In this paper, we discuss the existence of solutions for a nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations. Our main result is based on a hybrid fixed point theorem for a sum...In this paper, we discuss the existence of solutions for a nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations. Our main result is based on a hybrid fixed point theorem for a sum of three operators due to Dhage, and is well illustrated with the aid of an example.展开更多
In this paper, we develop a fractional cyclic integral and a Routh equation for fractional Lagrange system defined in terms of fractional Caputo derivatives. The fractional Hamilton principle and the fractional Lagran...In this paper, we develop a fractional cyclic integral and a Routh equation for fractional Lagrange system defined in terms of fractional Caputo derivatives. The fractional Hamilton principle and the fractional Lagrange equations of the system are obtained under a combined Caputo derivative. Furthermore, the fractional cyclic integrals based on the Lagrange equations are studied and the associated Routh equations of the system are presented. Finally, two examples are given to show the applications of the results.展开更多
The goal of this research is to develop a new,simplified analytical method known as the ARA-residue power series method for obtaining exact-approximate solutions employing Caputo type fractional partial differential e...The goal of this research is to develop a new,simplified analytical method known as the ARA-residue power series method for obtaining exact-approximate solutions employing Caputo type fractional partial differential equations(PDEs)with variable coefficient.ARA-transform is a robust and highly flexible generalization that unifies several existing transforms.The key concept behind this method is to create approximate series outcomes by implementing the ARA-transform and Taylor’s expansion.The process of finding approximations for dynamical fractional-order PDEs is challenging,but the ARA-residual power series technique magnifies this challenge by articulating the solution in a series pattern and then determining the series coefficients by employing the residual component and the limit at infinity concepts.This approach is effective and useful for solving a massive class of fractional-order PDEs.Five appealing implementations are taken into consideration to demonstrate the effectiveness of the projected technique in creating solitary series findings for the governing equations with variable coefficients.Additionally,several visualizations are drawn for different fractional-order values.Besides that,the estimated findings by the proposed technique are in close agreement with the exact outcomes.Finally,statistical analyses further validate the efficacy,dependability and steady interconnectivity of the suggested ARA-residue power series approach.展开更多
Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new f...Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new fractional operators,namely the CaputoFabrizio operator,the Atangana-Baleanu operator,the Sun-Hao-Zhang-Baleanu operator and the generalized Caputo type operator under the frame of the k-Prabhakar fractional integral operator.Usually,the theory of the k-Prabhakar fractional integral is regarded as a much broader than classical fractional operator.Here,we firstly give a series expansion of the k-Prabhakar fractional integral by means of the k-Riemann-Liouville integral.Then,a connection between the k-Prabhakar fractional integral and the four new fractional operators of the above mentioned was shown,respectively.In terms of the above analysis,we can obtain this a basic fact that it only needs to consider the k-Prabhakar fractional integral to cover these results from the four new fractional operators.展开更多
We present here a high-order numerical formula for approximating the Caputo fractional derivative of order𝛼for 0<α<1.This new formula is on the basis of the third degree Lagrange interpolating polynomia...We present here a high-order numerical formula for approximating the Caputo fractional derivative of order𝛼for 0<α<1.This new formula is on the basis of the third degree Lagrange interpolating polynomial and may be used as a powerful tool in solving some kinds of fractional ordinary/partial diff erential equations.In comparison with the previous formulae,the main superiority of the new formula is its order of accuracy which is 4−α,while the order of accuracy of the previous ones is less than 3.It must be pointed out that the proposed formula and other existing formulae have almost the same computational cost.The eff ectiveness and the applicability of the proposed formula are investigated by testing three distinct numerical examples.Moreover,an application of the new formula in solving some fractional partial diff erential equations is presented by constructing a fi nite diff erence scheme.A PDE-based image denoising approach is proposed to demonstrate the performance of the proposed scheme.展开更多
