Based on the assessment and optimization of nine experimental sub-binary phase diagramsand thermodynamic data (RECl3-LiCl, RECl3-CaCl2 and CaCl2-LiCl), four phase diagrams of theRECl3-CaCl2-LiCl systems are calculated...Based on the assessment and optimization of nine experimental sub-binary phase diagramsand thermodynamic data (RECl3-LiCl, RECl3-CaCl2 and CaCl2-LiCl), four phase diagrams of theRECl3-CaCl2-LiCl systems are calculated and brieflly discussed.展开更多
In-situ refractory metal intermetallic composites(RMICs) based either on (Nb, Si) or (Mo, Si, B) are candidate materials for ultra-high temperature applications (>1400 ℃). To provide a balance of mechanical and en...In-situ refractory metal intermetallic composites(RMICs) based either on (Nb, Si) or (Mo, Si, B) are candidate materials for ultra-high temperature applications (>1400 ℃). To provide a balance of mechanical and environmental properties, Nb-Si composites are typically alloyed with Ti and Cr, and Mo-Si-B composites are alloyed with Ti. Phase diagrams of Nb-Cr-Ti-Si and Mo-Si-B-Ti, as prerequisite knowledge for advanced materials design and processing development, are critically needed. The phase diagrams in the metal-rich regions of multicomponent Nb-Cr-Ti-Si and Mo-Si-B-Ti were rapidly established using the Calphad (Calculation of phase diagram) approach coupled with key experiments. The calculated isotherms, isopleths, and solidification paths were validated by experimental work. The important heterogeneous multiphase equilibria in both quaternary systems identified will offer engineers the opportunity to develop materials with a balance of properties for high-temperature applications.展开更多
In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpr...In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpressed as follows:Gm^E=xAxB[(λ11+λ12T)+(λ21+λ22T)xB]The calculation of the model parameters, λ11, λ12, λ21and λ22, was carried out numerically from the phase diagrams for 11 alkali metal-alkali halide or alkali earth metal-halide systems. In addition, artificial neural network trained by known data has been used to predict the values of these model parameters. The predicted results are in good agreement with the .calculated ones. The applicability of the subregular solution model to the alkali metal-alkali halide or alkali earth metal-halide systems were tested by comparing the available experimental composition along the boundary of miscibility gap with the calculated ones which were obtained by using genetic algorithm. The good agreement between the calculated and experimental results across the entire liquidus is valid evidence in support of the model.展开更多
The thermodynamic calculation of phase equilibria in the Cu-Ni-Si alloy system was carried out using the CALPHAD method. The calculations show that there are three two-phase areas and two three-phase areas in the Cu-r...The thermodynamic calculation of phase equilibria in the Cu-Ni-Si alloy system was carried out using the CALPHAD method. The calculations show that there are three two-phase areas and two three-phase areas in the Cu-rich parts of the isothermal section of the phase diagram at 300-600 ℃,and the three two-phase areas are FCC-A1(Cu-rich)+γ-Ni5Si2,FCC-A1(Cu-rich)+δ-Ni2Si and FCC-A1(Cu-rich)+ε-Ni3Si2,two three-phase areas are FCC-A1(Cu-rich)+γ-Ni5Si2+δ-Ni2Si and FCC-A1(Cu-rich)+δ-Ni2Si+ε-Ni3Si2. For this reason,an alloy located in the Cu-rich portion may precipitate γ-Ni5Si2,δ-Ni2Si or ε-Ni3Si2;the proportion of each phase depends on the alloy composition and aging temperature. The transmission electron microscope analysis of the Cu-3.2Ni-0.75Si alloy indicates that the precipitates are mainly δ-Ni2Si with only a few γ-Ni5Si2 phase particles,which agrees well with the thermodynamic calculations of phase equilibria.展开更多
By using CALPHAD (Calculation of Phase Diagram) technique the optimization and calculation of the binary systems of TbCl_3-ACl (A= Li, Na, K, Rb, Cs) were carried out. For describing the Gibbs free energy of liquid ph...By using CALPHAD (Calculation of Phase Diagram) technique the optimization and calculation of the binary systems of TbCl_3-ACl (A= Li, Na, K, Rb, Cs) were carried out. For describing the Gibbs free energy of liquid phase in these systems the new modified quasichemical model in the pair-approximation for short-range ordering was used. From measured phase equilibria data and experimental integral properties the TbCl_3-ACl phase diagrams were optimized and calculated. A set of thermodynamic functions was optimized based on an interactive computer-assisted analysis. The calculated phase diagrams and thermodynamic data are self-consistent.展开更多
