According to the theory of sequence stratigraphy based on continental transgressive-regressive(T-R)cycles,a 500 m continuous core taken from the second member of Kongdian Formation(Kong 2 Member)of Paleogene in Well G...According to the theory of sequence stratigraphy based on continental transgressive-regressive(T-R)cycles,a 500 m continuous core taken from the second member of Kongdian Formation(Kong 2 Member)of Paleogene in Well G108-8 in the Cangdong Sag,Bohai Bay Basin,was tested and analyzed to clarify the high-frequency cycles of deep-water fine-grained sedimentary rocks in lacustrine basins.A logging vectorgraph in red pattern was plotted,and then a sequence stratigraphic framework with five-order high-frequency cycles was formed for the fine-grained sedimentary rocks in the Kong 2 Member.The high-frequency cycles of fine-grained sedimentary rocks were characterized by using different methods and at different scales.It is found that the fifth-order T cycles record a high content of terrigenous clastic minerals,a low paleosalinity,a relatively humid paleoclimate and a high density of laminae,while the fifth-order R cycles display a high content of carbonate minerals,a high paleosalinity,a dry paleoclimate and a low density of laminae.The changes in high-frequency cycles controlled the abundance and type of organic matter.The T cycles exhibit relatively high TOC and abundant endogenous organic matters in water in addition to terrigenous organic matters,implying a high primary productivity of lake for the generation and enrichment of shale oil.展开更多
As the main factors affecting stable and high production and the production regularity of lacustrine shale oil are unclear,the theoretical understandings,key exploration and development technologies,development effect...As the main factors affecting stable and high production and the production regularity of lacustrine shale oil are unclear,the theoretical understandings,key exploration and development technologies,development effect and production regularity of lacustrine shale oil have been analyzed and summarized based on 700 m cores taken systematically from Paleogene Kong 2 Member of 4 wells in Cangdong sag,over 100000 analysis data and formation testing data.Three theoretical understandings on shale oil enrichment and high production have been reached:(1)High-quality shale with“three highs and one low”is the material base for shale oil enrichment.(2)Medium-slightly high thermal evolution degree is the favorable condition for shale oil enrichment.(3)Laminar felsic shale is the optimal shale layer for oil enrichment in semi-deep lake facies.Key exploration and development technologies such as shale oil enrichment layer and area evaluation and prediction,horizontal well pattern layout,shale oil reservoir fracturing,optimization of shale oil production regime have been established to support high and stable shale oil production.Under the guidance of these theoretical understandings and technologies,shale oil in Cangdong sag has achieved high and stable production,and 4 of them had the highest production of over 100 tons a day during formation testing.In particular,Well GY5-1-1 L had a daily oil production of 208 m^(3).By April,2022,the 28 wells combined have a stable oil production of 300–350 tons a day,and have produced 17.8×10^(4) t of oil cumulatively.It is found that the shale oil production of horizontal well declines exponentially in natural flow stage,and declines in step pattern and then tends stable in the artificial lift stage.Proportion of light hydrocarbons in produced shale oil is in positive correlation with daily oil production and decreases regularly during production test.展开更多
A deep understanding of the basic geologic characteristics of the fine-grained shale layers in the Paleogene 1 st sub-member of Kong 2 Member(Ek_2~1) in Cangdong sag, Bohai Bay Basin, is achieved through observation o...A deep understanding of the basic geologic characteristics of the fine-grained shale layers in the Paleogene 1 st sub-member of Kong 2 Member(Ek_2~1) in Cangdong sag, Bohai Bay Basin, is achieved through observation of 140 m continuous cores and systematic analysis of over 1 000 core samples from two wells. Basic geological conditions for shale oil accumulation are proposed based on the unconventional geological theory of oil and gas. The shale rock system mainly developed interbedded formation of felsic shale, calcareous and dolomitic shale and carbonates; high quality hydrocarbon source rock formed in the stable and closed environment is the material base for shale oil enrichment; intergranular pores in analcite, intercrystalline pores in dolomite and interlayer micro-fractures make tight carbonate, calcareous