期刊文献+
共找到143篇文章
< 1 2 8 >
每页显示 20 50 100
Exploring the potential of olivine-containing copper-nickel slag for carbon dioxide mineralization in cementitious materials
1
作者 Qianqian Wang Zequn Yao +1 位作者 Lijie Guo Xiaodong Shen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期562-573,共12页
Water-quenched copper-nickel metallurgical slag enriched with olivine minerals exhibits promising potential for the production of CO_(2)-mineralized cementitious materials.In this work,copper-nickel slag-based cementi... Water-quenched copper-nickel metallurgical slag enriched with olivine minerals exhibits promising potential for the production of CO_(2)-mineralized cementitious materials.In this work,copper-nickel slag-based cementitious material(CNCM)was synthesized by using different chemical activation methods to enhance its hydration reactivity and CO_(2) mineralization capacity.Different water curing ages and carbonation conditions were explored related to their carbonation and mechanical properties development.Meanwhile,thermogravimetry differential scanning calorimetry and X-ray diffraction methods were applied to evaluate the CO_(2) adsorption amount and carbonation products of CNCM.Microstructure development of carbonated CNCM blocks was examined by backscattered electron imaging(BSE)with energy-dispersive X-ray spectrometry.Results showed that among the studied samples,the CNCM sample that was subjected to water curing for 3 d exhibited the highest CO_(2) sequestration amount of 8.51wt%at 80℃and 72 h while presenting the compressive strength of 39.07 MPa.This result indicated that 1 t of this CNCM can sequester 85.1 kg of CO_(2) and exhibit high compressive strength.Although the addition of citric acid did not improve strength development,it was beneficial to increase the CO_(2) diffusion and adsorption amount under the same carbonation conditions from BSE results.This work provides guidance for synthesizing CO_(2)-mineralized cementitious materials using large amounts of metallurgical slags containing olivine minerals. 展开更多
关键词 copper-nickel slag FAYALITE CO_(2)sequestration cementitious material ADMIXTURES carbonation conditions
下载PDF
Effect of the Retarder on Initial Hydration and Mechanical Properties of the"one-step"Alkaliactivated Composite Cementitious Materials
2
作者 DING Rui HE Yue +3 位作者 LI Xingchen LI Han TIAN Hao WANG Hongen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1199-1213,共15页
This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly a... This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly ash(FA),and analyzed its mechanical properties,hydration mechanism,and retardation mechanism.The effects of retarders on the hydration products,mechanical properties,and hydration kinetics of ACCM were investigated using XRD,SEM,FTIR,EDS,and thermoactive microcalorimetry.The results showed that Na_(2)B_(4)O_(7)·10H_(2)O(B)delayed the exotherm during the alkali activation process and could effectively delay the setting time of ACCM,but the mechanical properties were slightly decreased.The setting time of ACCM increased with the increase in SG content,but the mechanical properties of ACCM decreased with the increase in SG content.C1_(2)H_(22)O_(11)(CHO)could effectively delay the hydration reaction of ACCM and weakly enhanced the compressive strength.H_(3)PO_(4)(HP)at a concentration of 0.05 mol/L had a certain effect on ACCM retardation,but HP at a concentration of 0.07 and 0.09 mol/L had an effect of promoting the setting and hardening time of ACCM. 展开更多
关键词 "one-step"alkali-activated composite cementitious materials solid activator hydration mechanism RETARDER retarding mechanism
下载PDF
Hydration Behavior and Cementitious Properties of Calcium Carbonate-aluminate Minerals Composite
3
作者 王冲 周帅 +2 位作者 ZOU Luyao LIU Jiawen ZHENG Yalin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期126-133,共8页
The purpose of this research is to investigate the hydration behavior and cementitious properties of the mixture of calcium carbonate and aluminate, and to explore whether it can be adopted as a new low-carbon cementi... The purpose of this research is to investigate the hydration behavior and cementitious properties of the mixture of calcium carbonate and aluminate, and to explore whether it can be adopted as a new low-carbon cementitious material. The composite system of calcium carbonate and aluminate minerals is studied by measuring the component of hydration products, the hydration heat, setting time and compressive strength.The results prove that the composite system has certain cementitious properties and is feasible to prepare new low-carbon cement. 展开更多
关键词 LIMESTONE hydrated calcium carboaluminate cementitious properties mechanical properties
