This paper discusses a queueing system with a retrial orbit and batch service, in which the quantity of customers’ rooms in the queue is finite and the space of retrial orbit is infinite. When the server starts servi...This paper discusses a queueing system with a retrial orbit and batch service, in which the quantity of customers’ rooms in the queue is finite and the space of retrial orbit is infinite. When the server starts serving, it serves all customers in the queue in a single batch, which is the so-called batch service. If a new customer or a retrial customer finds all the customers’ rooms are occupied, he will decide whether or not to join the retrial orbit. By using the censoring technique and the matrix analysis method, we first obtain the decay function of the stationary distribution for the quantity of customers in the retrial orbit and the quantity of customers in the queue. Then based on the form of decay rate function and the Karamata Tauberian theorem, we finally get the exact tail asymptotics of the stationary distribution.展开更多
In this paper, we consider a BMAP/G/1 G-queue with setup times and multiple vacations. Arrivals of positive customers and negative customers follow a batch Markovian arrival process (BMAP) and Markovian arrival proc...In this paper, we consider a BMAP/G/1 G-queue with setup times and multiple vacations. Arrivals of positive customers and negative customers follow a batch Markovian arrival process (BMAP) and Markovian arrival process (MAP) respectively. The arrival of a negative customer removes all the customers in the system when the server is working. The server leaves for a vacation as soon as the system empties and is allowed to take repeated (multiple) vacations. By using the supplementary variables method and the censoring technique, we obtain the queue length distributions. We also obtain the mean of the busy period based on the renewal theory.展开更多
文摘This paper discusses a queueing system with a retrial orbit and batch service, in which the quantity of customers’ rooms in the queue is finite and the space of retrial orbit is infinite. When the server starts serving, it serves all customers in the queue in a single batch, which is the so-called batch service. If a new customer or a retrial customer finds all the customers’ rooms are occupied, he will decide whether or not to join the retrial orbit. By using the censoring technique and the matrix analysis method, we first obtain the decay function of the stationary distribution for the quantity of customers in the retrial orbit and the quantity of customers in the queue. Then based on the form of decay rate function and the Karamata Tauberian theorem, we finally get the exact tail asymptotics of the stationary distribution.
基金supported by the National Natural Science Foundation of China (No. 10871064)
文摘In this paper, we consider a BMAP/G/1 G-queue with setup times and multiple vacations. Arrivals of positive customers and negative customers follow a batch Markovian arrival process (BMAP) and Markovian arrival process (MAP) respectively. The arrival of a negative customer removes all the customers in the system when the server is working. The server leaves for a vacation as soon as the system empties and is allowed to take repeated (multiple) vacations. By using the supplementary variables method and the censoring technique, we obtain the queue length distributions. We also obtain the mean of the busy period based on the renewal theory.