In this paper,we develop a novel fi nite-diff erence scheme for the time-Caputo and space-Riesz fractional diff usion equation with convergence order O(τ^2−α+h^2).The stability and convergence of the scheme are anal...In this paper,we develop a novel fi nite-diff erence scheme for the time-Caputo and space-Riesz fractional diff usion equation with convergence order O(τ^2−α+h^2).The stability and convergence of the scheme are analyzed by mathematical induction.Moreover,some numerical results are provided to verify the eff ectiveness of the developed diff erence scheme.展开更多
In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order a...In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments.展开更多
Asymptotic stability of linear and interval linear fractional-order neutral delay differential systems described by the Caputo-Fabrizio (CF) fractional derivatives is investigated. Using Laplace transform, a novel cha...Asymptotic stability of linear and interval linear fractional-order neutral delay differential systems described by the Caputo-Fabrizio (CF) fractional derivatives is investigated. Using Laplace transform, a novel characteristic equation is derived. Stability criteria are established based on an algebraic approach and norm-based criteria are also presented. It is shown that asymptotic stability is ensured for linear fractional-order neutral delay differential systems provided that the underlying stability criterion holds for any delay parameter. In addition, sufficient conditions are derived to ensure the asymptotic stability of interval linear fractional order neutral delay differential systems. Examples are provided to illustrate the effectiveness and applicability of the theoretical results.展开更多
This paper studies the time-fractional Korteweg-de Vries (KdV) equations with Caputo-Fabrizio fractional derivatives. The scheme is presented by using a finite difference method in temporal variable and a local discon...This paper studies the time-fractional Korteweg-de Vries (KdV) equations with Caputo-Fabrizio fractional derivatives. The scheme is presented by using a finite difference method in temporal variable and a local discontinuous Galerkin method (LDG) in space. Stability and convergence are demonstrated by a specific choice of numerical fluxes. Finally, the efficiency and accuracy of the scheme are verified by numerical experiments.展开更多
This study focuses on the dynamics of drug concentration in the blood.In general,the concentration level of a drug in the blood is evaluated by themean of an ordinary and first-order differential equation.More precise...This study focuses on the dynamics of drug concentration in the blood.In general,the concentration level of a drug in the blood is evaluated by themean of an ordinary and first-order differential equation.More precisely,it is solved through an initial value problem.We proposed a newmodeling technique for studying drug concentration in blood dynamics.This technique is based on two fractional derivatives,namely,Caputo and Caputo-Fabrizio derivatives.We first provided comprehensive and detailed proof of the existence of at least one solution to the problem;we later proved the uniqueness of the existing solution.The proof was written using the Caputo-Fabrizio fractional derivative and some fixed-point techniques.Stability via theUlam-Hyers(UH)technique was also investigated.The application of the proposedmodel on two real data sets revealed that the Caputo derivative wasmore suitable in this study.Indeed,for the first data set,the model based on the Caputo derivative yielded a Mean Squared Error(MSE)of 0.03095 with a corresponding best value of fractional order of derivative of 1.00360.Caputo-Fabrizio-basedderivative appeared to be the second-best method for the problem,with an MSE of 0.04324 for a corresponding best fractional derivative order of 0.43532.For the second experiment,Caputo derivative-based model still performed the best as it yielded an MSE of 0.04066,whereas the classical and the Caputo-Fabrizio methods were tied with the same MSE of 0.07299.Another interesting finding was that the MSE yielded by the Caputo-Fabrizio fractional derivative coincided with the MSE obtained from the classical approach.展开更多