and dolomitic shale and felsic shale effective reservoirs, with brittle mineral content of more than 70%; high abundance laminated shale rock in the lower section of Ek_2~1 is rich in shale oil, with a total thickness of 70 m, burial depth between 2 800 to 4 200 m, an average oil saturation of 50%, a sweet spot area of 260 km^2 and predicted resources of over 5×10~8 t. Therefore, this area is a key replacement domain for oil exploration in the Kongdian Formation of the Cangdong sag. At present, the KN9 vertical well has a daily oil production of 29.6 t after fracturing with a 2 mm choke. A breakthrough of continental shale oil exploration in a lacustrine basin is expected to be achieved by volume fracturing in horizontal wells.展开更多
Based on detailed core description and systematic joint test data,enrichment laws of continental shale oil have been examined deeply.Key technologies such as the identification and quantitative evaluation method for s...Based on detailed core description and systematic joint test data,enrichment laws of continental shale oil have been examined deeply.Key technologies such as the identification and quantitative evaluation method for sweet spot,precise design and tracking of horizontal well trajectory,and the low-cost horizontal well volume fracturing technology of the whole process"slick water+quartz sand"for continental shale oil have been formed.The research results show that the enrichment of pure continental shale oil of the Paleogene Kong 2 Member in Cangdong Sag is controlled by predominant fabric facies and cross-over effect of retained hydrocarbons jointly;and there are four modes of shale oil enrichment,i.e.laminar felsic,laminar mixed,thin-layer limy dolomitic,and thick-layer limy dolomitic shales.The identification and evaluation method for shale oil sweet spots can predict sweet spots accurately.The precise trajectory design for sweet spot layer and tracking-trajectory optimization while drilling by considering geological and engineering factors have been proved effective by field application,with drilling rate of sweet spots reaching 100%and drilling rate of type I sweet spots reaching over 75%.The whole process"slick water+quartz sand"low cost volume fracturing has been proved effective in creating multi-stage fracture network in the horizontal section,and improved productivity greatly.It can lower the comprehensive engineering cost by 26.4%.展开更多
Based on core,thin section,X-ray diffraction,rock pyrolysis,CT scanning,nuclear magnetic resonance and oil testing data,the macro and micro components,sedimentary structure characteristics,of Paleogene Kong 2 Member i...Based on core,thin section,X-ray diffraction,rock pyrolysis,CT scanning,nuclear magnetic resonance and oil testing data,the macro and micro components,sedimentary structure characteristics,of Paleogene Kong 2 Member in Cangdong sag of Huanghua depression and evaluation standard and method of shale oil reservoir were studied to sort out the best shale sections for shale oil horizontal wells.According to the dominant rock type,rhythmic structure and logging curve characteristics,four types of shale lithofacies were identified,namely,thin-layered dolomitic shale,lamellar mixed shale,lamellar felsic shale,and bedded dolomitic shale,and the Kong 21 sub-member was divided into four quasi-sequences,PS1 to PS4.The PS1 shale has a porosity higher than 6%,clay content of less than 20%,and S1 of less than 4 mg/g;the PS2 shale has well-developed laminar structure,larger pore and throat size,better connectivity of pores and throats,high contents of TOC and movable hydrocarbon,S1 of over 4 mg/g,clay content of less than 20%,and porosity of more than 4%;PS3 shale has S1 value higher than 6 mg/g and clay content of 20%-30%,and porosity of less than 4%;and PS4 shale has lower TOC content and low oil content.Shale oil reservoir classification criterion based on five parameters,free hydrocarbon content S1,shale rhythmic structure,clay content,TOC and porosity,was established.The evaluation method of shale oil sweet spot by using the weighted five parameters,and the evaluation index EI were proposed.Through comprehensive analysis,it is concluded that PS2 is best in quality and thus the dual geological and engineering sweet spot of shale oil,PS3 and PS1 come next,the former is more geologic sweet spot,the latter more engineering sweet spot,and PS4 is the poorest.Several vertical and horizontal wells drilled in the PS2 and PS3 sweet spots obtained high oil production.Among them,Well 1701 H has produced stably for 623 days,with cumulative production of over 10000 tons,showing bright exploration prospects of Kong 2 Member shale oil.展开更多
