期刊文献+
共找到408篇文章
< 1 2 21 >
每页显示 20 50 100
A NONLOCAL HYBRID BOUNDARY VALUE PROBLEM OF CAPUTO FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS 被引量:3
1
作者 Bashir AHMAD Sotiris K.NTOUYAS Jessada TARIBOON 《Acta Mathematica Scientia》 SCIE CSCD 2016年第6期1631-1640,共10页
In this paper, we discuss the existence of solutions for a nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations. Our main result is based on a hybrid fixed point theorem for a sum... In this paper, we discuss the existence of solutions for a nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations. Our main result is based on a hybrid fixed point theorem for a sum of three operators due to Dhage, and is well illustrated with the aid of an example. 展开更多
关键词 caputo fractional derivative INTEGRAL HYBRID fixed point theorem
下载PDF
Fractional cyclic integrals and Routh equations of fractional Lagrange system with combined Caputo derivatives 被引量:3
2
作者 王琳莉 傅景礼 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第12期277-280,共4页
In this paper, we develop a fractional cyclic integral and a Routh equation for fractional Lagrange system defined in terms of fractional Caputo derivatives. The fractional Hamilton principle and the fractional Lagran... In this paper, we develop a fractional cyclic integral and a Routh equation for fractional Lagrange system defined in terms of fractional Caputo derivatives. The fractional Hamilton principle and the fractional Lagrange equations of the system are obtained under a combined Caputo derivative. Furthermore, the fractional cyclic integrals based on the Lagrange equations are studied and the associated Routh equations of the system are presented. Finally, two examples are given to show the applications of the results. 展开更多
关键词 fractional cyclic integral fractional Routh equation combined caputo fractional derivative
下载PDF
A New Scheme of the ARA Transform for Solving Fractional-Order Waves-Like Equations Involving Variable Coefficients
3
作者 Yu-Ming Chu Sobia Sultana +2 位作者 Shazia Karim Saima Rashid Mohammed Shaaf Alharthi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期761-791,共31页
The goal of this research is to develop a new,simplified analytical method known as the ARA-residue power series method for obtaining exact-approximate solutions employing Caputo type fractional partial differential e... The goal of this research is to develop a new,simplified analytical method known as the ARA-residue power series method for obtaining exact-approximate solutions employing Caputo type fractional partial differential equations(PDEs)with variable coefficient.ARA-transform is a robust and highly flexible generalization that unifies several existing transforms.The key concept behind this method is to create approximate series outcomes by implementing the ARA-transform and Taylor’s expansion.The process of finding approximations for dynamical fractional-order PDEs is challenging,but the ARA-residual power series technique magnifies this challenge by articulating the solution in a series pattern and then determining the series coefficients by employing the residual component and the limit at infinity concepts.This approach is effective and useful for solving a massive class of fractional-order PDEs.Five appealing implementations are taken into consideration to demonstrate the effectiveness of the projected technique in creating solitary series findings for the governing equations with variable coefficients.Additionally,several visualizations are drawn for different fractional-order values.Besides that,the estimated findings by the proposed technique are in close agreement with the exact outcomes.Finally,statistical analyses further validate the efficacy,dependability and steady interconnectivity of the suggested ARA-residue power series approach. 展开更多
关键词 ARA-transform caputo fractional derivative residue-power seriesmethod analytical solutions statistical analysis
下载PDF
AN EXPLANATION ON FOUR NEW DEFINITIONS OF FRACTIONAL OPERATORS
4
作者 Jiangen LIU Fazhan GENG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1271-1279,共9页
Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new f... Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new fractional operators,namely the CaputoFabrizio operator,the Atangana-Baleanu operator,the Sun-Hao-Zhang-Baleanu operator and the generalized Caputo type operator under the frame of the k-Prabhakar fractional integral operator.Usually,the theory of the k-Prabhakar fractional integral is regarded as a much broader than classical fractional operator.Here,we firstly give a series expansion of the k-Prabhakar fractional integral by means of the k-Riemann-Liouville integral.Then,a connection between the k-Prabhakar fractional integral and the four new fractional operators of the above mentioned was shown,respectively.In terms of the above analysis,we can obtain this a basic fact that it only needs to consider the k-Prabhakar fractional integral to cover these results from the four new fractional operators. 展开更多
关键词 k-Prabhakar fractional operator caputo-Fabrizio operator Atangana-Baleanu operator Sun-Hao-Zhang-Baleanu operator generalized caputo type operator
下载PDF
A High Order Formula to Approximate the Caputo Fractional Derivative 被引量:1
5
作者 R.Mokhtari F.Mostajeran 《Communications on Applied Mathematics and Computation》 2020年第1期1-29,共29页
We present here a high-order numerical formula for approximating the Caputo fractional derivative of order𝛼for 0<α<1.This new formula is on the basis of the third degree Lagrange interpolating polynomia... We present here a high-order numerical formula for approximating the Caputo fractional derivative of order𝛼for 0<α<1.This new formula is on the basis of the third degree Lagrange interpolating polynomial and may be used as a powerful tool in solving some kinds of fractional ordinary/partial diff erential equations.In comparison with the previous formulae,the main superiority of the new formula is its order of accuracy which is 4−α,while the order of accuracy of the previous ones is less than 3.It must be pointed out that the proposed formula and other existing formulae have almost the same computational cost.The eff ectiveness and the applicability of the proposed formula are investigated by testing three distinct numerical examples.Moreover,an application of the new formula in solving some fractional partial diff erential equations is presented by constructing a fi nite diff erence scheme.A PDE-based image denoising approach is proposed to demonstrate the performance of the proposed scheme. 展开更多
关键词 caputo fractional derivative fractional partial differential equation Finite difference scheme
下载PDF
Numerical Algorithm for the Time-Caputo and Space-Riesz Fractional Diffusion Equation 被引量:1
6
作者 Yuxin Zhang Hengfei Ding 《Communications on Applied Mathematics and Computation》 2020年第1期57-72,共16页
In this paper,we develop a novel fi nite-diff erence scheme for the time-Caputo and space-Riesz fractional diff usion equation with convergence order O(τ^2−α+h^2).The stability and convergence of the scheme are anal... In this paper,we develop a novel fi nite-diff erence scheme for the time-Caputo and space-Riesz fractional diff usion equation with convergence order O(τ^2−α+h^2).The stability and convergence of the scheme are analyzed by mathematical induction.Moreover,some numerical results are provided to verify the eff ectiveness of the developed diff erence scheme. 展开更多
关键词 caputo derivative Riesz derivative fractional diffusion equation
下载PDF
A Hybrid ESA-CCD Method for Variable-Order Time-Fractional Diffusion Equations
7
作者 Xiaoxue Lu Chunhua Zhang +1 位作者 Huiling Xue Bowen Zhong 《Journal of Applied Mathematics and Physics》 2024年第9期3053-3065,共13页
In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order a... In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments. 展开更多
关键词 Variable-Order caputo fractional Derivative Combined Compact Difference Method Exponential-Sum-Approximation
下载PDF
Asymptotic Analysis of Linear and Interval Linear Fractional-Order Neutral Delay Differential Systems Described by the Caputo-Fabrizio Derivative 被引量:1
8
作者 Ann Al Sawoor Miloud Sadkane 《Applied Mathematics》 2020年第12期1229-1242,共14页
Asymptotic stability of linear and interval linear fractional-order neutral delay differential systems described by the Caputo-Fabrizio (CF) fractional derivatives is investigated. Using Laplace transform, a novel cha... Asymptotic stability of linear and interval linear fractional-order neutral delay differential systems described by the Caputo-Fabrizio (CF) fractional derivatives is investigated. Using Laplace transform, a novel characteristic equation is derived. Stability criteria are established based on an algebraic approach and norm-based criteria are also presented. It is shown that asymptotic stability is ensured for linear fractional-order neutral delay differential systems provided that the underlying stability criterion holds for any delay parameter. In addition, sufficient conditions are derived to ensure the asymptotic stability of interval linear fractional order neutral delay differential systems. Examples are provided to illustrate the effectiveness and applicability of the theoretical results. 展开更多