In this work,stability with respect to part of the variables of nonlinear impulsive Caputo fractional differential equations is investigated.Some effective sufficient conditions of stability,uniform stability,asymptot...In this work,stability with respect to part of the variables of nonlinear impulsive Caputo fractional differential equations is investigated.Some effective sufficient conditions of stability,uniform stability,asymptotic uniform stability and Mittag Leffler stability.The approach presented is based on the specially introduced piecewise continuous Lyapunov functions.Furthermore,some numerical examples are given to show the effectiveness of our obtained theoretical results.展开更多
In this paper,three kinds of discrete formulae for the Caputo fractional derivative are studied,including the modified L1 discretisation forα∈(O,1),and L2 discretisation and L2C discretisation forα∈(1,2).The trunc...In this paper,three kinds of discrete formulae for the Caputo fractional derivative are studied,including the modified L1 discretisation forα∈(O,1),and L2 discretisation and L2C discretisation forα∈(1,2).The truncation error estimates and the properties of the coeffcients of all these discretisations are analysed in more detail.Finally,the theoretical analyses areverifiedby thenumerical examples.展开更多
By transforming the Caputo tempered fractional advection-diffusion equation into the Riemann–Liouville tempered fractional advection-diffusion equation,and then using the fractional-compact Grünwald–Letnikov te...By transforming the Caputo tempered fractional advection-diffusion equation into the Riemann–Liouville tempered fractional advection-diffusion equation,and then using the fractional-compact Grünwald–Letnikov tempered difference operator to approximate the Riemann–Liouville tempered fractional partial derivative,the fractional central difference operator to discritize the space Riesz fractional partial derivative,and the classical central difference formula to discretize the advection term,a numerical algorithm is constructed for solving the Caputo tempered fractional advection-diffusion equation.The stability and the convergence analysis of the numerical method are given.Numerical experiments show that the numerical method is effective.展开更多
Recently,Zhang and Ding developed a novel finite difference scheme for the time-Caputo and space-Riesz fractional diffusion equation with the convergence order 0(ι^(2-a)+h^(2))in Zhang and Ding(Commun.Appl.Math.Compu...Recently,Zhang and Ding developed a novel finite difference scheme for the time-Caputo and space-Riesz fractional diffusion equation with the convergence order 0(ι^(2-a)+h^(2))in Zhang and Ding(Commun.Appl.Math.Comput.2(1):57-72,2020).Unfortunately,they only gave the stability and convergence results for a∈(0,1)andβ∈[7/8+^(3)√621+48√87+19/8^(3)√621+48√87,2]In this paper,using a new analysis method,we find that the original difference scheme is unconditionally stable and convergent with orderΟ(ι^(2-a)+h^(2))for all a∈(0,1)andβ∈(1,2].Finally,some numerical examples are given to verify the correctness of the results.展开更多
This paper is concerned with the boundary value problem of a nonlinear fractional differential equation. By means of Schauder fixed-point theorem, an existence result of solution is obtained.
We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorou...We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L^∞ norm and weighted L^2-norm. The numerical examples are given to illustrate the theoretical results.展开更多
In this paper, first we obtain some new fractional integral inequalities. Then using these inequalities and fixed point theorems, we prove the existence of solutions for two different classes of functional fractional ...In this paper, first we obtain some new fractional integral inequalities. Then using these inequalities and fixed point theorems, we prove the existence of solutions for two different classes of functional fractional differential equations.展开更多
The (integer order) Halanay inequality with distributed delays is extended to the fractional order case. It is proved that solutions decay to zero as a Mittag-Leffler function as time goes to infinity provided that th...The (integer order) Halanay inequality with distributed delays is extended to the fractional order case. It is proved that solutions decay to zero as a Mittag-Leffler function as time goes to infinity provided that the delay feedback are bounded by similar functions.An application to a problem arising in neural network theory is provided showing that the equilibrium is Mittag-Leffler stable.展开更多