下载PDF
Tensile Strain Capacity Prediction of Engineered Cementitious Composites (ECC) Using Soft Computing Techniques
4
作者 Rabar H.Faraj Hemn Unis Ahmed +2 位作者 Hardi Saadullah Fathullah Alan Saeed Abdulrahman Farid Abed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2925-2954,共30页
Plain concrete is strong in compression but brittle in tension,having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures,even when steel reinforcing is presen... Plain concrete is strong in compression but brittle in tension,having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures,even when steel reinforcing is present.In order to address these challenges,short polymer fibers are randomly dispersed in a cement-based matrix to forma highly ductile engineered cementitious composite(ECC).Thismaterial exhibits high ductility under tensile forces,with its tensile strain being several hundred times greater than conventional concrete.Since concrete is inherently weak in tension,the tensile strain capacity(TSC)has become one of the most extensively researched properties.As a result,developing a model to predict the TSC of the ECC and to optimize the mixture proportions becomes challenging.Meanwhile,the effort required for laboratory trial batches to determine the TSC is reduced.To achieve the research objectives,five distinct models,artificial neural network(ANN),nonlinear model(NLR),linear relationship model(LR),multi-logistic model(MLR),and M5P-tree model(M5P),are investigated and employed to predict the TSCof ECCmixtures containing fly ash.Data from115 mixtures are gathered and analyzed to develop a new model.The input variables include mixture proportions,fiber length and diameter,and the time required for curing the various mixtures.The model’s effectiveness is evaluated and verified based on statistical parameters such as R2,mean absolute error(MAE),scatter index(SI),root mean squared error(RMSE),and objective function(OBJ)value.Consequently,the ANN model outperforms the others in predicting the TSC of the ECC,with RMSE,MAE,OBJ,SI,and R2 values of 0.42%,0.3%,0.33%,0.135%,and 0.98,respectively. 展开更多
关键词 Engineered cementitious composites fly ash curing time tensile strain capacity MODELING
下载PDF
Microscopic Analysis of Cementitious Sand and Gravel Damming Materia
5
作者 Ran Wang Aimin Gong +4 位作者 Shanqing Shao Baoli Qu Jing Xu Fulai Wang Feipeng Liu 《Fluid Dynamics & Materials Processing》 EI 2024年第4期749-769,共21页
The mechanical properties of cementitious sand and gravel damming material have been experimentally determined by means of microscopic SEM(Scanning Electron Microscopy)image analysis.The results show that the combinat... The mechanical properties of cementitious sand and gravel damming material have been experimentally determined by means of microscopic SEM(Scanning Electron Microscopy)image analysis.The results show that the combination of fly ash and water can fill the voids in cemented sand and gravel test blocks because of the presence of hydrated calcium silicate and other substances;thereby,the compactness and mechanical properties of these materials can be greatly improved.For every 10 kg/m^(3) increase in the amount of cementitious material,the density increases by about 2%,and the water content decreases by 0.2%.The amount of cementitious material used in the sand and gravel in these tests was 80-110 kg/m^(3),the water-binder ratio was 1-1.50.Moreover,the splitting tensile strength was 1/10 of the compressive strength,and the maximum strength was 7.42 MPa at 90 d.The optimal mix ratio has been found to be 50 kg of cement,60 kg of fly ash and 120 kg of water(C50F60W120).The related dry density was 2.6 g/cm^(3),the water content was 6%,and the water-binder ratio was 1.09. 展开更多
关键词 cementitious sand gravel material scanning electron microscopy optimal mix ratio maximum strength
下载PDF
Preparation and Performance Study of Cementitious Capillary Crystalline Waterproof Materials
6
作者 Hui Li Yu Liu Gaoshang Zhang 《Journal of Architectural Research and Development》 2024年第3期42-52,共11页
Cementitious capillary crystalline waterproof materials(CCCW for short)offer durability and excellent waterproofing properties,making them a popular option for building waterproofing.Some scholars have studied the pro... Cementitious capillary crystalline waterproof materials(CCCW for short)offer durability and excellent waterproofing properties,making them a popular option for building waterproofing.Some scholars have studied the proportioning of such materials.However,these studies lack the relationship between the impermeability pressure of mortar and the components,and the mechanism of action is somewhat debatable.Therefore,we adopted a two-step method in our experiments.Firstly,we screened out the components that significantly impact impermeability from a variety of active components by orthogonal test.We then optimized the design of the active group ratio using the simplex lattice method.Lastly,we conducted a performance test of the optimal ratio and explored the waterproofing mechanism of homemade CCCW. 展开更多