Ceria-yttria co-doped zirconia-based multi-components ceramics, with superfine alumina dispersed in the matrix, possess excellent fracture toughness, strength and thermal stability. However, the mechanical properties ...Ceria-yttria co-doped zirconia-based multi-components ceramics, with superfine alumina dispersed in the matrix, possess excellent fracture toughness, strength and thermal stability. However, the mechanical properties and microstructure are strongly dependent on the composition and the fabrication procedure, especially the composition of zirconia containing multi-component ceramics.展开更多
Numerical methods commonly used for the calculating phase diagrams were listed. A new method to calculate stable phase diagrams was presented which possesse the advantages of both the New-ton Raphson method and the si...Numerical methods commonly used for the calculating phase diagrams were listed. A new method to calculate stable phase diagrams was presented which possesse the advantages of both the New-ton Raphson method and the simplex method. This method is suitable for the calculation of the stable equilibria in complicated systems. For example. calculated results in comparison with experimental results as well as the prediction of new systems were shown in the present work展开更多
Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu allo...Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu alloy were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The calculation results show that η(MgZn2) phase is influenced by Zn and Mg. Mass fractions of η(MgZn2) in Al-xZn-1.7Mg-2.3Cu are 10.0%, 9.8% and 9.2% for x=9.6, 9.4, 8.8 (mass fraction, %), respectively. The intervals of Mg composition were achieved for θ(Al2Cu)+η(MgZn2), S(Al2CuMg)+η(MgZn2) and θ(Al2Cu)+S(Al2CuMg)+η(MgZn2) phase regions. Al3Zr, α(Al), Al13Fe4, η(MgZn2), α-AlFeSi, Al7Cu2Fe, θ(Al2Cu), Al5Cu2MgsSi6 precipitate in sequence by no-equilibrium calculation. The SEM and XRD analyses reveal that α(Al), η(MgZn2), Mg(Al,Cu,Zn)2, θ(Al2Cu) and Al7Cu2Fe phases are discovered in Al-9.2Zn-1.7Mg-2.3Cu alloy. The thermodynamic calculation can be used to predict the major phases present in experiment.展开更多
Recent progress on research activities of phase diagrams in our laboratory has been presented. Experimental studies and thermodynamic calculations based on CALPHAD (Calculation of Phase Diagrams) method have been cond...Recent progress on research activities of phase diagrams in our laboratory has been presented. Experimental studies and thermodynamic calculations based on CALPHAD (Calculation of Phase Diagrams) method have been conducted in the following alloy systems.1.Database on microalloying steels including carbide, nitride and sulfide is now being constructed.2.ADAMIS (Alloy Database for Micro-Solders) containing 8 elements of Ag, Bi, Cu,In, Sb, Sn, Zn and Pb has been constructed, which can handle all combinations of these elements and all composition ranges.3.A thermodynamic database of Cu-base alloys including Cu-X binary system and Cu-Fe, Cu-Ni, Cu-Cr base ternary systems has been constructed.4.Experimental and thermodynamic calculations on Fe, Ni, Co and Ti aluminides have been conducted.5.Experimental and thermodynamic calculations on Co base magnetic recording media have been conducted.6.Thermodynamic analysis of interaction between magnetic and chemical orderings has been performed.By utilizing the information on phase diagrams, the following advanced materials have been developed. (A)New type of high speed steel with high hardness about Hv≈1000 by carbide dispersion carburizing method. (B)New Pb-free machinable stainless steel using titanium carbosulphide. (C)New Pb-free solder for Die-attaching use. (D)Shape memory alloys; Cu-base, Ferromagnetic Ni-base and Fe-base. (E)Invar alloys. (F)Egg-type powder.Typical examples of phase diagrams, phase stability, database and its application for the development of advanced materials will be presented.展开更多
