The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous contr...The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous control(RACC)algorithm.It investigates the control and synchronization of chaos in the uncertain MHP system with time-delay in the presence of unknown state-dependent and time-dependent disturbances.The closed-loop system contains most of the nonlinear terms that enhance the complexity of the dynamical system;it improves the efficiency of the closed-loop.The proposed RACC approach(a)accomplishes faster convergence of the perturbed state variables(synchronization errors)to the desired steady-state,(b)eradicates the effect of unknown state-dependent and time-dependent disturbances,and(c)suppresses undesirable chattering in the feedback control inputs.This paper describes a detailed closed-loop stability analysis based on the Lyapunov-Krasovskii functional theory and Lyapunov stability technique.It provides parameter adaptation laws that confirm the convergence of the uncertain parameters to some constant values.The computer simulation results endorse the theoretical findings and provide a comparative performance.展开更多
Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines...Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction.展开更多
In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fracti...In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fractional calculus.Specially,the order is defined as an iterative function that incorporates the current state of the system.By analyzing phase diagrams,time sequences,bifurcations,Lyapunov exponents and fuzzy entropy complexity,the dynamics of the proposed map are investigated comparing with the constant-order fractional sine map.The results reveal that the variable order has a good effect on improving the chaotic performance,and it enlarges the range of available parameter values as well as reduces non-chaotic windows.Multiple coexisting attractors also enrich the dynamics of VFSM and prove its sensitivity to initial values.Moreover,the sequence generated by the proposed map passes the statistical test for pseudorandom number and shows strong robustness to parameter estimation,which proves the potential applications in the field of information security.展开更多
The dynamic analysis of financial systems is a developing field that combines mathematics and economics to understand and explain fluctuations in financial markets.This paper introduces a new three-dimensional(3D)frac...The dynamic analysis of financial systems is a developing field that combines mathematics and economics to understand and explain fluctuations in financial markets.This paper introduces a new three-dimensional(3D)fractional financial map and we dissect its nonlinear dynamics system under commensurate and incommensurate orders.As such,we evaluate when the equilibrium points are stable or unstable at various fractional orders.We use many numerical methods,phase plots in 2D and 3D projections,bifurcation diagrams and the maximum Lyapunov exponent.These techniques reveal that financial maps exhibit chaotic attractor behavior.This study is grounded on the Caputo-like discrete operator,which is specifically influenced by the variance of the commensurate and incommensurate orders.Furthermore,we confirm the presence and measure the complexity of chaos in financial maps by the 0-1 test and the approximate entropy algorithm.Additionally,we offer nonlinear-type controllers to stabilize the fractional financial map.The numerical results of this study are obtained using MATLAB.展开更多
Despite their strategic hydrological importance for neighbouring areas,the Polish Carpathians are experiencing spatial chaos,which may weaken their adaptability to the progressive climate change.The article attempts t...Despite their strategic hydrological importance for neighbouring areas,the Polish Carpathians are experiencing spatial chaos,which may weaken their adaptability to the progressive climate change.The article attempts to answer the question of whether spatial planning,which is supposed to guarantee spatial order,fulfils its role and whether the knowledge of the natural conditions of spatial development is respected in the spatial planning process.Using GIS techniques,up to 238 communes were analysed in terms of their spatial coverage,the degree of scattered settlement,and the violation of natural barriers by location of buildings in areas that are threatened with mass movements or floods;by settlement on excessively inclined slopes and in areas with adverse climatic conditions.Spearman non-parametric rank correlation analysis and the multidimensional Principal Component Analysis(PCA)technique were performed to investigate relations between spatial chaos indicators and the planning situation.The analysis of the data has revealed that spatial planning does not fulfil its role.Serious errors in location of buildings have been noted even though the communes are covered by local spatial development plans.Scientific knowledge is not sufficiently transferred into planning documents,and bottom-up initiatives cannot replace systemic solutions.There is a need for strengthening the role of environmental studies documents in the spatial planning system.This would facilitate the transfer of scientific knowledge into the planning process and help to protect mountain areas.The development of a special spatial strategy for the Polish Carpathians in compliance with the Carpathian Convention is also recommended.展开更多
