca and Mg. The quadratic response of rice yield to the doses of these fertilizers would be more dependent on their balance, itself influenced by Ca nutrition. For the sustainability and maintenance of rice production in agro-ecology studied, it was recommended doses of 38 kg Ca ha<sup>−1</sup>, 34 kg Mg ha<sup>−1</sup> in a Ca/Mg ratio (1/1) with intakes of 41 kg P ha<sup>−1</sup>, overall in a ratio 1/1/1 (P/Ca/Mg) more favorable to the availability of free iron considered a guiding element of mineral nutrition. Thus, these promising results should be confirmed in a real environment for better management of the fertilization of rice cultivated on acidic plateau soils in Côte d’Ivoire.
基金The National Natural Science Foundation of China under contract Nos 41830539 and 41906063the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2022QNLM050203the Taishan Scholars Project Funding under contract No.ts20190963。
文摘Planktonic foraminifer Globigerinoides ruber(white)and Trilobatus sacculifer are the most frequently used mixedlayer dwelling species for reconstructing past oceanic environments.Specifically,the Mg/Ca ratios of these two foraminiferal species have been used for reconstructing tropical/subtropical changes in sea surface temperature(SST).However,these two species have different morphotypes,of which the spatial and temporal differences in Mg/Ca ratios and their influencing factors are still unclear.Our objective is to investigate the potential differences between the Mg/Ca ratios of these different morphotypes of G.ruber(white)and T.sacculifer in the western Philippine Sea(WPS)and determine their implications for the reconstruction of SST and upper-ocean structure.Mg/Ca measurements are made on two basic morphotypes of G.ruber(white)[sensu stricto(s.s.)and sensu lato(s.l.)]and T.sacculifer[with(w)and without(w/o)a sac-like final chamber]on samples of Site MD06-3047B from the WPS.Our results reveal that Mg/Ca ratios of different G.ruber morphotypes show consistent differences;and those of T.sacculifer morphotypes show staged variations since MIS 3.It is suggested to select a single morphotype for reconstructing SST changes using the Mg/Ca ratios of G.ruber and T.sacculifer in the WPS.Furthermore,the Mg/Ca ratios between G.ruber s.s.and G.ruber s.l.[Δ(Mg/Ca)_(G.ruber s.s.-s.l.)]downcore MD06-3047B covaries with indexes of summer monsoon.Combining with the core-top results,showing regional variation of differences in theΔ(Mg/Ca)_(G.ruber s.s.-s.l.)over the western tropical Pacific,we propose thatΔ(Mg/Ca)_(G.ruber s.s.-s.l.)may tend to reflect summer mixed layer depth.
基金Supported by the Key Research and Development Project of Guangdong Province(No.2020B1111510001)the National Natural Science Foundation of China(No.U2244224)+1 种基金the PI Project of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2020GD0802)the Guangdong Special Support Team Program(No.2019BT02H594)。
文摘Bivalve shell fossils,cemented by authigenic carbonates,are widely spread in the Haima cold seep,Qiongdongnan Basin of the South China Sea(SCS).In this study,we examined an element profile of Gigantidas platifrons in the Haima cold seeps at a water depth of 1381 m.Based on the scanning electron microscope(SEM)analyses,the prismatic layer and nacreous layer were identified,which are characterized by prismatic structure and stratified structure,respectively.In addition,the profile can be subdivided into two parts:altered and unaltered zones.Laser inductively coupled plasma mass spectrometry(LA-ICP-MS)mapping shows that the element concentrations of the altered zones were influenced by the authigenic carbonate rocks,whereas the element concentrations of unaltered zones remain stable.In-situ X-ray diffraction(XRD)analyses show that the mineral constituent of the prismatic layer is mainly composed of aragonite.Along with the growth profile,Mg/Ca ratios of unaltered zones have minor variations,ranging 0.72-0.97 mmol/mol(mean=0.87 mmol/mol),with estimated temperatures of 3.8-4.1℃,indicating that the temperature of the surrounding seawater remains constant and agree with the measured data of 3.9℃which was conducted by a conductivity-temperature-depth system(CTD).The minor variations of Ba/Ca ratios(0.01-0.06 mmol/mol;mean=0.04 mmol/mol)indicate a relatively stabilized salinity of the surrounding seawater.S/Ca ratios show large variations of 0.04-4.15 mmol/mol(mean=1.37 mmol/mol).S/Ca ratios have regular variations which generally correspond to the variations of the Mg/Ca ratios,highlighting that the S/Ca ratios of bivalve shells show the potential to reflect the growth rate of the Gigantides.However,further studies should be carried out on the understanding of the links between the S/Ca ratios and seepage intensity of cold-seep fluids.