Mg-rare earth(RE)based systems provide several important commercial alloys and many alloy development opportunities for high strength applications,especially in aerospace and defense industries.The phase diagrams,micr...Mg-rare earth(RE)based systems provide several important commercial alloys and many alloy development opportunities for high strength applications,especially in aerospace and defense industries.The phase diagrams,microstructure,and strengthening mechanisms of these multicomponent systems are very complex and often not well understood in literature.We have calculated phase diagrams of important binary,ternary,and multicomponent RE-containing alloy systems,using CALPHAD(CALculation of PHAse Diagrams).Based on these phase diagrams,this paper offers a critical overview on phase equilibria and strengthening mechanisms in these alloy systems,including precipitation,long period stacking order(LPSO),and other intermetallic phases.This review also summarized several promising Mg-RE based cast alloys in comparison with commercial WE54 and WE43 alloys;and explored new strategies for future alloy development for high strength applications.It is pointed out that the combination of precipitation and LPSO phases can lead to superior strength and ductility in Mg-RE based cast alloys.The precipitates and LPSO phases can form a complex three-dimensional network that effectively impedes dislocation motion on the basal and non-basal planes.The LPSO phases can also prevent the coarsening of precipitates when they interact,thus providing good thermal stability at elevated temperatures.Future research is needed to determine how the combination of these two types of phases can be used in alloy design and industrial scale applications.展开更多
The Mg-Al-Zn-Y-Ce system is one of the key systems for designing high-strength Mg alloys. The purpose of the present article is to develop a thermodynamic database for the Mg-Al-Zn-Y-Ce multicomponent system to design...The Mg-Al-Zn-Y-Ce system is one of the key systems for designing high-strength Mg alloys. The purpose of the present article is to develop a thermodynamic database for the Mg-Al-Zn-Y-Ce multicomponent system to design Mg alloys using the calculation of phase diagrams (CALPHAD) method, where the Gibbs energies of solution phases such as liquid, fcc, bcc, and hcp phases were described by the subregular solution model, whereas those of all the compounds were described by the sublattice model. The thermodynamic parameters describing Gibbs energies of the different phases in this database were evaluated by fitting the experimental data for phase equilibria and thermodynamic properties. On the basis of this database, a lot of information concerning stable and metastable phase equilibria of isothermal and vertical sections, molar fractions of constituent phases, the liquidus projection, etc., can be predicted. This database is expected to play an important role in the design of Mg alloys.展开更多
1 Introduction Salt lakes are widely distributed in the world,and salt lakes in China are mainly located in the area of the Qinghai-Xizang(Tibet),and the Autonomous Regions of Xinjiang and Inner Mongolia.There are mor...1 Introduction Salt lakes are widely distributed in the world,and salt lakes in China are mainly located in the area of the Qinghai-Xizang(Tibet),and the Autonomous Regions of Xinjiang and Inner Mongolia.There are more than 700salt lakes,each with an area larger than 1 km2,in the展开更多
Lattice stability of Be is estimated,and interaction parameters for the liquids in the Al-Be and Be-Si systems are obtained using phase dia- gram data from literatures.Using the obtained parameters and the lattice sta...Lattice stability of Be is estimated,and interaction parameters for the liquids in the Al-Be and Be-Si systems are obtained using phase dia- gram data from literatures.Using the obtained parameters and the lattice stabilities of Al and Si given in the literatures,the Al-Be and Be-Si phase diagrams are calculated.By means of Kohler's for- mula the Gibbs energy for the liquid phase in the Al-Be-Si ternary system is extrapolated.The calcu- lation shows that no excess ternary term is necessa- ry for the thermodynamic description of the system. The liquidus projection,isothermal section at 1273 K,as well as vertical sections at 94 and 88 wt-% Al and 2 wt-% Be are calculated.The calcu- lated results are in reasonable agreement with the experimental data available.展开更多
文摘Based on the assessment and optimization of nine experimental sub-binary phase diagramsand thermodynamic data (RECl3-LiCl, RECl3-CaCl2 and CaCl2-LiCl), four phase diagrams of theRECl3-CaCl2-LiCl systems are calculated and brieflly discussed.