To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cau...To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cauchy mutation.First,Sin chaos is introduced to improve the random population initialization scheme of the CHOA,which not only guarantees the diversity of the population,but also enhances the distribution uniformity of the initial population.Next,Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position(threshold)updating to avoid the CHOA falling into local optima.Finally,an improved CHOA was formed through the combination of chaos initialization and Cauchy mutation(CICMCHOA),then taking fuzzy Kapur as the objective function,this paper applied CICMCHOA to natural and medical image segmentation,and compared it with four algorithms,including the improved Satin Bowerbird optimizer(ISBO),Cuckoo Search(ICS),etc.The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA delivers superior segmentation effects in image segmentation.展开更多
To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on ...To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability.展开更多
In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is a...In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is applied to accurately solve the electric field integral equation(EFIE)of electromagnetic scattering from homogeneous dielectric targets.Within the bistatic radar cross section(RCS)as the research object,the adaptive PCE algorithm is devoted to selecting the appropriate order to construct the multivariate surrogate model.The corresponding sensitivity results are given by the further derivative operation,which is compared with those of the finite difference method(FDM).Several examples are provided to demonstrate the effectiveness of the proposed algorithm for sensitivity analysis of electromagnetic scattering from homogeneous dielectric targets.展开更多
This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a gen...This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a generalized polynomial chaos expansion(GPCE)for statistical moment and reliability analyses associated with the stochastic output and a static reanalysis method to generate the input-output data set.In the reanalysis,we employ substructuring for a structure to isolate its local regions that vary due to random inputs.This allows for avoiding repeated computations of invariant substructures while generating the input-output data set.Combining substructuring with static condensation further improves the computational efficiency of the reanalysis without losing accuracy.Consequently,the GPCE with the static reanalysis method can achieve significant computational saving,thus mitigating the curse of dimensionality to some degree for UQ under high-dimensional inputs.The numerical results obtained from a simple structure indicate that the proposed method for UQ produces accurate solutions more efficiently than the GPCE using full finite element analyses(FEAs).We also demonstrate the efficiency and scalability of the proposed method by executing UQ for a large-scale wing-box structure under ten-dimensional(all-dependent)random inputs.展开更多
Heart monitoring improves life quality.Electrocardiograms(ECGs or EKGs)detect heart irregularities.Machine learning algorithms can create a few ECG diagnosis processing methods.The first method uses raw ECG and time-s...Heart monitoring improves life quality.Electrocardiograms(ECGs or EKGs)detect heart irregularities.Machine learning algorithms can create a few ECG diagnosis processing methods.The first method uses raw ECG and time-series data.The second method classifies the ECG by patient experience.The third technique translates ECG impulses into Q waves,R waves and S waves(QRS)features using richer information.Because ECG signals vary naturally between humans and activities,we will combine the three feature selection methods to improve classification accuracy and diagnosis.Classifications using all three approaches have not been examined till now.Several researchers found that Machine Learning(ML)techniques can improve ECG classification.This study will compare popular machine learning techniques to evaluate ECG features.Four algorithms—Support Vector Machine(SVM),Decision Tree,Naive Bayes,and Neural Network—compare categorization results.SVM plus prior knowledge has the highest accuracy(99%)of the four ML methods.QRS characteristics failed to identify signals without chaos theory.With 99.8%classification accuracy,the Decision Tree technique outperformed all previous experiments.展开更多
The research analyzed social and economic development around Chao Lake as well as changes of water quality in Chao Lake and explored the relation- ships of local population and GDP with water chemical oxygen demand (...The research analyzed social and economic development around Chao Lake as well as changes of water quality in Chao Lake and explored the relation- ships of local population and GDP with water chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN), chlorophyll and eutrophication index. The re- sults showed that population around Chao Lake and GDP kept growing from 2001 to 2013, and water quality was improving. In addition, correlation analysis indicated that except of water eutrophication, GDP and population showed inverse correlation with other indices, demonstrating that water quality has been effectively controlled in Chao Lake recently.展开更多