This study combines large volume three-dimensional reconstruction via focused ion beam scanning electron microscopy(FIB-SEM) with conventional scanning electron microscope(SEM) observation, automatic mineral identific...This study combines large volume three-dimensional reconstruction via focused ion beam scanning electron microscopy(FIB-SEM) with conventional scanning electron microscope(SEM) observation, automatic mineral identification and characterization system(AMICS) and large-area splicing of SEM images to characterize and classify the microscopic storage space distribution patterns and 3D pore structures of shales in the second member of the Paleogene Kongdian Formation(Kong 2) in the Cangdong Sag of the Bohai Bay Basin. It is shown that:(1) The Kong 2 Member can be divided into seven types according to the distribution patterns of reservoir spaces: felsic shale with intergranular micron pores, felsic shale with intergranular fissures, felsic shale with intergranular pores, hybrid shale with intergranular pores and fissures, hybrid shale with intergranular pores, clay-bearing dolomitic shale with intergranular pores, and clay-free dolomitic shale with intergranular pores.(2) The reservoir of the intergranular fracture type has better storage capacity than that of intergranular pore type. For reservoirs with storage space of intergranular pore type, the dolomitic shale reservoir has the best storage capacity, the hybrid shale comes second, followed by the felsic shale.(3) The felsic shale with intergranular fissures has the best storage capacity and percolation structure, making it the first target in shale oil exploration.(4) The large volume FIB-SEM 3D reconstruction method is able to characterize a large shale volume while maintaining relatively high spatial resolution, and has been demonstrated an effective method in characterizing the 3D storage space in strongly heterogeneous continental shales.展开更多
Based on the merged 3 D seismic data, well logging, formation testing, analysis and testing data, the structural evolution, sedimentary reservoirs, thermal evolution of source rocks were investigated of Paleogene Kong...Based on the merged 3 D seismic data, well logging, formation testing, analysis and testing data, the structural evolution, sedimentary reservoirs, thermal evolution of source rocks were investigated of Paleogene Kongdian Formation in the trough area of Cangdong sag, Bohai Bay Basin. A conventional-unconventional hydrocarbon accumulation pattern in the trough area of rifted basin was revealed. The reservoir forming elements in the trough area of Cangdong sag have a zonation feature in terms of reservoirs and source rocks. There are two types of reservoir forming models, primary trough and reformed trough. The formation and evolution of trough controlled the orderly distribution of conventional oil to unconventional oil in the trough. Particularly, structural reservoirs occur in the upper part of the trough, stratigraphic-lithologic reservoirs are likely to form in the delta front deposits at the outer ring of trough, the middle ring transitional belt is the favorable site for tight oil reservoirs, while the fine grain deposits zone in the inner ring is shale oil and gas exploration area. The study has pointed out the new domains and directions for searching reserves in the secondary exploration of mature oilfields.展开更多
To better understand the micropore characteristics of lacustrine shale and develop quantitative methodsfor characterizing lacustrine shale, the reservoir space types, structures and spatial distribution patternsof eff...To better understand the micropore characteristics of lacustrine shale and develop quantitative methodsfor characterizing lacustrine shale, the reservoir space types, structures and spatial distribution patternsof effective pores in the shale of Member 2 of Kongdian Formation in Cangdong sag are studied usingcores, thin sections, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM),nuclear magnetic resonance (NMR), whole-rock X-ray diffraction (XRD) data, etc. Various shale porositycalculation methods are evaluated. The study results show that the reservoir spaces of the shale mainlyinclude three types, i.e., matrix pores, organic pores and fractures. Flaky pore throats formed bydissolution-induced pores and mould pores can improve the pore connectivity. NMR effective porosity ofthe shale varies from 0.59% to 4.42% with an average of 2.38%, accounting for 49.54% of the total NMRporosity and 34.53% of the gas porosity. The shale is divided into the unimodal-type felsic shale, bimodaltype felsic shale, carbonate shale and mixed shale. The different lithologies exhibit linear correlationsamong NMR, gas and effective porosities. The shale has effective porosity of 0.56%-4.53% with an averageof 2.12%. Furthermore, the shale reservoir is divided into four classes: Class I reservoir with effectiveporosities of more than 2.5%;Class II1 reservoir with effective porosity of 2.0%-2.5%;Class II2 reservoirwith effective porosity of 1.5%-2%;and Class III reservoir with effective porosity of less than 1.5%.展开更多