关键词 cementitious penetration crystalline waterproof material IMPERMEABILITY Mechanism analysis Optimization design
下载PDF
Enhanced photocatalytic performance of cementitious material with TiO_2@Ag modified fly ash micro-aggregates 被引量:5
7
作者 杨露 高衣宁 +2 位作者 王发洲 刘鹏 胡曙光 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期357-364,共8页
A TiO2 photocatalyst is coated on the surface of a zeolite fly ash bead(ZFAB) to improve its dispersability and exposure degree in a cement system.The application of Ag particles in TiO2/ZFAB modified cementitious m... A TiO2 photocatalyst is coated on the surface of a zeolite fly ash bead(ZFAB) to improve its dispersability and exposure degree in a cement system.The application of Ag particles in TiO2/ZFAB modified cementitious materials is to further enhance the photocatalytic performance.Various Ag@TiO2/ZFAB modified cementitious specimens with different Ag dosages are prepared and the characteristics and photocatalytic performance of the prepared samples are investigated.It is observed that the multi-level pore structure of ZFAB can improve the exposure degree of TiO2 in a cement system and is also useful to enhance the photocatalytic efficiency.With an increment of the amounts of Ag particles in the TiO2/ZFAB modified cementitious samples,the photocatalytic activities increased first and then decreased.The optimal Ag@TiO2/ZFAB modified cementitious sample reveals the maximum reaction rate constant for degrading benzene(9.91×10^-3 min^-1),which is approximately 3 and 10 times higher than those of TiO2/ZFAB and TiO2 modified samples,respectively.This suggests that suitable Ag particles coupled with a ZFAB carrier could effectively enhance the photocatalytic effects and use of TiO2 in a cement system.Thus,ZFAB as a carrier could provide a potential method for a high efficiency engineering application of TiO2 in the construction field. 展开更多
关键词 Photocatalytic cementitious materials Zeolite fly ash bead Photocatalytic effect TITANIA Silver modification
下载PDF
Experimental and numerical study on flexural behaviors of steel reinforced engineered cementitious composite beams 被引量:8
8
作者 蔡景明 潘金龙 袁方 《Journal of Southeast University(English Edition)》 EI CAS 2014年第3期330-335,共6页
To investigate the flexural behaviors of steel reinforced engineered cementitious composite (ECC) beams, the behaviors of the steel reinforced ECC beam and the conventional steel reinforced concrete beam subjected t... To investigate the flexural behaviors of steel reinforced engineered cementitious composite (ECC) beams, the behaviors of the steel reinforced ECC beam and the conventional steel reinforced concrete beam subjected to flexural load are experimentally compared. The experimental results show that the flexural strength and ductility of the steel reinforced ECC beam are 24.8% and 187.67% times larger than those of the steel reinforced concrete beam, and the substitution of concrete with ECC can significantly delay the propagation of cracks. Additionally, a simplified constitutive model of the ECC material is used to simulate the flexural behaviors of beams by the finite element analysis (FEA). The results show a good agreement between the simulation and test results. The crack width of the steel reinforced ECC beam can be limited to 0.4 mm under the service load conditions. The application of ductile ECC can significantly increase the flexural performance in terms of flexural strength, deformation capacity and ductility of the beams. 展开更多
关键词 engineered cementitious composites (ECC) DUCTILITY flexural behavior finite element
下载PDF
Development of engineered cementitious composites with local ingredients 被引量:11
9
作者 钱吮智 张志刚 《Journal of Southeast University(English Edition)》 EI CAS 2012年第3期327-330,共4页
In order to reduce the cost of high performance polyvinyl alcohol(PVA) fiber reinforced cementitious material(called engineered cementitious composites,ECC),a ductile ECC material is developed using domestic PVA f... In order to reduce the cost of high performance polyvinyl alcohol(PVA) fiber reinforced cementitious material(called engineered cementitious composites,ECC),a ductile ECC material is developed using domestic PVA fibers along with other local ingredients,such as fly ash,cement and sand.In addition to the economic analysis of ECC,the four-point bending test and the optical microscope are employed to investigate the deflection capacity of ECC,its crack width and the occurrence of the self-healing phenomenon.The experimental results suggest that ECC made with domestic ingredients exhibits larger deformability and the average crack width is controlled around 60 μm.Furthermore,the self-healing behavior is observed in cracks of the specimens after cycles of wet and dry curing.The economic analysis shows that the cost of ECC can be greatly reduced via employing domestic PVA fibers.It is,therefore,feasible to produce low cost ECC material employing domestic PVA fibers,while simultaneously retaining high material ductility. 展开更多