关键词 fractional Calculus caputo-Fabrizio fractional Derivative Neutral Delay Differential Systems Asymptotic Stability
下载PDF
Local Discontinuous Galerkin Method for the Time-Fractional KdV Equation with the Caputo-Fabrizio Fractional Derivative 被引量:1
9
作者 Huanhuan Wang Xiaoyan Xu +2 位作者 Junmei Dou Ting Zhang Leilei Wei 《Journal of Applied Mathematics and Physics》 2022年第6期1918-1935,共18页
This paper studies the time-fractional Korteweg-de Vries (KdV) equations with Caputo-Fabrizio fractional derivatives. The scheme is presented by using a finite difference method in temporal variable and a local discon... This paper studies the time-fractional Korteweg-de Vries (KdV) equations with Caputo-Fabrizio fractional derivatives. The scheme is presented by using a finite difference method in temporal variable and a local discontinuous Galerkin method (LDG) in space. Stability and convergence are demonstrated by a specific choice of numerical fluxes. Finally, the efficiency and accuracy of the scheme are verified by numerical experiments. 展开更多
关键词 caputo-Fabrizio fractional Derivative Local Discontinuous Galerkin Method STABILITY Error Analysis
下载PDF
Modeling Drug Concentration in Blood through Caputo-Fabrizio and Caputo Fractional Derivatives
10
作者 Muath Awadalla Kinda Abuasbeh +1 位作者 Yves Yannick Yameni Noupoue Mohammed S.Abdo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2767-2785,共19页
This study focuses on the dynamics of drug concentration in the blood.In general,the concentration level of a drug in the blood is evaluated by themean of an ordinary and first-order differential equation.More precise... This study focuses on the dynamics of drug concentration in the blood.In general,the concentration level of a drug in the blood is evaluated by themean of an ordinary and first-order differential equation.More precisely,it is solved through an initial value problem.We proposed a newmodeling technique for studying drug concentration in blood dynamics.This technique is based on two fractional derivatives,namely,Caputo and Caputo-Fabrizio derivatives.We first provided comprehensive and detailed proof of the existence of at least one solution to the problem;we later proved the uniqueness of the existing solution.The proof was written using the Caputo-Fabrizio fractional derivative and some fixed-point techniques.Stability via theUlam-Hyers(UH)technique was also investigated.The application of the proposedmodel on two real data sets revealed that the Caputo derivative wasmore suitable in this study.Indeed,for the first data set,the model based on the Caputo derivative yielded a Mean Squared Error(MSE)of 0.03095 with a corresponding best value of fractional order of derivative of 1.00360.Caputo-Fabrizio-basedderivative appeared to be the second-best method for the problem,with an MSE of 0.04324 for a corresponding best fractional derivative order of 0.43532.For the second experiment,Caputo derivative-based model still performed the best as it yielded an MSE of 0.04066,whereas the classical and the Caputo-Fabrizio methods were tied with the same MSE of 0.07299.Another interesting finding was that the MSE yielded by the Caputo-Fabrizio fractional derivative coincided with the MSE obtained from the classical approach. 展开更多
关键词 PHARMACOKINETICS caputo fractional derivative stability study caputo-Fabrizio fractional derivative
下载PDF
On the partial stability of nonlinear impulsive Caputo fractional systems
11
作者 Boulbaba Ghanmi Saifeddine Ghnimi 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2023年第2期166-179,共14页
In this work,stability with respect to part of the variables of nonlinear impulsive Caputo fractional differential equations is investigated.Some effective sufficient conditions of stability,uniform stability,asymptot... In this work,stability with respect to part of the variables of nonlinear impulsive Caputo fractional differential equations is investigated.Some effective sufficient conditions of stability,uniform stability,asymptotic uniform stability and Mittag Leffler stability.The approach presented is based on the specially introduced piecewise continuous Lyapunov functions.Furthermore,some numerical examples are given to show the effectiveness of our obtained theoretical results. 展开更多
