Objective To study the structural and anticorrosive property of microcrystalline α-Zn_3(PO_4)_2·4H_2O. Methods Zinc phosphate was prepared from zinc acetate and orthophosphate acid in aqueous solution. Structura...Objective To study the structural and anticorrosive property of microcrystalline α-Zn_3(PO_4)_2·4H_2O. Methods Zinc phosphate was prepared from zinc acetate and orthophosphate acid in aqueous solution. Structural characteristics of products were investigated by XRD, RAMAN, FTIR, TG-DTA, SEM, surface area, particle size distribution, and density measurements. Results The title compound, a highly crystalline, micronized and lamellar α-Zn_3(PO_4)_2·4H_2O, has an orthorhombic monoclinic system, space group a_0=10.597(),b_ 0 =18.308(), c_ 0 =5.0304(), V=975.86 3. Its specific area is 0.701m2/g, density 3.1612g/m3, and average size 4.75μm . Conclusion Comparing with commercial Zinc phosphate, the synthesized lamellar microcrystalline zinc phosphate had excellent anticorrosive property and dispersibility.展开更多
Hydrous minerals in the subducting slabs are potential water carriers into the deep mantle,and thus the synthesis of new hydrous phases is significant in our understanding of water circulation throughout the Earth’s ...Hydrous minerals in the subducting slabs are potential water carriers into the deep mantle,and thus the synthesis of new hydrous phases is significant in our understanding of water circulation throughout the Earth’s interior.In this study,we report the two new hydrous phases,Al_(2)SiO_(6)H_(2)and Al_(5.5)Si_(4)O_(18)H_(3.5)(hereafter referred to simply as phases Psi and Phi,respectively),which are synthesized in the Al_(2)O_(3)-SiO_(2)-H_(2)O system at 15.5 GPa,1400℃and 17.5 GPa,1600℃ by using Sakura2500-ton multi-anvil apparatus.The luminescence spectra of Cr3+show the phase Psi has characteristic peaks at 687,693 and705 nm,while phase Phi has characteristic peaks at 691,696 and 708 nm.Single-crystal X-ray diffraction (SCXRD) refinements yield a monoclinic structure of both phases (space group P2_(1)) with ideal chemical formulae of Al_(2)SiO6H2and Al5.5Si4O18H3.5respectively.The determined lattice parameters for phase Psi are a=9.4168±0.0016Å,b=4.3441±0.0007Å,c=9.4360±0.002Åand β=119.726±0.005°at ambient pressure and 300 K,while the phase Phi has a=7.2549±0.0018Å,b=4.3144±0.001Å,c=8.0520±0.002Å,and β=101.740±0.009°at ambient pressure and 250 K.Electron microprobe analyses (EPMA) show the chemical compositions of phases Psi and Phi to be Al_(1.99)Si_(0.85)O_(6)H_(2.62)and Al_(5.58)Si_(2.81)O_(18)H_(8.03),respectively,which slightly deviate from the ideal formulae inferred from SCXRD measurements.This may result from the disorder or substitution of Al and Si by H in the crystal structures under our synthesis conditions.Our study suggests that phases Psi and Phi are the two potential water carriers at the upper part of the mantle transitions zone,providing new insights into how deep water is stored in this region.展开更多
Zn(CF_(3)SO_(3))_(2)as an electrolyte has been widely used to improve the electrochemical performance for ZIBs due to that the bulky CF_(3)SO_(3)-can reduce the solvation effect of Zn^(2+)and promote the ionic diffusi...Zn(CF_(3)SO_(3))_(2)as an electrolyte has been widely used to improve the electrochemical performance for ZIBs due to that the bulky CF_(3)SO_(3)-can reduce the solvation effect of Zn^(2+)and promote the ionic diffusion.Herein,we found that Zn(CF_(3)SO_(3))_(2)electrolyte can induce different electrochemical mechanisms from ZnSO_(4)electrolyte.Compared to the ZnSO^(4)electrolyte,the HNaV_(6)O_(16)·4H2_(O)electrode with Zn(CF_(3)SO_(3))_(2)electrolyte exhibits a high capacity of 444 mAh·g^(-1)at 500 mA·g^(-1)with a capacity retention of 92.3%after 80 cycles.Even,at a high rate of 5 Ag-1,the HNaV_(6)O_(16)·4H_(2)O electrode delivers an initial discharge capacity of 328 mAh·g^(-1)with a capacity retention of 93.7%after 1000 cycles.Differing from the mechanism with ZnSO4 electrolyte,the excellent cycle stability of HNaV_(6)O_(16)·4H_(2)Oelectrode can be attributed to the in-situ phase transformation to ZnxV_(2)O_(5)·nH_(2)O based on the co-intercalation of Zn^(2+)/H^(+).展开更多
