To adapt to the change in the demand of the oil refining market,two hydrocracking catalysts,RHC-1 and RHC-5,were developed to improve the quality of tail oil.The catalysts were designed based on the theory of selectiv...To adapt to the change in the demand of the oil refining market,two hydrocracking catalysts,RHC-1 and RHC-5,were developed to improve the quality of tail oil.The catalysts were designed based on the theory of selective ring-opening.By selecting more acidic molecular sieves,the problem of poor selectivity of conventional materials can be solved to properly match up to the hydrogenation performance of catalysts.Compared with the performance of previous catalysts,the quality of the tail oil achieved by the said catalysts is better,and the BMCI is reduced by 1—2 units.In the long cycle operation of the petroleum industry,the good quality of the tail oil has been verified and the adaptability of the process conditions is good.When the RHC-1 catalyst is used to process heavy feed under medium pressure,a BMCI value of about12 can be obtained along with a nearly 60%yield of tail oil.The total yield of chemical raw material(steaming cracking feed+catalytic reforming feed)can exceed 80%,and the hydrogen consumption has dropped by nearly 50%as compared to the conventional hydrocracking conversion rate.When processing a mixed CGO and VGO feed with the full conversion mode under a hydrogen pressure of 13.0 MPa,the RHC-5 catalyst can yield about 68.4%of heavy naphtha with a potential aromatic content of up to 50.6,while the total yield of chemical raw materials can reach more than 98%.The results of industrial application of these catalysts show that more than 30%of high quality tail oil can be obtained via processing of inferior quality feed,and its BMCI value can reach 10.7.The total yield of chemical raw materials can reach more than65%.The industrial operation process has implemented two operating cycles totaling 8 years.展开更多
Low-Z materials, such as carbon-based materials and Be, are major plasma-facing material (PFM) for current, even in future fusion devices. In this paper, a new type of multielement-doped carbon-based materials develop...Low-Z materials, such as carbon-based materials and Be, are major plasma-facing material (PFM) for current, even in future fusion devices. In this paper, a new type of multielement-doped carbon-based materials developed are presented along with experimental re-sults of their properties. The results indicate a decrease in chemical sputtering yield by one order of magnitude, a decrease in both thermal shock resistance and radiation-enhanced sublimation, an evidently lower temperature desorption spectrum, and combined properties of exposing to plasma.展开更多
Biology is a rich source of great ideas that can inspire us to find successful ways to solve the challenging problems in engineering practices including those in the chemical industry. Bio-inspired chemical engineerin...Biology is a rich source of great ideas that can inspire us to find successful ways to solve the challenging problems in engineering practices including those in the chemical industry. Bio-inspired chemical engineering(Bio Ch E)may be recognized as a significant branch of chemical engineering. It may consist of, but not limited to, the following three aspects: 1) Chemical engineering principles and unit operations in biological systems; 2) Process engineering principles for producing existing or developing new chemical products through living ‘devices';and 3) Chemical engineering processes and equipment that are designed and constructed through mimicking(does not have to reproduce one hundred percent) the biological systems including their physical–chemical and mechanical structures to deliver uniquely beneficial performances. This may also include the bio-inspired sensors for process monitoring. In this paper, the above aspects are defined and discussed which establishes the scope of BioChE.展开更多
The phase-transformation in sol-gel preparation of barium hexaferrite and the formation of barium hexaferrite doped with La 3+ were studied by chemical p hase analysis, X-ray diffraction and infrared spectrometry an...The phase-transformation in sol-gel preparation of barium hexaferrite and the formation of barium hexaferrite doped with La 3+ were studied by chemical p hase analysis, X-ray diffraction and infrared spectrometry analysis. The expe rimental results show that phase transformation reactions of FeCO 3, Fe 2O 3 and BaFe 2O 4, barium hexaferrite and γ-Fe 2O 3 take place in the heat tr eatment of gel. While the doping lanthanide ion replace barium ion, an equivalen t quantity of Fe 3+ are reduced to Fe 2+ to maintain the charge equili brium.展开更多
A vertically aligned anatase TiO2 (A-TiO2) nanotube array has been fabricated by coating a ZnO nanorod (NR) template with a TiO2 precursor solution. After coating, the ZnO NR cores were selectively etched in an ac...A vertically aligned anatase TiO2 (A-TiO2) nanotube array has been fabricated by coating a ZnO nanorod (NR) template with a TiO2 precursor solution. After coating, the ZnO NR cores were selectively etched in an acidic environment to form TiO2 nanotubes (NTs). More specifically, after growing the ZnO NRs via a hydrothermal method, one drop of the TiO2 precursor solution was cast to coat the ZnO NRs, the tops of which were previously covered with chemical capping materials by electrostatic interaction, and then the sample was sintered. Finally, the sample was immersed in an acidic solution resulting in selective etching of the ZnO NR cores. Thus, only TiO2 NTs remained on the substrate. The capping material is effectively used to create a perfect, hexagonal open-ended TiO2 NT array, which interestingly extends onset absorption towards the visible region.展开更多