To seek for lower-dimensional chaotic systems that have complex topological attractor structure with simple algebraic system structure, a new chaotic system of three-dimensional autonomous ordinary differential equati...To seek for lower-dimensional chaotic systems that have complex topological attractor structure with simple algebraic system structure, a new chaotic system of three-dimensional autonomous ordinary differential equations is presented. The new system has simple algebraic structure, and can display a 2-scroll attractor with complex topological structure, which is different from the Lorenz's, Chen's and Lu¨'s attractors. By introducing a linear state feedback controller, the system can be controlled to generate a hyperchaotic attractor. The novel chaotic attractor, hyperchaotic attractor and dynamical behaviors of corresponding systems are further investigated by employing Lyapunov exponent spectrum, bifurcation diagram, Poincar′e mapping and phase portrait, etc., and then verified by simulating an experimental circuit.展开更多
This paper reports a new four-dimensional hyperchaotic system obtained by adding a controller to a threedimensional autonomous chaotic system. The new system has two parameters, and each equation of the system has one...This paper reports a new four-dimensional hyperchaotic system obtained by adding a controller to a threedimensional autonomous chaotic system. The new system has two parameters, and each equation of the system has one quadratic cross-product term. Some basic properties of the new system are analysed. The different dynamic behaviours of the new system are studied when the system parameter a or b is varied. The system is hyperchaotic in several different regions of the parameter b. Especially, the two positive Lyapunov exponents are both larger, and the hyperchaotic region is also larger when this system is hyperchaotic in the case of varying a. The hyperchaotic system is analysed by Lyapunov-exponents spectrum, bifurcation diagrams and Poincaré sections.展开更多
This paper presents a new 3D quadratic autonomous chaotic system which contains five system parameters and three quadratic cross-product terms,and the system can generate a single four-wing chaotic attractor with wide...This paper presents a new 3D quadratic autonomous chaotic system which contains five system parameters and three quadratic cross-product terms,and the system can generate a single four-wing chaotic attractor with wide parameter ranges. Through theoretical analysis,the Hopf bifurcation processes are proved to arise at certain equilibrium points.Numerical bifurcation analysis shows that the system has many interesting complex dynamical behaviours;the system trajectory can evolve to a chaotic attractor from a periodic orbit or a fixed point as the proper parameter varies. Finally,an analog electronic circuit is designed to physically realize the chaotic system;the existence of four-wing chaotic attractor is verified by the analog circuit realization.展开更多
Chaos synchronization of coupled nonlinear systems is ubiquitous in nature and science. Dynamic behaviors of coupled ring and linear arrays of unidirectionally coupled Lorenz oscillators are studied numerically. We fi...Chaos synchronization of coupled nonlinear systems is ubiquitous in nature and science. Dynamic behaviors of coupled ring and linear arrays of unidirectionally coupled Lorenz oscillators are studied numerically. We find that chaos synchronization in circular arrays of chaotic systems can occur through the on off intermittent synchronization with a power law distribution of laminar phases. And in the coupled ring and linear array it is found that the chaotic rotating waves generated from the ring propagate with spatial periodic synchronization along the linear array.展开更多
A controller is designed to realize the synchronization between chaotic systems with different orders. The structure of the controller, the error equations and the Lyapunov functions are determined based on stability ...A controller is designed to realize the synchronization between chaotic systems with different orders. The structure of the controller, the error equations and the Lyapunov functions are determined based on stability theory. Hyperchaotic Chen system and Rossler system are taken for example to demonstrate the method to be effective and feasible. Simulation results show that all the state wriables of Rossler system can be synchronized with those of hyperchaotic Chen system by using only one controller, and the error signals approach zero smoothly and quickly.展开更多