Eu^(2+)/Sm^(3+)co-doped dual-emitting Sr_(4)La(PO_(4))_(3)O phosphors were synthesized through a convenient high temperature solid state reaction in reductive atmosphere.The structure,luminescence,energy transfer and ...Eu^(2+)/Sm^(3+)co-doped dual-emitting Sr_(4)La(PO_(4))_(3)O phosphors were synthesized through a convenient high temperature solid state reaction in reductive atmosphere.The structure,luminescence,energy transfer and temperature-dependent luminescence properties of Eu^(2+)/Sm^(3+)co-doped Sr_(4)La(PO_(4))_(3)O phosphors were researched and analyzed in detail.The blue emission of Eu^(2+)and the red emission of Sm^(3+)can work together as FIR signals.Based on the different response characteristics of these two ion emissions to temperature,Sr_(4)La(PO_(4))_(3)O:Eu^(2+)/Sm^(^(3+))phosphor achieves the relative sensitivity of0.48384%/K and a wide range of temperature measurements from room temperature to 573 K.The results reveal that the Sr_(4)La(PO_(4))_(3)O:Eu^(2+)/Sm^(3+)phosphor has application prospect in the field of high temperature optical thermometry.The energy transfer mechanism is proved to be the dipole-dipole interaction between Eu^(2+)and Sm^(3+)ions.展开更多
Driven by safety issues,environmental concerns,and high costs,rechargeable aqueous zinc-ion batteries(ZIBs)have received increasing attention in recent years owing to their unique advantages.However,the sluggish kinet...Driven by safety issues,environmental concerns,and high costs,rechargeable aqueous zinc-ion batteries(ZIBs)have received increasing attention in recent years owing to their unique advantages.However,the sluggish kinetics of divalent charge Zn^(2+)in the cathode materials caused by the strong electrostatic interaction and their unsatisfactory cycle life hinder the development of ZIBs.Herein,organic cations and Zn^(2+)ions co-pre-inserted vanadium oxide([N(CH_(3))_(4)]_(0.77),Zn_(0.23))V_(8)O_(20)·3.8H_(2)O are reported as the cathode for ultra-stable aqueous ZIBs,in which the weaker electrostatic interactions between Zn^(2+)and organic ion-pinned vanadium oxide can induce the high reversibility of Zn^(2+)insertion and extraction,thereby improving the cycle life.It is demonstrated that([N(CH_(3))_(4)]_(0.77),Zn_(0.23))V_(8)O_(20)·3.8H_(2)O cathodes deliver a discharge capacity of 181 mA h g^(-1)at8 A g^(-1)and ultra-long life span(99.5%capacity retention after 2000 cycles).A reversible Zn^(2+)/H^(+)ions(de)intercalation storage process and pseudocapacitive charge storage are characterized.The weaker interactions between organic ion and Zn^(2+)open a novel avenue for the design of highly reversible cathode materials with long-term cycling stability.展开更多
A novel Cu(OAc)_(2)•H_(2)O catalyzed coupling reaction of N-substituted-2-iodobenzamides with malononitrile to afford N-substituted-3-amino-4-cyano-isoquinoline-1(2H)-ones is described.The reaction proceeded in DMSO a...A novel Cu(OAc)_(2)•H_(2)O catalyzed coupling reaction of N-substituted-2-iodobenzamides with malononitrile to afford N-substituted-3-amino-4-cyano-isoquinoline-1(2H)-ones is described.The reaction proceeded in DMSO at 90℃ for 5 h in nitrogen without external ligands.展开更多
文摘Objective To study the structural and anticorrosive property of microcrystalline α-Zn_3(PO_4)_2·4H_2O. Methods Zinc phosphate was prepared from zinc acetate and orthophosphate acid in aqueous solution. Structural characteristics of products were investigated by XRD, RAMAN, FTIR, TG-DTA, SEM, surface area, particle size distribution, and density measurements. Results The title compound, a highly crystalline, micronized and lamellar α-Zn_3(PO_4)_2·4H_2O, has an orthorhombic monoclinic system, space group a_0=10.597(),b_ 0 =18.308(), c_ 0 =5.0304(), V=975.86 3. Its specific area is 0.701m2/g, density 3.1612g/m3, and average size 4.75μm . Conclusion Comparing with commercial Zinc phosphate, the synthesized lamellar microcrystalline zinc phosphate had excellent anticorrosive property and dispersibility.
