The traditional foundry industry has developed rapidly in recently years due to advancements in computer technology. Modifying and designing the feeding system has become more convenient with the help of the casting s...The traditional foundry industry has developed rapidly in recently years due to advancements in computer technology. Modifying and designing the feeding system has become more convenient with the help of the casting software, Inte CAST. A common method of designing a feeding system is to first design the initial systems, run simulations with casting software, analyze the feedback, and then redesign. In this work, genetic, fruit fly, and interior point optimizer(IPOPT) algorithms were introduced to guide the optimal riser design for the feeding system. The results calculated by the three optimal algorithms indicate that the riser volume has a weak relationship with the modulus constraint; while it has a close relationship with the volume constraint. Based on the convergence rate, the fruit fly algorithm was obviously faster than the genetic algorithm. The optimized riser was also applied during casting, and was simulated using Inte CAST. The numerical simulation results reveal that with the same riser volume, the riser optimized by the genetic and fruit fly algorithms has a similar improvement on casting shrinkage. The IPOPT algorithm has the advantage of causing the smallest shrinkage porosities, compared to those of the genetic and fruit fly algorithms, which were almost the same.展开更多
An integration system was developed to satisfy the need of information integration in the process of designing, investment casting and monitoring aero-engine's turbo blade. The general architecture is detailed pre...An integration system was developed to satisfy the need of information integration in the process of designing, investment casting and monitoring aero-engine's turbo blade. The general architecture is detailed presented in this paper. The system mainly comprises of product master model, design information management, anti-deformation design of mould cavity, intelligence mould design and blade testing. The developed system can manage mould design and blade test data flow, optimize mould design process and achieve the goal of integration design.展开更多
Full factorial design was used to evaluate the two-body abrasive resistance of 3wt%C–4wt%Mn–1.5wt%Ni spheroidal carbide cast irons with varying vanadium(5.0wt%–10.0wt%) and chromium(up to 9.0wt%) contents. The ...Full factorial design was used to evaluate the two-body abrasive resistance of 3wt%C–4wt%Mn–1.5wt%Ni spheroidal carbide cast irons with varying vanadium(5.0wt%–10.0wt%) and chromium(up to 9.0wt%) contents. The alloys were quenched at 920℃. The regression equation of wear rate as a function of V and Cr contents was proposed. This regression equation shows that the wear rate decreases with increasing V content because of the growth of spheroidal VC carbide amount. Cr influences the overall response in a complex manner both by reducing the wear rate owing to eutectic carbides(M7C3) and by increasing the wear rate though stabilizing austenite to deformation-induced martensite transformation. This transformation is recognized as an important factor in increasing the abrasive response of the alloys. By analyzing the regression equation, the optimal content ranges are found to be 7.5wt%–10.0wt% for V and 2.5wt%–4.5wt% for Cr, which corresponds to the alloys containing 9vol%–15vol% spheroidal VC carbides, 8vol%–16vol% M7C3, and a metastable austenite/martensite matrix. The wear resistance is 1.9–2.3 times that of the traditional 12wt% V–13wt% Mn spheroidal carbide cast iron.展开更多
Numerical simulation technology was applied for optimizing the casting design and conditions in large cast iron castings for marine engine. By the simulation of mold filling and solidification sequences the problems o...Numerical simulation technology was applied for optimizing the casting design and conditions in large cast iron castings for marine engine. By the simulation of mold filling and solidification sequences the problems of the previous casting conditions were analyzed and marked improvements for large cylinder liner parts were derived from these results. Especially the amount and positions of chills were optimized to increase the mechanical properties and to minimize the shrinkage and microporosity in the castings. Ultrasonic testing, penetration testing and mechanical property testing were carried out for the parts with the modified casting conditions. It showed that no defects in the castings were found and the productivity could be distinctly increased. The mechanical properties satisfied also the specification demanded.展开更多
Construction of integrated database including casting shapes with their casting design, technical knowledge, and thermophysical properties of the casting alloys were introduced in the present study. Recognition tech- ...Construction of integrated database including casting shapes with their casting design, technical knowledge, and thermophysical properties of the casting alloys were introduced in the present study. Recognition tech- nique for casting design by industrial computer tomography was used for the construction of shape database. Technical knowledge of the casting processes such as ferrous and non-ferrous alloys and their manufacturing process of the castings were accumulated and the search engine for the knowledge was developed. Database of thermophysical properties of the casting alloys were obtained via the experimental study, and the properties were used for the in-house computer simulation of casting process. The databases were linked with intelligent casting expert system developed in center for e-design, KITECH. It is expected that the databases can help non casting experts to devise the casting and its process. Various examples of the application by using the databases were shown in the present study.展开更多