文摘In-situ refractory metal intermetallic composites(RMICs) based either on (Nb, Si) or (Mo, Si, B) are candidate materials for ultra-high temperature applications (>1400 ℃). To provide a balance of mechanical and environmental properties, Nb-Si composites are typically alloyed with Ti and Cr, and Mo-Si-B composites are alloyed with Ti. Phase diagrams of Nb-Cr-Ti-Si and Mo-Si-B-Ti, as prerequisite knowledge for advanced materials design and processing development, are critically needed. The phase diagrams in the metal-rich regions of multicomponent Nb-Cr-Ti-Si and Mo-Si-B-Ti were rapidly established using the Calphad (Calculation of phase diagram) approach coupled with key experiments. The calculated isotherms, isopleths, and solidification paths were validated by experimental work. The important heterogeneous multiphase equilibria in both quaternary systems identified will offer engineers the opportunity to develop materials with a balance of properties for high-temperature applications.
文摘In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpressed as follows:Gm^E=xAxB[(λ11+λ12T)+(λ21+λ22T)xB]The calculation of the model parameters, λ11, λ12, λ21and λ22, was carried out numerically from the phase diagrams for 11 alkali metal-alkali halide or alkali earth metal-halide systems. In addition, artificial neural network trained by known data has been used to predict the values of these model parameters. The predicted results are in good agreement with the .calculated ones. The applicability of the subregular solution model to the alkali metal-alkali halide or alkali earth metal-halide systems were tested by comparing the available experimental composition along the boundary of miscibility gap with the calculated ones which were obtained by using genetic algorithm. The good agreement between the calculated and experimental results across the entire liquidus is valid evidence in support of the model.
基金Project(2006DFB53050) supported by the International Science and Technology Cooperation Project of the Science and Technology Ministry of China
文摘The thermodynamic calculation of phase equilibria in the Cu-Ni-Si alloy system was carried out using the CALPHAD method. The calculations show that there are three two-phase areas and two three-phase areas in the Cu-rich parts of the isothermal section of the phase diagram at 300-600 ℃,and the three two-phase areas are FCC-A1(Cu-rich)+γ-Ni5Si2,FCC-A1(Cu-rich)+δ-Ni2Si and FCC-A1(Cu-rich)+ε-Ni3Si2,two three-phase areas are FCC-A1(Cu-rich)+γ-Ni5Si2+δ-Ni2Si and FCC-A1(Cu-rich)+δ-Ni2Si+ε-Ni3Si2. For this reason,an alloy located in the Cu-rich portion may precipitate γ-Ni5Si2,δ-Ni2Si or ε-Ni3Si2;the proportion of each phase depends on the alloy composition and aging temperature. The transmission electron microscope analysis of the Cu-3.2Ni-0.75Si alloy indicates that the precipitates are mainly δ-Ni2Si with only a few γ-Ni5Si2 phase particles,which agrees well with the thermodynamic calculations of phase equilibria.