基金supported by the Special Research Fund for the Doctoral Program of Tongren University(Grant No.trxyDH2201)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB42000000)the National Key Research and Development Program of China(Grant No.2019YFA0708502)。
文摘Hydrous minerals in the subducting slabs are potential water carriers into the deep mantle,and thus the synthesis of new hydrous phases is significant in our understanding of water circulation throughout the Earth’s interior.In this study,we report the two new hydrous phases,Al_(2)SiO_(6)H_(2)and Al_(5.5)Si_(4)O_(18)H_(3.5)(hereafter referred to simply as phases Psi and Phi,respectively),which are synthesized in the Al_(2)O_(3)-SiO_(2)-H_(2)O system at 15.5 GPa,1400℃and 17.5 GPa,1600℃ by using Sakura2500-ton multi-anvil apparatus.The luminescence spectra of Cr3+show the phase Psi has characteristic peaks at 687,693 and705 nm,while phase Phi has characteristic peaks at 691,696 and 708 nm.Single-crystal X-ray diffraction (SCXRD) refinements yield a monoclinic structure of both phases (space group P2_(1)) with ideal chemical formulae of Al_(2)SiO6H2and Al5.5Si4O18H3.5respectively.The determined lattice parameters for phase Psi are a=9.4168±0.0016Å,b=4.3441±0.0007Å,c=9.4360±0.002Åand β=119.726±0.005°at ambient pressure and 300 K,while the phase Phi has a=7.2549±0.0018Å,b=4.3144±0.001Å,c=8.0520±0.002Å,and β=101.740±0.009°at ambient pressure and 250 K.Electron microprobe analyses (EPMA) show the chemical compositions of phases Psi and Phi to be Al_(1.99)Si_(0.85)O_(6)H_(2.62)and Al_(5.58)Si_(2.81)O_(18)H_(8.03),respectively,which slightly deviate from the ideal formulae inferred from SCXRD measurements.This may result from the disorder or substitution of Al and Si by H in the crystal structures under our synthesis conditions.Our study suggests that phases Psi and Phi are the two potential water carriers at the upper part of the mantle transitions zone,providing new insights into how deep water is stored in this region.
基金This study was financially supported by the National Natural Science Foundation of China(No.51772193)China Postdoctral Science Foundation(No.2019T250254).
文摘Zn(CF_(3)SO_(3))_(2)as an electrolyte has been widely used to improve the electrochemical performance for ZIBs due to that the bulky CF_(3)SO_(3)-can reduce the solvation effect of Zn^(2+)and promote the ionic diffusion.Herein,we found that Zn(CF_(3)SO_(3))_(2)electrolyte can induce different electrochemical mechanisms from ZnSO_(4)electrolyte.Compared to the ZnSO^(4)electrolyte,the HNaV_(6)O_(16)·4H2_(O)electrode with Zn(CF_(3)SO_(3))_(2)electrolyte exhibits a high capacity of 444 mAh·g^(-1)at 500 mA·g^(-1)with a capacity retention of 92.3%after 80 cycles.Even,at a high rate of 5 Ag-1,the HNaV_(6)O_(16)·4H_(2)O electrode delivers an initial discharge capacity of 328 mAh·g^(-1)with a capacity retention of 93.7%after 1000 cycles.Differing from the mechanism with ZnSO4 electrolyte,the excellent cycle stability of HNaV_(6)O_(16)·4H_(2)Oelectrode can be attributed to the in-situ phase transformation to ZnxV_(2)O_(5)·nH_(2)O based on the co-intercalation of Zn^(2+)/H^(+).