This paper reports a new four-dimensional continuous autonomous hyperchaos generated from the Lorenz chaotic system by introducing a nonlinear state feedback controller. Some basic properties of the system are investi...This paper reports a new four-dimensional continuous autonomous hyperchaos generated from the Lorenz chaotic system by introducing a nonlinear state feedback controller. Some basic properties of the system are investigated by means of Lyapunov exponent spectrum and bifurcation diagrams. By numerical simulating, this paper verifies that the four-dimensional system can evolve into periodic, quasi-periodic, chaotic and hyperchaotic behaviours. And the new dynamical system is hyperchaotic in a large region. In comparison with other known hyperchaos, the two positive Lyapunov exponents of the new system are relatively more larger. Thus it has more complex degree.展开更多
We present a new fractional-order controller based on the Lyapunov stability theory and propose a control method which can control fractional chaotic and hyperchaotic systems whether systems are commensurate or incomm...We present a new fractional-order controller based on the Lyapunov stability theory and propose a control method which can control fractional chaotic and hyperchaotic systems whether systems are commensurate or incommensurate. The proposed control method is universal, simple, and theoretically rigorous. Numerical simulations are given for several fractional chaotic and hyperchaotic systems to verify the effectiveness and the universality of the proposed control method.展开更多
This paper investigates the synchronization between integer-order and fractional-order chaotic systems. By intro- ducing fractional-order operators into the controllers, the addressed problem is transformed into a syn...This paper investigates the synchronization between integer-order and fractional-order chaotic systems. By intro- ducing fractional-order operators into the controllers, the addressed problem is transformed into a synchronization one among integer-order systems. A novel general method is presented in the paper with rigorous proof. Based on this method, effective controllers are designed for the synchronization between Lorenz systems with an integer order and a fractional order, and for the synchronization between an integer-order Chen system and a fractional-order Liu system. Numerical results, which agree well with the theoretical analyses, are also given to show the effectiveness of this method.展开更多
In this paper, a non-existence condition for homoclinic and heteroclinic orbits in n-dimensional, continuous-time, and smooth systems is obtained, Based on this result and an elementary example, it can be conjectured ...In this paper, a non-existence condition for homoclinic and heteroclinic orbits in n-dimensional, continuous-time, and smooth systems is obtained, Based on this result and an elementary example, it can be conjectured that there is a fourth kind of chaos in polynomial ordinary differential equation (ODE) systems characterized by the nonexistence of homoclinic and heteroclinic orbits.展开更多
文摘The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous control(RACC)algorithm.It investigates the control and synchronization of chaos in the uncertain MHP system with time-delay in the presence of unknown state-dependent and time-dependent disturbances.The closed-loop system contains most of the nonlinear terms that enhance the complexity of the dynamical system;it improves the efficiency of the closed-loop.The proposed RACC approach(a)accomplishes faster convergence of the perturbed state variables(synchronization errors)to the desired steady-state,(b)eradicates the effect of unknown state-dependent and time-dependent disturbances,and(c)suppresses undesirable chattering in the feedback control inputs.This paper describes a detailed closed-loop stability analysis based on the Lyapunov-Krasovskii functional theory and Lyapunov stability technique.It provides parameter adaptation laws that confirm the convergence of the uncertain parameters to some constant values.The computer simulation results endorse the theoretical findings and provide a comparative performance.
基金supported by Science and Technology Project of Yunnan Provincial Transportation Department(Grant No.25 of 2018)the National Natural Science Foundation of China(Grant No.52279107)The authors are grateful for the support by the China Scholarship Council(CSC No.202206260203 and No.201906690049).
文摘Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62071496,61901530,and 62061008)the Natural Science Foundation of Hunan Province of China(Grant No.2020JJ5767).
文摘In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fractional calculus.Specially,the order is defined as an iterative function that incorporates the current state of the system.By analyzing phase diagrams,time sequences,bifurcations,Lyapunov exponents and fuzzy entropy complexity,the dynamics of the proposed map are investigated comparing with the constant-order fractional sine map.The results reveal that the variable order has a good effect on improving the chaotic performance,and it enlarges the range of available parameter values as well as reduces non-chaotic windows.Multiple coexisting attractors also enrich the dynamics of VFSM and prove its sensitivity to initial values.Moreover,the sequence generated by the proposed map passes the statistical test for pseudorandom number and shows strong robustness to parameter estimation,which proves the potential applications in the field of information security.