基金Projects supported by the National Natural Science Foundation of China (59434080) Foundation of Natural Science of AnhuiProvince (00046509)+1 种基金 Foundation of Natural Science of Anhui Education Committee (2000j1090) and Youth Foundation of Anhui Normal
文摘By using CALPHAD (Calculation of Phase Diagram) technique the optimization and calculation of the binary systems of TbCl_3-ACl (A= Li, Na, K, Rb, Cs) were carried out. For describing the Gibbs free energy of liquid phase in these systems the new modified quasichemical model in the pair-approximation for short-range ordering was used. From measured phase equilibria data and experimental integral properties the TbCl_3-ACl phase diagrams were optimized and calculated. A set of thermodynamic functions was optimized based on an interactive computer-assisted analysis. The calculated phase diagrams and thermodynamic data are self-consistent.
文摘Ceria-yttria co-doped zirconia-based multi-components ceramics, with superfine alumina dispersed in the matrix, possess excellent fracture toughness, strength and thermal stability. However, the mechanical properties and microstructure are strongly dependent on the composition and the fabrication procedure, especially the composition of zirconia containing multi-component ceramics.
文摘Numerical methods commonly used for the calculating phase diagrams were listed. A new method to calculate stable phase diagrams was presented which possesse the advantages of both the New-ton Raphson method and the simplex method. This method is suitable for the calculation of the stable equilibria in complicated systems. For example. calculated results in comparison with experimental results as well as the prediction of new systems were shown in the present work
基金Project (59974011) supported by the National Natural Science Foundation of China.Acknowledgements The authors are grateful for financial support from the National Natural Science Foundation of China (59974011). Heartfelt thanks are also given to the CompuTherm LLC group of Wisconsin-Madison University for providing the software program to calculate the phase equilibria.
基金Project(2012CB619504)supported by the National Basic Research Program of ChinaProject(51271037)supported by the National Natural Science Foundation of ChinaProject(2010DFB50340)supported by International Scientific and Technological Cooperation Projects of China
文摘Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu alloy were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The calculation results show that η(MgZn2) phase is influenced by Zn and Mg. Mass fractions of η(MgZn2) in Al-xZn-1.7Mg-2.3Cu are 10.0%, 9.8% and 9.2% for x=9.6, 9.4, 8.8 (mass fraction, %), respectively. The intervals of Mg composition were achieved for θ(Al2Cu)+η(MgZn2), S(Al2CuMg)+η(MgZn2) and θ(Al2Cu)+S(Al2CuMg)+η(MgZn2) phase regions. Al3Zr, α(Al), Al13Fe4, η(MgZn2), α-AlFeSi, Al7Cu2Fe, θ(Al2Cu), Al5Cu2MgsSi6 precipitate in sequence by no-equilibrium calculation. The SEM and XRD analyses reveal that α(Al), η(MgZn2), Mg(Al,Cu,Zn)2, θ(Al2Cu) and Al7Cu2Fe phases are discovered in Al-9.2Zn-1.7Mg-2.3Cu alloy. The thermodynamic calculation can be used to predict the major phases present in experiment.
文摘Recent progress on research activities of phase diagrams in our laboratory has been presented. Experimental studies and thermodynamic calculations based on CALPHAD (Calculation of Phase Diagrams) method have been conducted in the following alloy systems.1.Database on microalloying steels including carbide, nitride and sulfide is now being constructed.2.ADAMIS (Alloy Database for Micro-Solders) containing 8 elements of Ag, Bi, Cu,In, Sb, Sn, Zn and Pb has been constructed, which can handle all combinations of these elements and all composition ranges.3.A thermodynamic database of Cu-base alloys including Cu-X binary system and Cu-Fe, Cu-Ni, Cu-Cr base ternary systems has been constructed.4.Experimental and thermodynamic calculations on Fe, Ni, Co and Ti aluminides have been conducted.5.Experimental and thermodynamic calculations on Co base magnetic recording media have been conducted.6.Thermodynamic analysis of interaction between magnetic and chemical orderings has been performed.By utilizing the information on phase diagrams, the following advanced materials have been developed. (A)New type of high speed steel with high hardness about Hv≈1000 by carbide dispersion carburizing method. (B)New Pb-free machinable stainless steel using titanium carbosulphide. (C)New Pb-free solder for Die-attaching use. (D)Shape memory alloys; Cu-base, Ferromagnetic Ni-base and Fe-base. (E)Invar alloys. (F)Egg-type powder.Typical examples of phase diagrams, phase stability, database and its application for the development of advanced materials will be presented.