Fractional differential equations have recently been applied in various areas of engineering, science, finance, applied mathematics, bio-engineering and others. However, many researchers remain unaware of this field. ...Fractional differential equations have recently been applied in various areas of engineering, science, finance, applied mathematics, bio-engineering and others. However, many researchers remain unaware of this field. In this paper, an efficient numerical method for solving the fractional Advection-dispersion equation (ADE) is considered. The fractional derivative is described in the Caputo sense. The method is based on Chebyshev approximations. The properties of Chebyshev polynomials are used to reduce ADE to a system of ordinary differential equations, which are solved using the finite difference method (FDM). Moreover, the convergence analysis and an upper bound of the error for the derived formula are given. Numerical solutions of ADE are presented and the results are compared with the exact solution.展开更多
The concept of fractional integral in the Riemann-Liouville, Liouville, Weyl and Riesz sense is presented. Some properties involving the particular Riemann-Liouville integral are mentioned. By means of this concept we...The concept of fractional integral in the Riemann-Liouville, Liouville, Weyl and Riesz sense is presented. Some properties involving the particular Riemann-Liouville integral are mentioned. By means of this concept we present the fractional derivatives, specifically, the Riemann-Liouville, Liouville, Caputo, Weyl and Riesz versions are discussed. The so-called fundamental theorem of fractional calculus is presented and discussed in all these different versions.展开更多
文摘In this paper, we discuss the existence of solutions for a nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations. Our main result is based on a hybrid fixed point theorem for a sum of three operators due to Dhage, and is well illustrated with the aid of an example.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.11272287 and 11472247)the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)(Grant No.IRT13097)
文摘In this paper, we develop a fractional cyclic integral and a Routh equation for fractional Lagrange system defined in terms of fractional Caputo derivatives. The fractional Hamilton principle and the fractional Lagrange equations of the system are obtained under a combined Caputo derivative. Furthermore, the fractional cyclic integrals based on the Lagrange equations are studied and the associated Routh equations of the system are presented. Finally, two examples are given to show the applications of the results.
文摘The goal of this research is to develop a new,simplified analytical method known as the ARA-residue power series method for obtaining exact-approximate solutions employing Caputo type fractional partial differential equations(PDEs)with variable coefficient.ARA-transform is a robust and highly flexible generalization that unifies several existing transforms.The key concept behind this method is to create approximate series outcomes by implementing the ARA-transform and Taylor’s expansion.The process of finding approximations for dynamical fractional-order PDEs is challenging,but the ARA-residual power series technique magnifies this challenge by articulating the solution in a series pattern and then determining the series coefficients by employing the residual component and the limit at infinity concepts.This approach is effective and useful for solving a massive class of fractional-order PDEs.Five appealing implementations are taken into consideration to demonstrate the effectiveness of the projected technique in creating solitary series findings for the governing equations with variable coefficients.Additionally,several visualizations are drawn for different fractional-order values.Besides that,the estimated findings by the proposed technique are in close agreement with the exact outcomes.Finally,statistical analyses further validate the efficacy,dependability and steady interconnectivity of the suggested ARA-residue power series approach.
基金supported by the NSFC(11971475)the Natural Science Foundation of Jiangsu Province(BK20230708)+2 种基金the Natural Science Foundation for the Universities in Jiangsu Province(23KJB110003)Geng's research was supported by the NSFC(11201041)the China Postdoctoral Science Foundation(2019M651765)。
文摘Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new fractional operators,namely the CaputoFabrizio operator,the Atangana-Baleanu operator,the Sun-Hao-Zhang-Baleanu operator and the generalized Caputo type operator under the frame of the k-Prabhakar fractional integral operator.Usually,the theory of the k-Prabhakar fractional integral is regarded as a much broader than classical fractional operator.Here,we firstly give a series expansion of the k-Prabhakar fractional integral by means of the k-Riemann-Liouville integral.Then,a connection between the k-Prabhakar fractional integral and the four new fractional operators of the above mentioned was shown,respectively.In terms of the above analysis,we can obtain this a basic fact that it only needs to consider the k-Prabhakar fractional integral to cover these results from the four new fractional operators.