文摘The dynamic analysis of financial systems is a developing field that combines mathematics and economics to understand and explain fluctuations in financial markets.This paper introduces a new three-dimensional(3D)fractional financial map and we dissect its nonlinear dynamics system under commensurate and incommensurate orders.As such,we evaluate when the equilibrium points are stable or unstable at various fractional orders.We use many numerical methods,phase plots in 2D and 3D projections,bifurcation diagrams and the maximum Lyapunov exponent.These techniques reveal that financial maps exhibit chaotic attractor behavior.This study is grounded on the Caputo-like discrete operator,which is specifically influenced by the variance of the commensurate and incommensurate orders.Furthermore,we confirm the presence and measure the complexity of chaos in financial maps by the 0-1 test and the approximate entropy algorithm.Additionally,we offer nonlinear-type controllers to stabilize the fractional financial map.The numerical results of this study are obtained using MATLAB.
基金supported by the Minister of Science of the Republic of Poland under the Programme“Regional initiative of excellence”.Agreement No.RID/SP/0010/2024/1.
文摘Despite their strategic hydrological importance for neighbouring areas,the Polish Carpathians are experiencing spatial chaos,which may weaken their adaptability to the progressive climate change.The article attempts to answer the question of whether spatial planning,which is supposed to guarantee spatial order,fulfils its role and whether the knowledge of the natural conditions of spatial development is respected in the spatial planning process.Using GIS techniques,up to 238 communes were analysed in terms of their spatial coverage,the degree of scattered settlement,and the violation of natural barriers by location of buildings in areas that are threatened with mass movements or floods;by settlement on excessively inclined slopes and in areas with adverse climatic conditions.Spearman non-parametric rank correlation analysis and the multidimensional Principal Component Analysis(PCA)technique were performed to investigate relations between spatial chaos indicators and the planning situation.The analysis of the data has revealed that spatial planning does not fulfil its role.Serious errors in location of buildings have been noted even though the communes are covered by local spatial development plans.Scientific knowledge is not sufficiently transferred into planning documents,and bottom-up initiatives cannot replace systemic solutions.There is a need for strengthening the role of environmental studies documents in the spatial planning system.This would facilitate the transfer of scientific knowledge into the planning process and help to protect mountain areas.The development of a special spatial strategy for the Polish Carpathians in compliance with the Carpathian Convention is also recommended.
基金This work is supported by Natural Science Foundation of Anhui under Grant 1908085MF207,KJ2020A1215,KJ2021A1251 and 2023AH052856the Excellent Youth Talent Support Foundation of Anhui underGrant gxyqZD2021142the Quality Engineering Project of Anhui under Grant 2021jyxm1117,2021kcszsfkc307,2022xsxx158 and 2022jcbs043.
文摘To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cauchy mutation.First,Sin chaos is introduced to improve the random population initialization scheme of the CHOA,which not only guarantees the diversity of the population,but also enhances the distribution uniformity of the initial population.Next,Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position(threshold)updating to avoid the CHOA falling into local optima.Finally,an improved CHOA was formed through the combination of chaos initialization and Cauchy mutation(CICMCHOA),then taking fuzzy Kapur as the objective function,this paper applied CICMCHOA to natural and medical image segmentation,and compared it with four algorithms,including the improved Satin Bowerbird optimizer(ISBO),Cuckoo Search(ICS),etc.The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA delivers superior segmentation effects in image segmentation.
基金Project([2018]3010)supported by the Guizhou Provincial Science and Technology Major Project,China。
文摘To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.62102444)a Major Research Project in Higher Education Institutions in Henan Province(No.23A560015).
文摘In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is applied to accurately solve the electric field integral equation(EFIE)of electromagnetic scattering from homogeneous dielectric targets.Within the bistatic radar cross section(RCS)as the research object,the adaptive PCE algorithm is devoted to selecting the appropriate order to construct the multivariate surrogate model.The corresponding sensitivity results are given by the further derivative operation,which is compared with those of the finite difference method(FDM).Several examples are provided to demonstrate the effectiveness of the proposed algorithm for sensitivity analysis of electromagnetic scattering from homogeneous dielectric targets.