关键词 engineered cementitious composites(ECC) high tensile ductility material cost feasibility study
下载PDF
Iron ore tailings used for the preparation of cementitious material by compound thermal activation 被引量:26
10
作者 Zhong-lai Yi Heng-hu Sun +1 位作者 Xiu-quan Wei Chao Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第3期355-358,共4页
In the background of little reuse and large stockpile for iron ore tailings, iron ore tailing from Chinese Tonghua were used as raw material to prepare cementitious materials. Cementitious properties of the iron ore t... In the background of little reuse and large stockpile for iron ore tailings, iron ore tailing from Chinese Tonghua were used as raw material to prepare cementitious materials. Cementitious properties of the iron ore tailings activated by compound thermal activation were studied. Testing methods, such as XRD, TG-DTA, and IR were used for researching the phase and structure variety of the iron ore railings in the process of compound thermal activation. The results reveal that a new cementitious material that contains 30wt% of the iron ore tailings can be obtained by compounded thermal activation, whose mortar strength can come up to the standard of 42.5 cement of China. 展开更多
关键词 iron ore tailings comprehensive utilization cementitious materials thermal activation
下载PDF
Mechanical properties of gangue-containing aluminosilicate based cementitious materials 被引量:14
11
作者 Huajian Li Henghu Sun +1 位作者 Xuejun Xiao Hongxia Chen 《Journal of University of Science and Technology Beijing》 CSCD 2006年第2期183-189,共7页
High performance aluminosilicate based cementitious materials were produced using calcined gangue as one of the major raw materials. The gangue was calcined at 500℃. The main constituent was calcined gangue, fly ash ... High performance aluminosilicate based cementitious materials were produced using calcined gangue as one of the major raw materials. The gangue was calcined at 500℃. The main constituent was calcined gangue, fly ash and slag, while alkali-silicate solutions were used as the diagenetic agent. The structure of gangue-containing aluminosilicate based cementitious materials was studied by the methods of IR, NMR and SEM. The results show that the mechanical properties are affected by the mass ratio between the gangue, slag and fly ash, the kind of activator and additional salt. For 28-day curing time, the compressive strength of the sample with a mass proportion of 2:1:1 (gangue: slag: fly ash) is 58.9 MPa, while the compressive strength of the sample containing 80wt% gangue can still be up to 52.3 MPa. The larger K^+ favors the formation of large silicate oligomers with which AI(OH)4- prefers to bind. Therefore, in Na-K compounding activator solutions more oligomers exist which result in a stronger compressive strength of aluminosilicate-based cementitious materials than in the case of Na-containing activator. The reasons for this were found through IR and NMR analysis. Glauber's salt reduces the 3-day compressive strength of the paste, but increases its 7-day and 28-day compressive strengths. 展开更多
关键词 GANGUE SLAG fly ash aluminosilicate based cementitious materials mechanical properties
下载PDF
Impact Properties of Engineered Cementitious Composites with High Volume Fly Ash Using SHPB Test 被引量:10
12
作者 陈智韬 杨英姿 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第3期590-596,共7页
The split Hopkinson pressure bar (SHPB) testing with diameter 40 mm was used to investigate the dynamic mechanical properties of engineered cementitious composites (ECCs) with different fly ash content. The basic ... The split Hopkinson pressure bar (SHPB) testing with diameter 40 mm was used to investigate the dynamic mechanical properties of engineered cementitious composites (ECCs) with different fly ash content. The basic properties including deformation, energy absorption capacity, strain-stress relationship and failure patterns were discussed. The ECCs showed strain-rate dependency and kept better plastic flow during impact process compared with reactive powder concrete (RPC) and concrete, but the critical compressive strength was lower than that of RPC and concrete. The bridging effect of PVA fiber and addition of fly ash can significantly improve the deformation and energy absorption capacities of ECCs. With the increase of fly ash content in ECCs, the static and dynamic compressive strength lowered and the dynamic increase factor enhanced. Therefore, to meet different engineering needs, the content of fly ash can be an important index to control the static and dynamic mechanical properties of ECCs. 展开更多