文摘We present here a high-order numerical formula for approximating the Caputo fractional derivative of order𝛼for 0<α<1.This new formula is on the basis of the third degree Lagrange interpolating polynomial and may be used as a powerful tool in solving some kinds of fractional ordinary/partial diff erential equations.In comparison with the previous formulae,the main superiority of the new formula is its order of accuracy which is 4−α,while the order of accuracy of the previous ones is less than 3.It must be pointed out that the proposed formula and other existing formulae have almost the same computational cost.The eff ectiveness and the applicability of the proposed formula are investigated by testing three distinct numerical examples.Moreover,an application of the new formula in solving some fractional partial diff erential equations is presented by constructing a fi nite diff erence scheme.A PDE-based image denoising approach is proposed to demonstrate the performance of the proposed scheme.
基金the National Natural Science Foundation of China(no.11561060).
文摘In this paper,we develop a novel fi nite-diff erence scheme for the time-Caputo and space-Riesz fractional diff usion equation with convergence order O(τ^2−α+h^2).The stability and convergence of the scheme are analyzed by mathematical induction.Moreover,some numerical results are provided to verify the eff ectiveness of the developed diff erence scheme.
文摘In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments.
文摘Asymptotic stability of linear and interval linear fractional-order neutral delay differential systems described by the Caputo-Fabrizio (CF) fractional derivatives is investigated. Using Laplace transform, a novel characteristic equation is derived. Stability criteria are established based on an algebraic approach and norm-based criteria are also presented. It is shown that asymptotic stability is ensured for linear fractional-order neutral delay differential systems provided that the underlying stability criterion holds for any delay parameter. In addition, sufficient conditions are derived to ensure the asymptotic stability of interval linear fractional order neutral delay differential systems. Examples are provided to illustrate the effectiveness and applicability of the theoretical results.
文摘This paper studies the time-fractional Korteweg-de Vries (KdV) equations with Caputo-Fabrizio fractional derivatives. The scheme is presented by using a finite difference method in temporal variable and a local discontinuous Galerkin method (LDG) in space. Stability and convergence are demonstrated by a specific choice of numerical fluxes. Finally, the efficiency and accuracy of the scheme are verified by numerical experiments.
基金supported through the Annual Funding Track by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia[Project No.AN000273],granted after a successful application by M.A.
文摘This study focuses on the dynamics of drug concentration in the blood.In general,the concentration level of a drug in the blood is evaluated by themean of an ordinary and first-order differential equation.More precisely,it is solved through an initial value problem.We proposed a newmodeling technique for studying drug concentration in blood dynamics.This technique is based on two fractional derivatives,namely,Caputo and Caputo-Fabrizio derivatives.We first provided comprehensive and detailed proof of the existence of at least one solution to the problem;we later proved the uniqueness of the existing solution.The proof was written using the Caputo-Fabrizio fractional derivative and some fixed-point techniques.Stability via theUlam-Hyers(UH)technique was also investigated.The application of the proposedmodel on two real data sets revealed that the Caputo derivative wasmore suitable in this study.Indeed,for the first data set,the model based on the Caputo derivative yielded a Mean Squared Error(MSE)of 0.03095 with a corresponding best value of fractional order of derivative of 1.00360.Caputo-Fabrizio-basedderivative appeared to be the second-best method for the problem,with an MSE of 0.04324 for a corresponding best fractional derivative order of 0.43532.For the second experiment,Caputo derivative-based model still performed the best as it yielded an MSE of 0.04066,whereas the classical and the Caputo-Fabrizio methods were tied with the same MSE of 0.07299.Another interesting finding was that the MSE yielded by the Caputo-Fabrizio fractional derivative coincided with the MSE obtained from the classical approach.
文摘In this work,stability with respect to part of the variables of nonlinear impulsive Caputo fractional differential equations is investigated.Some effective sufficient conditions of stability,uniform stability,asymptotic uniform stability and Mittag Leffler stability.The approach presented is based on the specially introduced piecewise continuous Lyapunov functions.Furthermore,some numerical examples are given to show the effectiveness of our obtained theoretical results.