基金Project supported by the National Research Foundation of Korea(Nos.NRF-2020R1C1C1011970 and NRF-2018R1A5A7023490)。
文摘This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a generalized polynomial chaos expansion(GPCE)for statistical moment and reliability analyses associated with the stochastic output and a static reanalysis method to generate the input-output data set.In the reanalysis,we employ substructuring for a structure to isolate its local regions that vary due to random inputs.This allows for avoiding repeated computations of invariant substructures while generating the input-output data set.Combining substructuring with static condensation further improves the computational efficiency of the reanalysis without losing accuracy.Consequently,the GPCE with the static reanalysis method can achieve significant computational saving,thus mitigating the curse of dimensionality to some degree for UQ under high-dimensional inputs.The numerical results obtained from a simple structure indicate that the proposed method for UQ produces accurate solutions more efficiently than the GPCE using full finite element analyses(FEAs).We also demonstrate the efficiency and scalability of the proposed method by executing UQ for a large-scale wing-box structure under ten-dimensional(all-dependent)random inputs.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups(Grant Number RGP.2/246/44),B.B.,and https://www.kku.edu.sa/en.
文摘Heart monitoring improves life quality.Electrocardiograms(ECGs or EKGs)detect heart irregularities.Machine learning algorithms can create a few ECG diagnosis processing methods.The first method uses raw ECG and time-series data.The second method classifies the ECG by patient experience.The third technique translates ECG impulses into Q waves,R waves and S waves(QRS)features using richer information.Because ECG signals vary naturally between humans and activities,we will combine the three feature selection methods to improve classification accuracy and diagnosis.Classifications using all three approaches have not been examined till now.Several researchers found that Machine Learning(ML)techniques can improve ECG classification.This study will compare popular machine learning techniques to evaluate ECG features.Four algorithms—Support Vector Machine(SVM),Decision Tree,Naive Bayes,and Neural Network—compare categorization results.SVM plus prior knowledge has the highest accuracy(99%)of the four ML methods.QRS characteristics failed to identify signals without chaos theory.With 99.8%classification accuracy,the Decision Tree technique outperformed all previous experiments.
基金Supported by Anhui Environmental Protection Scientific Research Program(2014-004)~~
文摘The research analyzed social and economic development around Chao Lake as well as changes of water quality in Chao Lake and explored the relation- ships of local population and GDP with water chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN), chlorophyll and eutrophication index. The re- sults showed that population around Chao Lake and GDP kept growing from 2001 to 2013, and water quality was improving. In addition, correlation analysis indicated that except of water eutrophication, GDP and population showed inverse correlation with other indices, demonstrating that water quality has been effectively controlled in Chao Lake recently.
基金supported by the National Natural Science Foundation of China (60971090)the Natural Science Foundation of Jiangsu Province (BK 2009105)
文摘To seek for lower-dimensional chaotic systems that have complex topological attractor structure with simple algebraic system structure, a new chaotic system of three-dimensional autonomous ordinary differential equations is presented. The new system has simple algebraic structure, and can display a 2-scroll attractor with complex topological structure, which is different from the Lorenz's, Chen's and Lu¨'s attractors. By introducing a linear state feedback controller, the system can be controlled to generate a hyperchaotic attractor. The novel chaotic attractor, hyperchaotic attractor and dynamical behaviors of corresponding systems are further investigated by employing Lyapunov exponent spectrum, bifurcation diagram, Poincar′e mapping and phase portrait, etc., and then verified by simulating an experimental circuit.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60374037 and 60574036), the Specialized Research Fund for the Doctoral Program of China (Grant No 20050055013) and the Program for New Century Excellent Talents in University of China (NCET).
文摘This paper reports a new four-dimensional hyperchaotic system obtained by adding a controller to a threedimensional autonomous chaotic system. The new system has two parameters, and each equation of the system has one quadratic cross-product term. Some basic properties of the new system are analysed. The different dynamic behaviours of the new system are studied when the system parameter a or b is varied. The system is hyperchaotic in several different regions of the parameter b. Especially, the two positive Lyapunov exponents are both larger, and the hyperchaotic region is also larger when this system is hyperchaotic in the case of varying a. The hyperchaotic system is analysed by Lyapunov-exponents spectrum, bifurcation diagrams and Poincaré sections.