基金partially funded by the United States Army Research Laboratory (ARL)Terves LLC。
文摘Mg-rare earth(RE)based systems provide several important commercial alloys and many alloy development opportunities for high strength applications,especially in aerospace and defense industries.The phase diagrams,microstructure,and strengthening mechanisms of these multicomponent systems are very complex and often not well understood in literature.We have calculated phase diagrams of important binary,ternary,and multicomponent RE-containing alloy systems,using CALPHAD(CALculation of PHAse Diagrams).Based on these phase diagrams,this paper offers a critical overview on phase equilibria and strengthening mechanisms in these alloy systems,including precipitation,long period stacking order(LPSO),and other intermetallic phases.This review also summarized several promising Mg-RE based cast alloys in comparison with commercial WE54 and WE43 alloys;and explored new strategies for future alloy development for high strength applications.It is pointed out that the combination of precipitation and LPSO phases can lead to superior strength and ductility in Mg-RE based cast alloys.The precipitates and LPSO phases can form a complex three-dimensional network that effectively impedes dislocation motion on the basal and non-basal planes.The LPSO phases can also prevent the coarsening of precipitates when they interact,thus providing good thermal stability at elevated temperatures.Future research is needed to determine how the combination of these two types of phases can be used in alloy design and industrial scale applications.
基金This study was financially supported by the National Natural Science Foundation of China and Chongqing Science and Technology Commission.
文摘The Mg-Al-Zn-Y-Ce system is one of the key systems for designing high-strength Mg alloys. The purpose of the present article is to develop a thermodynamic database for the Mg-Al-Zn-Y-Ce multicomponent system to design Mg alloys using the calculation of phase diagrams (CALPHAD) method, where the Gibbs energies of solution phases such as liquid, fcc, bcc, and hcp phases were described by the subregular solution model, whereas those of all the compounds were described by the sublattice model. The thermodynamic parameters describing Gibbs energies of the different phases in this database were evaluated by fitting the experimental data for phase equilibria and thermodynamic properties. On the basis of this database, a lot of information concerning stable and metastable phase equilibria of isothermal and vertical sections, molar fractions of constituent phases, the liquidus projection, etc., can be predicted. This database is expected to play an important role in the design of Mg alloys.
基金Financial support from the State Key Program of NNSFC (20836009)the NNSFCs (Grants 21106136, 21276194 and 21306136)
文摘1 Introduction Salt lakes are widely distributed in the world,and salt lakes in China are mainly located in the area of the Qinghai-Xizang(Tibet),and the Autonomous Regions of Xinjiang and Inner Mongolia.There are more than 700salt lakes,each with an area larger than 1 km2,in the
文摘Lattice stability of Be is estimated,and interaction parameters for the liquids in the Al-Be and Be-Si systems are obtained using phase dia- gram data from literatures.Using the obtained parameters and the lattice stabilities of Al and Si given in the literatures,the Al-Be and Be-Si phase diagrams are calculated.By means of Kohler's for- mula the Gibbs energy for the liquid phase in the Al-Be-Si ternary system is extrapolated.The calcu- lation shows that no excess ternary term is necessa- ry for the thermodynamic description of the system. The liquidus projection,isothermal section at 1273 K,as well as vertical sections at 94 and 88 wt-% Al and 2 wt-% Be are calculated.The calcu- lated results are in reasonable agreement with the experimental data available.