关键词 engineered cementitious composites high volume fly ash impact properties SHPB
下载PDF
Mechanics Behavior of Ultra High Toughness Cementitious Composites after Freezing and Thawing 被引量:9
13
作者 徐世烺 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第3期509-514,共6页
Mechanical behaviors of UHTCC after freezing and thawing were investigated,and compared with those of steel fiber reinforced concrete(SFRC),air-entrained concrete(AEC) and ordinary concrete(OC).Four point bendin... Mechanical behaviors of UHTCC after freezing and thawing were investigated,and compared with those of steel fiber reinforced concrete(SFRC),air-entrained concrete(AEC) and ordinary concrete(OC).Four point bending tests had been applied after different freezing-thawing cycles(0,50,100,150,200 and 300 cycles,respectively).The results showed that residual flexural strength of UHTCC after 300 freezing-thawing cycles was 10.62 MPa(70% of no freezing thawing ones),while 1.58 MPa(17% of no freezing thawing ones) for SFRC.Flexural toughness of UHTCC decreased by 17%,while 70% for SFRC comparatively.It has been demonstrated experimentally that UHTCC without any air-entraining agent could resist freezing-thawing and retain its high toughness characteristic in cold environment.Consequently,UHTCC could be put into practice for new-built or retrofit of infrastructures in cold regions. 展开更多
关键词 ultra high toughness cementitious composites cyclic freezing and thawing flexural strength multiple cracking flexural toughness
下载PDF
Flexural response of reinforced concrete beams strengthened with post-poured ultra high toughness cementitious composites layer 被引量:6
14
作者 王楠 徐世烺 《Journal of Central South University》 SCIE EI CAS 2011年第3期932-939,共8页
Four-point bending tests were conducted up to failure on eleven reinforced concrete (RC) beams and strengthening beams to study the effectiveness of externally pouring ultra high toughness cementitious composites (UHT... Four-point bending tests were conducted up to failure on eleven reinforced concrete (RC) beams and strengthening beams to study the effectiveness of externally pouring ultra high toughness cementitious composites (UHTCC) on improving the flexural behavior of existing RC beams.The strengthening materials included UHTCC and high strength grade concrete.The parameters,such as thickness and length of strengthening layer and reinforcement in post-poured layer,were analyzed.The flexural behavior,failure mode and crack propagation of composite beams were investigated.The test results show that the strengthening layer improves the cracking and ultimate load by increasing the cross section area.Introducing UHTCC material into strengthening not only improves the bearing capacity of the original specimens,but also disperses larger cracks in upper concrete into multiple tightly-spaced fine cracks,thus prolonging the appearance of harm surface cracks and increasing the durability of existing structures.Compared with post-poured concrete,UHTCC is more suitable for working together with reinforcement.The load?deflection plots obtained from three-dimensional finite-element model (FEM) analyses are compared with those obtained from the experimental results,and show close correlation. 展开更多
关键词 ultra high toughness cementitious composities strengthening beams flexural behavior post-poured layer
下载PDF
Damage evolution model of strain hardening cementitious composites under the uniaxial stress state 被引量:4
15
作者 Rui He Shuan-fa Chen +1 位作者 Pei-liang Cong Shao-hua Ji 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第2期196-204,共9页
The deformation and damage behaviors of strain hardening cementitious composites (SHCC) under the uniaxial stress state were investigated in this paper. Two ductile failure-based constitutive models were introduced ... The deformation and damage behaviors of strain hardening cementitious composites (SHCC) under the uniaxial stress state were investigated in this paper. Two ductile failure-based constitutive models were introduced to describe the uniaxial tension and compression properties of SHCC only using a few parameters. The computation method of model parameters was developed to ease the simulation procedures. Damage evolution of the SHCC was simulated by the formulation of continuum damage mechanics subsequently. The results show that the proposed models fit the stress-strain curves reasonably well, and the damage variables show different growth rules under uniaxial tension and compression. It is concluded that the proposed method can not only simply simulate the constitutive behavior of SHCC with the reasonable accuracy but also capture the characteristic of material degradation. 展开更多