Efficient utilization of biomass for the supply of energy and synthetic materials would mitigate the heavy reliance on fossil resources and the growing CO_(2) emission, thus contributing to establishing sustainable an...Efficient utilization of biomass for the supply of energy and synthetic materials would mitigate the heavy reliance on fossil resources and the growing CO_(2) emission, thus contributing to establishing sustainable and carbon–neutral societies. Much effort has been devoted to catalytic transformations of lignocellulosic biomass, the most abundant and nonedible form of biomass.展开更多
The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,mo...The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,most of nitrogen heteroatoms are doped into the bulk phase of carbon without site selectivity, which significantly reduces the contacts of feedstocks with the active dopants in a conductive scaffold. Herein we proposed the chemical vapor deposition of a nitrogen-doped graphene skin on the 3D porous graphene framework and donated the carbon/carbon composite as surface N-doped grapheme(SNG). In contrast with routine N-doped graphene framework(NGF) with bulk distribution of N heteroatoms, the SNG renders a high surface N content of 1.81 at%, enhanced electrical conductivity of 31 S cm^(-1), a large surface area of 1531 m^2 g^(-1), a low defect density with a low I_D/I_G ratio of 1.55 calculated from Raman spectrum, and a high oxidation peak of 532.7 ℃ in oxygen atmosphere. The selective distribution of N heteroatoms on the surface of SNG affords the effective exposure of active sites at the interfaces of the electrode/electrolyte, so that more N heteroatoms are able to contact with oxygen feedstocks in oxygen reduction reaction or serve as polysulfide anchoring sites to retard the shuttle of polysulfides in a lithium–sulfur battery. This work opens a fresh viewpoint on the manipulation of active site distribution in a conductive scaffolds for multi-electron redox reaction based energy conversion and storage.展开更多
We investigated microstructure morphologies of three asphalts(SK, Karamay, and Esso) used in China using atomic force microscopy(AFM). The topography and phase contrast images were obtained. Topographic profile an...We investigated microstructure morphologies of three asphalts(SK, Karamay, and Esso) used in China using atomic force microscopy(AFM). The topography and phase contrast images were obtained. Topographic profile and three dimensional images were described. Roughnesses of microstructure were calculated. And the chemical compositions of asphalt were tested to explain the microstructural mechanism of the asphalt. The results show that the topography and phase image in atomic force microscopy are appropriate to evaluate the microstructure of the asphalt binder. There are significant differences in microstructural morphologies including bee-like structure, topographic profile, 3D image, and roughness for three asphalts in this study. There are three different phases in microstructure of asphalt binder. The oil source and chemical composition of asphalt, especially asphaltenes content have a great influence on the microstructure.展开更多
A new method of fabricating C/C composite materials, namely electric heating CVD method, was used, which electrified the carbon fiber directly by using the conductivity of itself. Acetylene was used as the carbon sour...A new method of fabricating C/C composite materials, namely electric heating CVD method, was used, which electrified the carbon fiber directly by using the conductivity of itself. Acetylene was used as the carbon source with nitrogen as dilution gas, and the pyrolytic carbon started to deposit on the carbon fiber surface when the deposition temperature was reached. The morphology of pyrolytic carbon was characterized by SEM, and the surface properties of carbon fibers before and after CVD were characterized by Raman spectroscopy. The experimental results show that the electric heating method is a novel method to fabricate C/C composite materials, which can form a dense C/C composite material in a short time. The order degree and the average crystallite size of the carbon fiber surface were decreased after the experiment.展开更多
An abrasive free chemical mechanical planarization(AFCMP) of semi-polar(1122) Al N surface has been demonstrated. The effect of slurry p H, polishing pressure, and platen velocity on the material removal rate(MRR...An abrasive free chemical mechanical planarization(AFCMP) of semi-polar(1122) Al N surface has been demonstrated. The effect of slurry p H, polishing pressure, and platen velocity on the material removal rate(MRR) and surface quality(RMS roughness) have been studied. The effect of polishing pressure on the AFCMP of the(1122) Al N surface has been compared with that of the(1122) Al Ga N surface. The maximum MRR has been found to be 562 nm/h for the semi-polar(1122) Al N surface, under the experimental conditions of 38 k Pa pressure,90 rpm platen velocity, 30 rpm carrier velocity, slurry p H 3 and 0.4 M oxidizer concentration. The best root mean square(RMS) surface roughness of 1.2 nm and 0.7 nm, over a large scanning area of 0.70×0.96 mm^2, has been achieved on AFCMP processed semi-polar(1122) AlN and(AlGaN) surfaces using optimized slurry chemistry and processing parameters.展开更多