关键词 impulsive fractional differential equations Mittag-Leffler function partial stability caputo derivative
下载PDF
Three Kinds of Discrete Formulae for the Caputo Fractional Derivative
12
作者 Zhengnan Dong Enyu Fan +1 位作者 Ao Shen Yuhao Su 《Communications on Applied Mathematics and Computation》 EI 2023年第4期1446-1468,共23页
In this paper,three kinds of discrete formulae for the Caputo fractional derivative are studied,including the modified L1 discretisation forα∈(O,1),and L2 discretisation and L2C discretisation forα∈(1,2).The trunc... In this paper,three kinds of discrete formulae for the Caputo fractional derivative are studied,including the modified L1 discretisation forα∈(O,1),and L2 discretisation and L2C discretisation forα∈(1,2).The truncation error estimates and the properties of the coeffcients of all these discretisations are analysed in more detail.Finally,the theoretical analyses areverifiedby thenumerical examples. 展开更多
关键词 caputo fractional derivative Modified L1 discretisation L2 discretisation L2C discretisation Truncation error
下载PDF
A Numerical Algorithm for the Caputo Tempered Fractional Advection-Diffusion Equation
13
作者 Wenhui Guan Xuenian Cao 《Communications on Applied Mathematics and Computation》 2021年第1期41-59,共19页
By transforming the Caputo tempered fractional advection-diffusion equation into the Riemann–Liouville tempered fractional advection-diffusion equation,and then using the fractional-compact Grünwald–Letnikov te... By transforming the Caputo tempered fractional advection-diffusion equation into the Riemann–Liouville tempered fractional advection-diffusion equation,and then using the fractional-compact Grünwald–Letnikov tempered difference operator to approximate the Riemann–Liouville tempered fractional partial derivative,the fractional central difference operator to discritize the space Riesz fractional partial derivative,and the classical central difference formula to discretize the advection term,a numerical algorithm is constructed for solving the Caputo tempered fractional advection-diffusion equation.The stability and the convergence analysis of the numerical method are given.Numerical experiments show that the numerical method is effective. 展开更多
关键词 caputo tempered fractional advection-diffusion equation fractional-compact Grünwald–Letnikov tempered fractional central difference operator Stability Convergence
下载PDF
A Note on Numerical Algorithm for the Time-Caputo and Space-Riesz Fractional Diffusion Equation
14
作者 Junhong Tian Hengfei Ding 《Communications on Applied Mathematics and Computation》 2021年第4期571-584,共14页
Recently,Zhang and Ding developed a novel finite difference scheme for the time-Caputo and space-Riesz fractional diffusion equation with the convergence order 0(ι^(2-a)+h^(2))in Zhang and Ding(Commun.Appl.Math.Compu... Recently,Zhang and Ding developed a novel finite difference scheme for the time-Caputo and space-Riesz fractional diffusion equation with the convergence order 0(ι^(2-a)+h^(2))in Zhang and Ding(Commun.Appl.Math.Comput.2(1):57-72,2020).Unfortunately,they only gave the stability and convergence results for a∈(0,1)andβ∈[7/8+^(3)√621+48√87+19/8^(3)√621+48√87,2]In this paper,using a new analysis method,we find that the original difference scheme is unconditionally stable and convergent with orderΟ(ι^(2-a)+h^(2))for all a∈(0,1)andβ∈(1,2].Finally,some numerical examples are given to verify the correctness of the results. 展开更多
关键词 caputo derivative Riesz derivative Time-caputo and space-Riesz fractional diffusion equation
下载PDF
EXISTENCE OF SOLUTION FOR BOUNDARY VALUE PROBLEM OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION 被引量:10
15
作者 Su Xinwei Liu Landong 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2007年第3期291-298,共8页
This paper is concerned with the boundary value problem of a nonlinear fractional differential equation. By means of Schauder fixed-point theorem, an existence result of solution is obtained.
关键词 fractional differential equation boundary value problem caputo's fractional derivative Schauder fixed-point theorem.