关键词 cementitious composites strain hardening constitutive models ductile fracture continuum damage mechanics
下载PDF
Mechanical properties of polyvinyl alcohol-basalt hybrid fiber engineered cementitious composites with impact of elevated temperatures 被引量:4
16
作者 WANG Zhen-bo HAN Shuo +2 位作者 SUN Peng LIU Wei-kang WANG Qing 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第5期1459-1475,共17页
In the present study,the mechanical properties of polyvinyl alcohol(PVA)-basalt hybrid fiber reinforced engineered cementitious composites(ECC)after exposure to elevated temperatures were experimentally investigated.F... In the present study,the mechanical properties of polyvinyl alcohol(PVA)-basalt hybrid fiber reinforced engineered cementitious composites(ECC)after exposure to elevated temperatures were experimentally investigated.Five temperatures of 20,50,100,200 and 400℃ were set to evaluate the residual compressive,tensile and flexural behaviors of hybrid and mono fiber ECC.It was shown that partial replacement of PVA fibers with basalt fibers endowed ECC with improved residual compressive toughness,compared to brittle failure of mono fiber ECC heated to 400℃.The tension tests indicated that the presence of basalt fibers benefited the tensile strength up to 200℃,and delayed the sharp reduction of strength to 400℃.Under flexural load,the peak deflections corresponding to flexural strengths of hybrid fiber ECC were found to be less vulnerable ranging from 20 to 100℃.Further,the scanning electron microscopy(SEM)results uncovered that the rupture of basalt fiber at moderate temperature and its pullout mechanism at high temperature was responsible for the mechanical evolution of hybrid fiber ECC.This work develops a better understanding of elevated temperature and basalt fiber impact on the residual mechanical properties and further provides guideline for tailoring ECC for improved fire resistance. 展开更多
关键词 engineered cementitious composites hybrid fiber basalt fiber mechanical properties elevated temperature
下载PDF
Electromagnetic Shielding and Absorption Properties of Fiber Reinforced Cementitious Composites 被引量:5
17
作者 ZHANG Xiuzhi SUN Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第1期172-176,共5页
In order to investigate the electromagnetic shielding effectiveness (SE) and absorbing properties of fiber reinforced concrete, steel fiber, carbon fiber and synthetic polyvinyl alcohol (PVA) fiber reinforced conc... In order to investigate the electromagnetic shielding effectiveness (SE) and absorbing properties of fiber reinforced concrete, steel fiber, carbon fiber and synthetic polyvinyl alcohol (PVA) fiber reinforced concrete were researched. The results show that with the increase of fiber Volume fraction, the SE and trend of frequency change of corresponding fiber reinforced concrete are enhanced. When the volume content of steel fiber is 3%, the SE of concrete is above 50 dB and its frequency is above 1.8 GHz. Moreover, in the range of 8-18 GHz, steel fiber, carbon fiber and PVA fiber all can improve the microwave absorption properties of concrete. The concrete with 0.5% carbon fiber can achieve the best absorbing property, the minimum reflectivity is about -7 dB; while steel fiber optimal volume fraction is 2%. The reflectivity curve of PVA fiber reinforced concrete fluctuates with the frequency, and the minimum value of the reflectivity is below -10 dB. The results show that fiber reinforced concrete could be used as EMI(electromagnetic interference) prevention buildings by attenuating and reflecting electromagnetic wave energy. 展开更多
关键词 steel fiber carbon fiber fiber-reinforced cementitious composites shielding effectiveness(SE) absorption properties
下载PDF
Deformation behavior of high performance fiber reinforced cementitious composite prepared with asphalt emulsion 被引量:4
18
作者 何锐 陈拴发 +1 位作者 孙文娟 弓锐 《Journal of Central South University》 SCIE EI CAS 2014年第2期811-816,共6页