文摘Compound casting is an efficient method for bonding dissimilar metals,in which a dramatic reaction can occur between the melt and solid.The centrifugal casting process,a type of compound casting,was applied to cast Al/Mg dissimilar bimetals.Magnesium melt was poured at 700 °C,with melt-to-solid volume ratios(Vm/Vs) of 1.5 and 3,into a preheated hollow aluminum cylinder.The preheating temperatures of the solid part were 320,400,and 450 °C,and the constant rotational speed was 1,600 rpm.The cast parts were kept inside the casting machine until reaching the cooling temperature of 150 °C.The result showed that an increase in preheating temperature from 320 to 450 °C led to an enhanced reaction layer thickness.In addition,an increase in the Vm/Vs from 1.5 to 3 resulted in raising the interface thickness from 1.2 to 1.8 mm.Moreover,the interface was not continuously formed when a Vm/Vs of 3 was selected.In this case,the force of contraction overcame the resultant acting force on the interface.An interface formed at the volume ratio of 1.5 was examined using scanning electron microscopy(SEM) equipped with energy-dispersive X-ray spectroscopy(EDS),and the results demonstrated the formation of Al_(3)Mg_(2),Al_(12)Mg_(17) and(δ+Al_(12)Mg_(17)) eutectic structures in the interface.
基金financially supported by the project of National Natural Science Foundation of China (Grant No. 41073097)the project of Natural Science Foundation of Chongqing, China (Grant NO. cstc2013jcyja20001)
文摘1 Introduction Lake Qinghai,famous as the largest inland saline lake in China,located on the high-altitude northeastern Tibetan Plateau,and four junctional zones of the East Asian summer monsoon(EASM),Indian summer monsoon(ISM),East Asian winter monsoon and the westerly jet stream prevail,making it sensitive to global climate change
文摘The electrochemical behaviors and corrosion resistance of the wrought Mg–Y–Zn based alloys with high Y/Zn mole ratio have been investigated in details.The results show that the corrosion resistance of the investigated Mg–Y–Zn based alloys are dependent on the modified arrangement of LPSO phase by adjusting Y/Zn mole ratios.Increasing the Y/Zn mole ratio not only greatly decreases the size of LPSO phase plates,but also leads to the precipitation of Mg_(24)Y_(5) phase.The corrosion rate of Mg–Y–Zn based alloys greatly increases from 7.4 mg·cm^(−2)·day^(−1) to 11.3 mg·cm^(−2)·day^(−1) with increasing the Y/Zn mole ratio up to 3.It should be attributed to the decreasing size of LPSO phase plates as cathodes,further increasing the hydrogen evolution kinetics.The related corrosion mechanism is discussed in details.
基金Funded by the National Torch Plan of China(No.2005EB031110)the Key Scientific and Technical Innovation Project of Xi’an University of Architecture and Technology(No.zx 0402)
文摘Hydration mechanism of tabular alumina carbon composites reinforced by Al4C3 in situ reaction with Mg and Al was researched in water steam using super automatic thermostatic water bath from 25 ℃ to 85 ℃. It is shown that hydration mechanism of the composites is chemical reaction control at 44.3 ℃-84 ℃ in H2O(g). The hydration was controlled by diffusion from 24.7 ℃ to 33 ℃. The ratio of added Mg/Al influences the HMOR of the composites.The mechanism of HMOR of the composites with different ratios of Mg/Al can be discovered by means of SEM analysis. The active Mg/Al powder and flake graphite inside give the composites outstanding hot strength resulting from the interlocking structure of Al4C3 crystals at high temperature. Besides, the matrix changes into the Al4C3 with high refractoriness. The method of preventing the hydration of tabular alumina carbon composites reinforced by Al4C3 in situ reaction was immersed in the wax at suitable temperature or storing them below 33 ℃ in a dry place or storing them with paraffin-coating.
基金supported by the Key Research and Development Plan of Shandong Province,China(No.2019JZZY020329)the National Key Research and Development Program of China(No.2017YFB0103904)+1 种基金the National Natural Science Foundation of China(No.51701211)Dongguan Innovative Research Team Program,China(No.2020607134012)。
基金supported by the National Natural Science Foundation of China(No.52071093,51871069)the Fundamental Research Funds for the Central Universities,China(No.3072021CF1008)the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization,China(No.RERU2020012)。