下载PDF
CONVERGENCE ANALYSIS OF THE JACOBI SPECTRAL-COLLOCATION METHOD FOR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS 被引量:9
16
作者 杨银 陈艳萍 黄云清 《Acta Mathematica Scientia》 SCIE CSCD 2014年第3期673-690,共18页
We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorou... We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L^∞ norm and weighted L^2-norm. The numerical examples are given to illustrate the theoretical results. 展开更多
关键词 Spectral Jacobi-collocation method fractional order integro-differential equations caputo derivative
下载PDF
FRACTIONAL INTEGRAL INEQUALITIES AND THEIR APPLICATIONS TO FRACTIONAL DIFFERENTIAL EQUATIONS 被引量:2
17
作者 Yaghoub JALILIAN 《Acta Mathematica Scientia》 SCIE CSCD 2016年第5期1317-1330,共14页
In this paper, first we obtain some new fractional integral inequalities. Then using these inequalities and fixed point theorems, we prove the existence of solutions for two different classes of functional fractional ... In this paper, first we obtain some new fractional integral inequalities. Then using these inequalities and fixed point theorems, we prove the existence of solutions for two different classes of functional fractional differential equations. 展开更多
关键词 fractional integral inequality existence of solution caputo fractional derivative fractional differential equation fixed point
下载PDF
FRACTIONAL HALANAY INEQUALITY AND APPLICATION IN NEURAL NETWORK THEORY 被引量:1
18
作者 Nasser-eddine TATAR 《Acta Mathematica Scientia》 SCIE CSCD 2019年第6期1605-1618,共14页
The (integer order) Halanay inequality with distributed delays is extended to the fractional order case. It is proved that solutions decay to zero as a Mittag-Leffler function as time goes to infinity provided that th... The (integer order) Halanay inequality with distributed delays is extended to the fractional order case. It is proved that solutions decay to zero as a Mittag-Leffler function as time goes to infinity provided that the delay feedback are bounded by similar functions.An application to a problem arising in neural network theory is provided showing that the equilibrium is Mittag-Leffler stable. 展开更多
关键词 HOPFIELD NEURAL network Mittag-Leffler STABILITY caputo fractional DERIVATIVE fractional Halanay INEQUALITY
下载PDF
Chebyshev Pseudo-Spectral Method for Solving Fractional Advection-Dispersion Equation 被引量:2
19
作者 N. H. Sweilam M. M. Khader M. Adel 《Applied Mathematics》 2014年第19期3240-3248,共9页
Fractional differential equations have recently been applied in various areas of engineering, science, finance, applied mathematics, bio-engineering and others. However, many researchers remain unaware of this field. ... Fractional differential equations have recently been applied in various areas of engineering, science, finance, applied mathematics, bio-engineering and others. However, many researchers remain unaware of this field. In this paper, an efficient numerical method for solving the fractional Advection-dispersion equation (ADE) is considered. The fractional derivative is described in the Caputo sense. The method is based on Chebyshev approximations. The properties of Chebyshev polynomials are used to reduce ADE to a system of ordinary differential equations, which are solved using the finite difference method (FDM). Moreover, the convergence analysis and an upper bound of the error for the derived formula are given. Numerical solutions of ADE are presented and the results are compared with the exact solution. 展开更多
关键词 fractional ADVECTION-DISPERSION Equation caputo fractional DERIVATIVE Finite DIFFERENCE METHOD CHEBYSHEV Pseudo-Spectral METHOD Convergence Analysis
下载PDF
Fractional Versions of the Fundamental Theorem of Calculus 被引量:2
20
作者 Eliana Contharteze Grigoletto Edmundo Capelas de Oliveira 《Applied Mathematics》 2013年第7期23-33,共11页
The concept of fractional integral in the Riemann-Liouville, Liouville, Weyl and Riesz sense is presented. Some properties involving the particular Riemann-Liouville integral are mentioned. By means of this concept we... The concept of fractional integral in the Riemann-Liouville, Liouville, Weyl and Riesz sense is presented. Some properties involving the particular Riemann-Liouville integral are mentioned. By means of this concept we present the fractional derivatives, specifically, the Riemann-Liouville, Liouville, Caputo, Weyl and Riesz versions are discussed. The so-called fundamental theorem of fractional calculus is presented and discussed in all these different versions. 展开更多
关键词 fractional INTEGRAL fractional DERIVATIVE Riemann-Liouville DERIVATIVE LIOUVILLE DERIVATIVE caputo DERIVATIVE WEYL DERIVATIVE and RIESZ DERIVATIVE
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部