文摘In this paper,three kinds of discrete formulae for the Caputo fractional derivative are studied,including the modified L1 discretisation forα∈(O,1),and L2 discretisation and L2C discretisation forα∈(1,2).The truncation error estimates and the properties of the coeffcients of all these discretisations are analysed in more detail.Finally,the theoretical analyses areverifiedby thenumerical examples.
文摘By transforming the Caputo tempered fractional advection-diffusion equation into the Riemann–Liouville tempered fractional advection-diffusion equation,and then using the fractional-compact Grünwald–Letnikov tempered difference operator to approximate the Riemann–Liouville tempered fractional partial derivative,the fractional central difference operator to discritize the space Riesz fractional partial derivative,and the classical central difference formula to discretize the advection term,a numerical algorithm is constructed for solving the Caputo tempered fractional advection-diffusion equation.The stability and the convergence analysis of the numerical method are given.Numerical experiments show that the numerical method is effective.
基金supported by the National Natural Science Foundation of China(Nos.11901057 and 11561060).
文摘Recently,Zhang and Ding developed a novel finite difference scheme for the time-Caputo and space-Riesz fractional diffusion equation with the convergence order 0(ι^(2-a)+h^(2))in Zhang and Ding(Commun.Appl.Math.Comput.2(1):57-72,2020).Unfortunately,they only gave the stability and convergence results for a∈(0,1)andβ∈[7/8+^(3)√621+48√87+19/8^(3)√621+48√87,2]In this paper,using a new analysis method,we find that the original difference scheme is unconditionally stable and convergent with orderΟ(ι^(2-a)+h^(2))for all a∈(0,1)andβ∈(1,2].Finally,some numerical examples are given to verify the correctness of the results.
文摘This paper is concerned with the boundary value problem of a nonlinear fractional differential equation. By means of Schauder fixed-point theorem, an existence result of solution is obtained.
基金supported by NSFC Project(11301446,11271145)China Postdoctoral Science Foundation Grant(2013M531789)+3 种基金Specialized Research Fund for the Doctoral Program of Higher Education(2011440711009)Program for Changjiang Scholars and Innovative Research Team in University(IRT1179)Project of Scientific Research Fund of Hunan Provincial Science and Technology Department(2013RS4057)the Research Foundation of Hunan Provincial Education Department(13B116)
文摘We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L^∞ norm and weighted L^2-norm. The numerical examples are given to illustrate the theoretical results.
文摘In this paper, first we obtain some new fractional integral inequalities. Then using these inequalities and fixed point theorems, we prove the existence of solutions for two different classes of functional fractional differential equations.
基金Supported by King Abdulaziz City of King Abdulaziz City of Science and Technology (KACST) under the National Science,Technology and Innovation Plan(NSTIP),Project No.15-OIL4884-0124
文摘The (integer order) Halanay inequality with distributed delays is extended to the fractional order case. It is proved that solutions decay to zero as a Mittag-Leffler function as time goes to infinity provided that the delay feedback are bounded by similar functions.An application to a problem arising in neural network theory is provided showing that the equilibrium is Mittag-Leffler stable.
文摘Fractional differential equations have recently been applied in various areas of engineering, science, finance, applied mathematics, bio-engineering and others. However, many researchers remain unaware of this field. In this paper, an efficient numerical method for solving the fractional Advection-dispersion equation (ADE) is considered. The fractional derivative is described in the Caputo sense. The method is based on Chebyshev approximations. The properties of Chebyshev polynomials are used to reduce ADE to a system of ordinary differential equations, which are solved using the finite difference method (FDM). Moreover, the convergence analysis and an upper bound of the error for the derived formula are given. Numerical solutions of ADE are presented and the results are compared with the exact solution.
文摘The concept of fractional integral in the Riemann-Liouville, Liouville, Weyl and Riesz sense is presented. Some properties involving the particular Riemann-Liouville integral are mentioned. By means of this concept we present the fractional derivatives, specifically, the Riemann-Liouville, Liouville, Caputo, Weyl and Riesz versions are discussed. The so-called fundamental theorem of fractional calculus is presented and discussed in all these different versions.