A novel engineered cementitious composite(ECC) was prepared with the complex binder of Portland cement and asphalt emulsion.By adjusting the amount of asphalt emulsion,different mixture proportions were adopted in exp... A novel engineered cementitious composite(ECC) was prepared with the complex binder of Portland cement and asphalt emulsion.By adjusting the amount of asphalt emulsion,different mixture proportions were adopted in experiments,including four-point bending test,compressive test,and scanning electric microscopy(SEM).The SEM observation was conducted to evaluate the contribution of polyvinyl alcohol(PVA) fiber and asphalt emulsion to the composite toughening mechanism.The tests results show that the most remarkable deflection-hardening behavior and saturated multiple cracking are achieved when the content of asphalt emulsion is 10%.However,excessive content of asphalt emulsion causes severe damages on the deformation behavior as well as loss in compressive strength of the mixture.SEM observation indicates that the influence of asphalt emulsion on the fiber/matrix interfacial property changes the dominant fiber failure type from rupture into pull-out mode,and thus causes beneficial effects for strain-hardening behavior. 展开更多
关键词 TOUGHNESS deformation behavior engineered cementitious composite asphalt emulsion
下载PDF
Uniaxial Compressive Properties of Ultra High Toughness Cementitious Composite 被引量:4
19
作者 蔡向荣 徐世烺 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第4期762-769,共8页
Uniaxial compression tests were conducted to characterize the main compressive performance of ultra high toughness cementitious composite (UHTCC) in terms of strength and toughness and to obtain its stress-strain re... Uniaxial compression tests were conducted to characterize the main compressive performance of ultra high toughness cementitious composite (UHTCC) in terms of strength and toughness and to obtain its stress-strain relationships. The compressive strength investigated ranges from 30 MPa to 60 MPa. Complete stress-strain curves were directly obtained, and the strength indexes, including uniaxial compressive strength, compressive strain at peak stress, elastic modulus and Poisson's ratio, were calculated. The comparisons between UHTCC and matrix were also carried out to understand the fiber effect on the compressive strength indexes. Three dimensionless toughness indexes were calculated, which either represent its relative improvement in energy absorption capacity because of fiber addition or provide an indication of its behavior relative to a rigid-plastic material. Moreover, two new toughness indexes, which were named as post-crack deformation energy and equivalent compressive strength, were proposed and calculated with the aim at linking up the compressive toughness of UHTCC with the existing design concept of concrete. The failure mode was also given. The study production provides material characteristics for the practical engineering application of UHTCC. 展开更多
关键词 ultra high toughness cementitious composite compressive strength compressive toughness fiber reinforcement
下载PDF
Flexural behavior of steel reinforced engineered cementitious composite beams 被引量:4
20
作者 Dong Bingqing Pan Jinlong Lu Cong 《Journal of Southeast University(English Edition)》 EI CAS 2019年第1期72-82,共11页
In order to enhance the durability of steel encased concrete beams, a new type of steel reinforced engineered cementitious composite(SRECC) beam composed of steel shapes, steel bars and ECC is proposed. The theoretica... In order to enhance the durability of steel encased concrete beams, a new type of steel reinforced engineered cementitious composite(SRECC) beam composed of steel shapes, steel bars and ECC is proposed. The theoretical analyses of the SRECC beam including crack propagation and stress-strain distributions along the depth of the composite beam in different loading stages are conducted. A theoretical model and simplified design method are proposed to calculate the load carrying capacity. Based on the proposed theoretical model, the relationship between the moment and corresponding curvature is derived. The theoretical results are verified with the finite element analysis. Finally, an extensive parametric study is performed to study the effect of the matrix type, steel shape ratio, reinforced bar ratio, ECC compressive strength and ECC tensile ductility on the mechanical behavior of SRECC beams. The results show that substitution concrete with ECC can effectively improve the bearing capacity and ductility of composite beams. The steel shape and longitudinal reinforcement can enhance the loading carrying capacity, while the ductility decreases with the increase of steel shape ratio. ECC compressive strength has significant effects on both load carrying capacity and ductility, and changing the ultimate strain of ECC results in a very limited variation in the mechanical behavior of SRECC beams. 展开更多
关键词 engineered cementitious composite(ECC) steel reinforced ECC(SRECC) composite beam flexural behavior ultimate load-carrying capacity
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部