Under the general trend of stepping-up oil and gas exploration and development in China,the unconventional oil and gas resources such as shale oil and gas have become an important alternative.Abundant continental shal...Under the general trend of stepping-up oil and gas exploration and development in China,the unconventional oil and gas resources such as shale oil and gas have become an important alternative.Abundant continental shale oil resources are developed in Member 2 of Kongdian Formation(Ek2)of the Cangdong sag in the Huanghua depression of the Bohai Bay Basin which has complex structure,strong heterogeneity,and large buried depth,thus,the geological characteristic of shale oil accumulation and key exploration technologies are investigated on base of the system coring of 635.8 m,centimeter-level fine description and analysis of over ten thousand samples,therefore,the“four accurate”technologies have been developed,including the accurate selection of sweet spot areas,accurate drilling of sweet spot layers,accurate fracturing of sweet spot layers and accurate measure of fracture-rich sections.The results show that the continental shale strata in Member 2 of Kongdian Formation can be divided into three types:felsic shale,limy dolomitic shale and mixed shale.The Member 2 of Kongdian Formation is characterized by diverse mineral components,abundant laminae,good source rocks and medium thermal evolution degree,tight reservoir with rich micropore and microfractures,high oil saturation and brittle mineral content,indicating good prospect of shale oil exploration.Through sedimentological study,TOC and Ro evaluation,brittle mineral calculation,and seismic fusion inversion,a total of 126 km^(2) of Class I sweet spots in Member 2 of Kongdian Formation was delineated comprehensively,which guides horizontal well deployment(Well GD1701H and Well GD1702H).The drilling rate of sweet spot of these two horizontal wells is up to 96%by tracing thin layer through fine calibration,locating compartment through fine inversion,ensuring window entry through precise positioning,and tracking sweet spot through adjustment.The “one-excellent and five-highs”criterion is used to select perforation points to realize differential designs of fracturing intervals and clusters.Micro-seismic and potentiometry monitoring show that the artificial fractures formed by volumetric fracturing are 300e400 m long and 120 m high,and control a volume of about 0.07 km^(3).The maximum daily oil production of two horizontal wells is 48 t and 66 t respectively to realize the economic exploitation of shale oil reserves controlled by fractures.The shale oil exploration in Member 2 of Kongdian Formation shows that the continental shale oil has great potential of exploration and development,and the above technologies are critical and effective for shale oil efficient recovery.展开更多
基金Supported by the National Major Research and Development Project(2020YFA0710504,2022YFF0801204)PetroChina Science and Technology Major Project(2019E-26)。
文摘According to the theory of sequence stratigraphy based on continental transgressive-regressive(T-R)cycles,a 500 m continuous core taken from the second member of Kongdian Formation(Kong 2 Member)of Paleogene in Well G108-8 in the Cangdong Sag,Bohai Bay Basin,was tested and analyzed to clarify the high-frequency cycles of deep-water fine-grained sedimentary rocks in lacustrine basins.A logging vectorgraph in red pattern was plotted,and then a sequence stratigraphic framework with five-order high-frequency cycles was formed for the fine-grained sedimentary rocks in the Kong 2 Member.The high-frequency cycles of fine-grained sedimentary rocks were characterized by using different methods and at different scales.It is found that the fifth-order T cycles record a high content of terrigenous clastic minerals,a low paleosalinity,a relatively humid paleoclimate and a high density of laminae,while the fifth-order R cycles display a high content of carbonate minerals,a high paleosalinity,a dry paleoclimate and a low density of laminae.The changes in high-frequency cycles controlled the abundance and type of organic matter.The T cycles exhibit relatively high TOC and abundant endogenous organic matters in water in addition to terrigenous organic matters,implying a high primary productivity of lake for the generation and enrichment of shale oil.