Numerical simulations were used to optimize the casting design and conditions for large cast iron castings for marine engines, Simulations of the mold filling and solidification sequences were used to analyze the prob...Numerical simulations were used to optimize the casting design and conditions for large cast iron castings for marine engines, Simulations of the mold filling and solidification sequences were used to analyze the problems of previous casting conditions with marked improvements for large cylinder liner parts, The amount and positions of chills were optimized to improve the mechanical properties and to minimize the shrinkage and micro porosity in the castings. Ultra sonic testing, penetration testing, and mechanical property testing show no defects in the castings with the productivity significantly increased.展开更多
基金financially supported by the National Science and Technology Key Projects of Numerical Control(2012ZX04012-011)the State Key Laboratory of Materials Processing and Die&Mold Technology Research Project(2014,2015)
文摘The traditional foundry industry has developed rapidly in recently years due to advancements in computer technology. Modifying and designing the feeding system has become more convenient with the help of the casting software, Inte CAST. A common method of designing a feeding system is to first design the initial systems, run simulations with casting software, analyze the feedback, and then redesign. In this work, genetic, fruit fly, and interior point optimizer(IPOPT) algorithms were introduced to guide the optimal riser design for the feeding system. The results calculated by the three optimal algorithms indicate that the riser volume has a weak relationship with the modulus constraint; while it has a close relationship with the volume constraint. Based on the convergence rate, the fruit fly algorithm was obviously faster than the genetic algorithm. The optimized riser was also applied during casting, and was simulated using Inte CAST. The numerical simulation results reveal that with the same riser volume, the riser optimized by the genetic and fruit fly algorithms has a similar improvement on casting shrinkage. The IPOPT algorithm has the advantage of causing the smallest shrinkage porosities, compared to those of the genetic and fruit fly algorithms, which were almost the same.
基金National High-tech R&D Program (863 Program) (2006AA04Z144)Key Technologies R&D Program (2006BAF04B02).
文摘An integration system was developed to satisfy the need of information integration in the process of designing, investment casting and monitoring aero-engine's turbo blade. The general architecture is detailed presented in this paper. The system mainly comprises of product master model, design information management, anti-deformation design of mould cavity, intelligence mould design and blade testing. The developed system can manage mould design and blade test data flow, optimize mould design process and achieve the goal of integration design.
文摘Full factorial design was used to evaluate the two-body abrasive resistance of 3wt%C–4wt%Mn–1.5wt%Ni spheroidal carbide cast irons with varying vanadium(5.0wt%–10.0wt%) and chromium(up to 9.0wt%) contents. The alloys were quenched at 920℃. The regression equation of wear rate as a function of V and Cr contents was proposed. This regression equation shows that the wear rate decreases with increasing V content because of the growth of spheroidal VC carbide amount. Cr influences the overall response in a complex manner both by reducing the wear rate owing to eutectic carbides(M7C3) and by increasing the wear rate though stabilizing austenite to deformation-induced martensite transformation. This transformation is recognized as an important factor in increasing the abrasive response of the alloys. By analyzing the regression equation, the optimal content ranges are found to be 7.5wt%–10.0wt% for V and 2.5wt%–4.5wt% for Cr, which corresponds to the alloys containing 9vol%–15vol% spheroidal VC carbides, 8vol%–16vol% M7C3, and a metastable austenite/martensite matrix. The wear resistance is 1.9–2.3 times that of the traditional 12wt% V–13wt% Mn spheroidal carbide cast iron.
文摘Numerical simulation technology was applied for optimizing the casting design and conditions in large cast iron castings for marine engine. By the simulation of mold filling and solidification sequences the problems of the previous casting conditions were analyzed and marked improvements for large cylinder liner parts were derived from these results. Especially the amount and positions of chills were optimized to increase the mechanical properties and to minimize the shrinkage and microporosity in the castings. Ultrasonic testing, penetration testing and mechanical property testing were carried out for the parts with the modified casting conditions. It showed that no defects in the castings were found and the productivity could be distinctly increased. The mechanical properties satisfied also the specification demanded.
文摘Construction of integrated database including casting shapes with their casting design, technical knowledge, and thermophysical properties of the casting alloys were introduced in the present study. Recognition tech- nique for casting design by industrial computer tomography was used for the construction of shape database. Technical knowledge of the casting processes such as ferrous and non-ferrous alloys and their manufacturing process of the castings were accumulated and the search engine for the knowledge was developed. Database of thermophysical properties of the casting alloys were obtained via the experimental study, and the properties were used for the in-house computer simulation of casting process. The databases were linked with intelligent casting expert system developed in center for e-design, KITECH. It is expected that the databases can help non casting experts to devise the casting and its process. Various examples of the application by using the databases were shown in the present study.
文摘Numerical simulations were used to optimize the casting design and conditions for large cast iron castings for marine engines, Simulations of the mold filling and solidification sequences were used to analyze the problems of previous casting conditions with marked improvements for large cylinder liner parts, The amount and positions of chills were optimized to improve the mechanical properties and to minimize the shrinkage and micro porosity in the castings. Ultra sonic testing, penetration testing, and mechanical property testing show no defects in the castings with the productivity significantly increased.