基金Project supported by Natural Science Foundation of Zhejiang Province,China(LY19E020005)Science and Technology Innovation Platform and Talent Plan of Zhejiang(2017R52037)。
文摘Eu^(2+)/Sm^(3+)co-doped dual-emitting Sr_(4)La(PO_(4))_(3)O phosphors were synthesized through a convenient high temperature solid state reaction in reductive atmosphere.The structure,luminescence,energy transfer and temperature-dependent luminescence properties of Eu^(2+)/Sm^(3+)co-doped Sr_(4)La(PO_(4))_(3)O phosphors were researched and analyzed in detail.The blue emission of Eu^(2+)and the red emission of Sm^(3+)can work together as FIR signals.Based on the different response characteristics of these two ion emissions to temperature,Sr_(4)La(PO_(4))_(3)O:Eu^(2+)/Sm^(^(3+))phosphor achieves the relative sensitivity of0.48384%/K and a wide range of temperature measurements from room temperature to 573 K.The results reveal that the Sr_(4)La(PO_(4))_(3)O:Eu^(2+)/Sm^(3+)phosphor has application prospect in the field of high temperature optical thermometry.The energy transfer mechanism is proved to be the dipole-dipole interaction between Eu^(2+)and Sm^(3+)ions.
基金supported by the funding from the National Natural Science Foundation of China(grant nos.51902187,52072224,and 51732007)the Natural Science Foundation of Shandong Province(ZR2018BEM010)+3 种基金the Science Fund for Distinguished Young Scholars of Shandong Province(ZR2019JQ16)the Fundamental Research Funds of Shandong UniversityYoung Elite Scientist Sponsorship Program by CAST(YESS)the support from Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong
文摘Driven by safety issues,environmental concerns,and high costs,rechargeable aqueous zinc-ion batteries(ZIBs)have received increasing attention in recent years owing to their unique advantages.However,the sluggish kinetics of divalent charge Zn^(2+)in the cathode materials caused by the strong electrostatic interaction and their unsatisfactory cycle life hinder the development of ZIBs.Herein,organic cations and Zn^(2+)ions co-pre-inserted vanadium oxide([N(CH_(3))_(4)]_(0.77),Zn_(0.23))V_(8)O_(20)·3.8H_(2)O are reported as the cathode for ultra-stable aqueous ZIBs,in which the weaker electrostatic interactions between Zn^(2+)and organic ion-pinned vanadium oxide can induce the high reversibility of Zn^(2+)insertion and extraction,thereby improving the cycle life.It is demonstrated that([N(CH_(3))_(4)]_(0.77),Zn_(0.23))V_(8)O_(20)·3.8H_(2)O cathodes deliver a discharge capacity of 181 mA h g^(-1)at8 A g^(-1)and ultra-long life span(99.5%capacity retention after 2000 cycles).A reversible Zn^(2+)/H^(+)ions(de)intercalation storage process and pseudocapacitive charge storage are characterized.The weaker interactions between organic ion and Zn^(2+)open a novel avenue for the design of highly reversible cathode materials with long-term cycling stability.
基金We thank the National Natural Science Foundation of China(Nos.20772088 and 21172163)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions for funding this work.
文摘A novel Cu(OAc)_(2)•H_(2)O catalyzed coupling reaction of N-substituted-2-iodobenzamides with malononitrile to afford N-substituted-3-amino-4-cyano-isoquinoline-1(2H)-ones is described.The reaction proceeded in DMSO at 90℃ for 5 h in nitrogen without external ligands.