基金Project supported by the National Natural Science Foundation of China(Grant Nos 60774088 and 10772135)the Foundation of the Application Base and Frontier Technology Research Project of Tianjin,China (Grant Nos 07JCZDJC09600,08JCZDJC21900 and 08JCZDJC18600)the Tianjin Key Laboratory for Control Theory & Applications in Complicated Industry Systems of China
文摘This paper presents a new 3D quadratic autonomous chaotic system which contains five system parameters and three quadratic cross-product terms,and the system can generate a single four-wing chaotic attractor with wide parameter ranges. Through theoretical analysis,the Hopf bifurcation processes are proved to arise at certain equilibrium points.Numerical bifurcation analysis shows that the system has many interesting complex dynamical behaviours;the system trajectory can evolve to a chaotic attractor from a periodic orbit or a fixed point as the proper parameter varies. Finally,an analog electronic circuit is designed to physically realize the chaotic system;the existence of four-wing chaotic attractor is verified by the analog circuit realization.
文摘Chaos synchronization of coupled nonlinear systems is ubiquitous in nature and science. Dynamic behaviors of coupled ring and linear arrays of unidirectionally coupled Lorenz oscillators are studied numerically. We find that chaos synchronization in circular arrays of chaotic systems can occur through the on off intermittent synchronization with a power law distribution of laminar phases. And in the coupled ring and linear array it is found that the chaotic rotating waves generated from the ring propagate with spatial periodic synchronization along the linear array.
基金Project supported by the National Natural Science Foundation of China (Grant No 20373021) and Natural Science Foundation of Liaoning Province (Grant No 20052151).
文摘A controller is designed to realize the synchronization between chaotic systems with different orders. The structure of the controller, the error equations and the Lyapunov functions are determined based on stability theory. Hyperchaotic Chen system and Rossler system are taken for example to demonstrate the method to be effective and feasible. Simulation results show that all the state wriables of Rossler system can be synchronized with those of hyperchaotic Chen system by using only one controller, and the error signals approach zero smoothly and quickly.
基金Project supported by the National Nature Science Foundation of China (Grant No 60574036), the Specialized Research Fund for the Doctoral Program of China (Grant No 20050055013) and the Program for New Excellent Talents in University of China (NCET).
文摘This paper reports a new four-dimensional continuous autonomous hyperchaos generated from the Lorenz chaotic system by introducing a nonlinear state feedback controller. Some basic properties of the system are investigated by means of Lyapunov exponent spectrum and bifurcation diagrams. By numerical simulating, this paper verifies that the four-dimensional system can evolve into periodic, quasi-periodic, chaotic and hyperchaotic behaviours. And the new dynamical system is hyperchaotic in a large region. In comparison with other known hyperchaos, the two positive Lyapunov exponents of the new system are relatively more larger. Thus it has more complex degree.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171238), the Science Found of Sichuan University of Science and Engineering (Grant Nos. 2012PY17 and 2014PY06), the Fund from Artificial Intelligence Key Laboratory of Sichuan Province (Grant No. 2014RYJ05), and the Opening Project of Sichuan Province University Key Laborstory of Bridge Non-destruction Detecting and Engineering Computing (Grant No. 2013QYJ01).
文摘We present a new fractional-order controller based on the Lyapunov stability theory and propose a control method which can control fractional chaotic and hyperchaotic systems whether systems are commensurate or incommensurate. The proposed control method is universal, simple, and theoretically rigorous. Numerical simulations are given for several fractional chaotic and hyperchaotic systems to verify the effectiveness and the universality of the proposed control method.
文摘This paper investigates the synchronization between integer-order and fractional-order chaotic systems. By intro- ducing fractional-order operators into the controllers, the addressed problem is transformed into a synchronization one among integer-order systems. A novel general method is presented in the paper with rigorous proof. Based on this method, effective controllers are designed for the synchronization between Lorenz systems with an integer order and a fractional order, and for the synchronization between an integer-order Chen system and a fractional-order Liu system. Numerical results, which agree well with the theoretical analyses, are also given to show the effectiveness of this method.
文摘In this paper, a non-existence condition for homoclinic and heteroclinic orbits in n-dimensional, continuous-time, and smooth systems is obtained, Based on this result and an elementary example, it can be conjectured that there is a fourth kind of chaos in polynomial ordinary differential equation (ODE) systems characterized by the nonexistence of homoclinic and heteroclinic orbits.