基金Supported by the National Key R&D Program of China(2020YFA0710504)Science and Technology Project of China National Petroleum Corporation(2021DQ0508)PetroChina Science and Technology Major Project(2019E-2602)。
文摘As the main factors affecting stable and high production and the production regularity of lacustrine shale oil are unclear,the theoretical understandings,key exploration and development technologies,development effect and production regularity of lacustrine shale oil have been analyzed and summarized based on 700 m cores taken systematically from Paleogene Kong 2 Member of 4 wells in Cangdong sag,over 100000 analysis data and formation testing data.Three theoretical understandings on shale oil enrichment and high production have been reached:(1)High-quality shale with“three highs and one low”is the material base for shale oil enrichment.(2)Medium-slightly high thermal evolution degree is the favorable condition for shale oil enrichment.(3)Laminar felsic shale is the optimal shale layer for oil enrichment in semi-deep lake facies.Key exploration and development technologies such as shale oil enrichment layer and area evaluation and prediction,horizontal well pattern layout,shale oil reservoir fracturing,optimization of shale oil production regime have been established to support high and stable shale oil production.Under the guidance of these theoretical understandings and technologies,shale oil in Cangdong sag has achieved high and stable production,and 4 of them had the highest production of over 100 tons a day during formation testing.In particular,Well GY5-1-1 L had a daily oil production of 208 m^(3).By April,2022,the 28 wells combined have a stable oil production of 300–350 tons a day,and have produced 17.8×10^(4) t of oil cumulatively.It is found that the shale oil production of horizontal well declines exponentially in natural flow stage,and declines in step pattern and then tends stable in the artificial lift stage.Proportion of light hydrocarbons in produced shale oil is in positive correlation with daily oil production and decreases regularly during production test.
基金Supported by the Petro China Science and Technology Major Project(2017E-11)
文摘A deep understanding of the basic geologic characteristics of the fine-grained shale layers in the Paleogene 1 st sub-member of Kong 2 Member(Ek_2~1) in Cangdong sag, Bohai Bay Basin, is achieved through observation of 140 m continuous cores and systematic analysis of over 1 000 core samples from two wells. Basic geological conditions for shale oil accumulation are proposed based on the unconventional geological theory of oil and gas. The shale rock system mainly developed interbedded formation of felsic shale, calcareous and dolomitic shale and carbonates; high quality hydrocarbon source rock formed in the stable and closed environment is the material base for shale oil enrichment; intergranular pores in analcite, intercrystalline pores in dolomite and interlayer micro-fractures make tight carbonate, calcareous and dolomitic shale and felsic shale effective reservoirs, with brittle mineral content of more than 70%; high abundance laminated shale rock in the lower section of Ek_2~1 is rich in shale oil, with a total thickness of 70 m, burial depth between 2 800 to 4 200 m, an average oil saturation of 50%, a sweet spot area of 260 km^2 and predicted resources of over 5×10~8 t. Therefore, this area is a key replacement domain for oil exploration in the Kongdian Formation of the Cangdong sag. At present, the KN9 vertical well has a daily oil production of 29.6 t after fracturing with a 2 mm choke. A breakthrough of continental shale oil exploration in a lacustrine basin is expected to be achieved by volume fracturing in horizontal wells.
基金Supported by the PetroChina Science and Technology Major Project(2018E-11)
文摘Based on detailed core description and systematic joint test data,enrichment laws of continental shale oil have been examined deeply.Key technologies such as the identification and quantitative evaluation method for sweet spot,precise design and tracking of horizontal well trajectory,and the low-cost horizontal well volume fracturing technology of the whole process"slick water+quartz sand"for continental shale oil have been formed.The research results show that the enrichment of pure continental shale oil of the Paleogene Kong 2 Member in Cangdong Sag is controlled by predominant fabric facies and cross-over effect of retained hydrocarbons jointly;and there are four modes of shale oil enrichment,i.e.laminar felsic,laminar mixed,thin-layer limy dolomitic,and thick-layer limy dolomitic shales.The identification and evaluation method for shale oil sweet spots can predict sweet spots accurately.The precise trajectory design for sweet spot layer and tracking-trajectory optimization while drilling by considering geological and engineering factors have been proved effective by field application,with drilling rate of sweet spots reaching 100%and drilling rate of type I sweet spots reaching over 75%.The whole process"slick water+quartz sand"low cost volume fracturing has been proved effective in creating multi-stage fracture network in the horizontal section,and improved productivity greatly.It can lower the comprehensive engineering cost by 26.4%.
基金Supported by the China Petroleum Science and Technology Major Project(2018E-1,2019E-2601)。
文摘Based on core,thin section,X-ray diffraction,rock pyrolysis,CT scanning,nuclear magnetic resonance and oil testing data,the macro and micro components,sedimentary structure characteristics,of Paleogene Kong 2 Member in Cangdong sag of Huanghua depression and evaluation standard and method of shale oil reservoir were studied to sort out the best shale sections for shale oil horizontal wells.According to the dominant rock type,rhythmic structure and logging curve characteristics,four types of shale lithofacies were identified,namely,thin-layered dolomitic shale,lamellar mixed shale,lamellar felsic shale,and bedded dolomitic shale,and the Kong 21 sub-member was divided into four quasi-sequences,PS1 to PS4.The PS1 shale has a porosity higher than 6%,clay content of less than 20%,and S1 of less than 4 mg/g;the PS2 shale has well-developed laminar structure,larger pore and throat size,better connectivity of pores and throats,high contents of TOC and movable hydrocarbon,S1 of over 4 mg/g,clay content of less than 20%,and porosity of more than 4%;PS3 shale has S1 value higher than 6 mg/g and clay content of 20%-30%,and porosity of less than 4%;and PS4 shale has lower TOC content and low oil content.Shale oil reservoir classification criterion based on five parameters,free hydrocarbon content S1,shale rhythmic structure,clay content,TOC and porosity,was established.The evaluation method of shale oil sweet spot by using the weighted five parameters,and the evaluation index EI were proposed.Through comprehensive analysis,it is concluded that PS2 is best in quality and thus the dual geological and engineering sweet spot of shale oil,PS3 and PS1 come next,the former is more geologic sweet spot,the latter more engineering sweet spot,and PS4 is the poorest.Several vertical and horizontal wells drilled in the PS2 and PS3 sweet spots obtained high oil production.Among them,Well 1701 H has produced stably for 623 days,with cumulative production of over 10000 tons,showing bright exploration prospects of Kong 2 Member shale oil.
基金Science Fund of China National Natural Science Foundation for Creative Research Groups(41821002)the 14(th)Five-Year Plan Major Project of Pilot National Laboratory for Marine Science and Technology(2021QNLM020001)the Dagang Oil Field Company Project(DQYT-2019-JS-365)。
文摘This study combines large volume three-dimensional reconstruction via focused ion beam scanning electron microscopy(FIB-SEM) with conventional scanning electron microscope(SEM) observation, automatic mineral identification and characterization system(AMICS) and large-area splicing of SEM images to characterize and classify the microscopic storage space distribution patterns and 3D pore structures of shales in the second member of the Paleogene Kongdian Formation(Kong 2) in the Cangdong Sag of the Bohai Bay Basin. It is shown that:(1) The Kong 2 Member can be divided into seven types according to the distribution patterns of reservoir spaces: felsic shale with intergranular micron pores, felsic shale with intergranular fissures, felsic shale with intergranular pores, hybrid shale with intergranular pores and fissures, hybrid shale with intergranular pores, clay-bearing dolomitic shale with intergranular pores, and clay-free dolomitic shale with intergranular pores.(2) The reservoir of the intergranular fracture type has better storage capacity than that of intergranular pore type. For reservoirs with storage space of intergranular pore type, the dolomitic shale reservoir has the best storage capacity, the hybrid shale comes second, followed by the felsic shale.(3) The felsic shale with intergranular fissures has the best storage capacity and percolation structure, making it the first target in shale oil exploration.(4) The large volume FIB-SEM 3D reconstruction method is able to characterize a large shale volume while maintaining relatively high spatial resolution, and has been demonstrated an effective method in characterizing the 3D storage space in strongly heterogeneous continental shales.
基金Supported by the China National Science and Technology Major Project(2016ZX05006-005)PetroChina Science and Technology Major Project(2018E-11)
文摘Based on the merged 3 D seismic data, well logging, formation testing, analysis and testing data, the structural evolution, sedimentary reservoirs, thermal evolution of source rocks were investigated of Paleogene Kongdian Formation in the trough area of Cangdong sag, Bohai Bay Basin. A conventional-unconventional hydrocarbon accumulation pattern in the trough area of rifted basin was revealed. The reservoir forming elements in the trough area of Cangdong sag have a zonation feature in terms of reservoirs and source rocks. There are two types of reservoir forming models, primary trough and reformed trough. The formation and evolution of trough controlled the orderly distribution of conventional oil to unconventional oil in the trough. Particularly, structural reservoirs occur in the upper part of the trough, stratigraphic-lithologic reservoirs are likely to form in the delta front deposits at the outer ring of trough, the middle ring transitional belt is the favorable site for tight oil reservoirs, while the fine grain deposits zone in the inner ring is shale oil and gas exploration area. The study has pointed out the new domains and directions for searching reserves in the secondary exploration of mature oilfields.
文摘To better understand the micropore characteristics of lacustrine shale and develop quantitative methodsfor characterizing lacustrine shale, the reservoir space types, structures and spatial distribution patternsof effective pores in the shale of Member 2 of Kongdian Formation in Cangdong sag are studied usingcores, thin sections, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM),nuclear magnetic resonance (NMR), whole-rock X-ray diffraction (XRD) data, etc. Various shale porositycalculation methods are evaluated. The study results show that the reservoir spaces of the shale mainlyinclude three types, i.e., matrix pores, organic pores and fractures. Flaky pore throats formed bydissolution-induced pores and mould pores can improve the pore connectivity. NMR effective porosity ofthe shale varies from 0.59% to 4.42% with an average of 2.38%, accounting for 49.54% of the total NMRporosity and 34.53% of the gas porosity. The shale is divided into the unimodal-type felsic shale, bimodaltype felsic shale, carbonate shale and mixed shale. The different lithologies exhibit linear correlationsamong NMR, gas and effective porosities. The shale has effective porosity of 0.56%-4.53% with an averageof 2.12%. Furthermore, the shale reservoir is divided into four classes: Class I reservoir with effectiveporosities of more than 2.5%;Class II1 reservoir with effective porosity of 2.0%-2.5%;Class II2 reservoirwith effective porosity of 1.5%-2%;and Class III reservoir with effective porosity of less than 1.5%.
基金The work was supported by the the PetroChina Science and Technology Major Project“Research and Application of Key Technologies for Increasing Reserves and Stabilizing Production in Dagang Oilfield”(No.2018E-11).
文摘Under the general trend of stepping-up oil and gas exploration and development in China,the unconventional oil and gas resources such as shale oil and gas have become an important alternative.Abundant continental shale oil resources are developed in Member 2 of Kongdian Formation(Ek2)of the Cangdong sag in the Huanghua depression of the Bohai Bay Basin which has complex structure,strong heterogeneity,and large buried depth,thus,the geological characteristic of shale oil accumulation and key exploration technologies are investigated on base of the system coring of 635.8 m,centimeter-level fine description and analysis of over ten thousand samples,therefore,the“four accurate”technologies have been developed,including the accurate selection of sweet spot areas,accurate drilling of sweet spot layers,accurate fracturing of sweet spot layers and accurate measure of fracture-rich sections.The results show that the continental shale strata in Member 2 of Kongdian Formation can be divided into three types:felsic shale,limy dolomitic shale and mixed shale.The Member 2 of Kongdian Formation is characterized by diverse mineral components,abundant laminae,good source rocks and medium thermal evolution degree,tight reservoir with rich micropore and microfractures,high oil saturation and brittle mineral content,indicating good prospect of shale oil exploration.Through sedimentological study,TOC and Ro evaluation,brittle mineral calculation,and seismic fusion inversion,a total of 126 km^(2) of Class I sweet spots in Member 2 of Kongdian Formation was delineated comprehensively,which guides horizontal well deployment(Well GD1701H and Well GD1702H).The drilling rate of sweet spot of these two horizontal wells is up to 96%by tracing thin layer through fine calibration,locating compartment through fine inversion,ensuring window entry through precise positioning,and tracking sweet spot through adjustment.The “one-excellent and five-highs”criterion is used to select perforation points to realize differential designs of fracturing intervals and clusters.Micro-seismic and potentiometry monitoring show that the artificial fractures formed by volumetric fracturing are 300e400 m long and 120 m high,and control a volume of about 0.07 km^(3).The maximum daily oil production of two horizontal wells is 48 t and 66 t respectively to realize the economic exploitation of shale oil reserves controlled by fractures.The shale oil exploration in Member 2 of Kongdian Formation shows that the continental shale oil has great potential of exploration and development,and the above technologies are critical and effective for shale oil efficient recovery.