The chemical characteristics,element contents,mineral compositions,and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied d...The chemical characteristics,element contents,mineral compositions,and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied depending on the source biomass material. An increase in the concrete shuttering contents in the biomass materials led to higher alkalinity,and higher Ca and Mg levels in biomass ashes,which made them particularly good at ameliorating effects on soil acidity. However,heavy metal contents,such as Cr,Cu,and Zn in the ashes,were relatively high. The incorporation of all ashes increased soil p H,exchangeable base cations,and available phosphorus,but decreased soil exchangeable acidity. The application of the ashes from biomass materials with a high concrete shuttering content increased the soil available heavy metal contents. Therefore,the biomass ashes from wood and crop residues with low concrete contents were the better acid soil amendments.展开更多
Uniform rhombohedral α-Fe2O3 nanoparticles, -60nm in size, were synthesized via a triphenyl- phosphine-assisted hydrothermal method. Scanning electron micrograph (SEM) and transmission electron micrograph (TEM) a...Uniform rhombohedral α-Fe2O3 nanoparticles, -60nm in size, were synthesized via a triphenyl- phosphine-assisted hydrothermal method. Scanning electron micrograph (SEM) and transmission electron micrograph (TEM) analyses showed that the as-synthesized rhombohedral nanoparticles were enclosed by six (1 04) planes. The concentration of triphenylphosphine played an important role in morphological evolution of the α-Fe2O3 nanoparticles. The as-prepared rhombohedral nanoparticles possessed remanent magnetization Mr of 2.6 × 10^-3 emu/g and coercivity Hc of 2.05 Oe, both lower than those of other α-Fe2O3 particles with similar size, indicating their potential applications as superparamagnetic precursor materials. Furthermore, these rbombohedral α-Fe2O3 nanoparticles exhibited good sensor capability toward H2O2 with a linear response in the concentration range of 2-20 mM.展开更多
Two novel organic hole-transporting materials have been synthesized by combination of triphenylamines(TPA) viaπ-conjugated bonds using Wittig reaction.The structures were characterized by NMR,FT-IR and HRMS.The opt...Two novel organic hole-transporting materials have been synthesized by combination of triphenylamines(TPA) viaπ-conjugated bonds using Wittig reaction.The structures were characterized by NMR,FT-IR and HRMS.The optical,electrochemical and thermal properties of the materials were studied in detail.The results show that these two compounds have blue emission,proper HOMO levels and high thermal stability.Furthermore,a quantum chemical calculation on electron distribution of the two compounds was performed, which suggests the current synthesized materials would be promising candidates for hole-transporting materials.展开更多
Superparamagnetic monodisperse Mg0.8Mn0.2Fe2O4 nanoparticles have been successfully synthesized in liquid polyol at elevated temperature of 200 °C. Diethylene glycol(DEG) used here plays dual role in synthesis ...Superparamagnetic monodisperse Mg0.8Mn0.2Fe2O4 nanoparticles have been successfully synthesized in liquid polyol at elevated temperature of 200 °C. Diethylene glycol(DEG) used here plays dual role in synthesis as it acts as reducing agent and alternatively coats the surface of nanoparticles while synthesis and thereby maintaining uniform size and dispersibility. Powder X-ray diffraction(XRD) and magnetic measurements showed that the sample is cubic spinel and superparamagnetic at room temperature. Raman spectra confirmed the formation of the Mg0.8Mn0.2Fe2O4 nanoparticles.The nanoparticles exhibit very good stability in water due to in situ coating with DEG molecules.展开更多
基金the financial support from the SINOPEC(No.114016)
文摘To adapt to the change in the demand of the oil refining market,two hydrocracking catalysts,RHC-1 and RHC-5,were developed to improve the quality of tail oil.The catalysts were designed based on the theory of selective ring-opening.By selecting more acidic molecular sieves,the problem of poor selectivity of conventional materials can be solved to properly match up to the hydrogenation performance of catalysts.Compared with the performance of previous catalysts,the quality of the tail oil achieved by the said catalysts is better,and the BMCI is reduced by 1—2 units.In the long cycle operation of the petroleum industry,the good quality of the tail oil has been verified and the adaptability of the process conditions is good.When the RHC-1 catalyst is used to process heavy feed under medium pressure,a BMCI value of about12 can be obtained along with a nearly 60%yield of tail oil.The total yield of chemical raw material(steaming cracking feed+catalytic reforming feed)can exceed 80%,and the hydrogen consumption has dropped by nearly 50%as compared to the conventional hydrocracking conversion rate.When processing a mixed CGO and VGO feed with the full conversion mode under a hydrogen pressure of 13.0 MPa,the RHC-5 catalyst can yield about 68.4%of heavy naphtha with a potential aromatic content of up to 50.6,while the total yield of chemical raw materials can reach more than 98%.The results of industrial application of these catalysts show that more than 30%of high quality tail oil can be obtained via processing of inferior quality feed,and its BMCI value can reach 10.7.The total yield of chemical raw materials can reach more than65%.The industrial operation process has implemented two operating cycles totaling 8 years.
基金The work was supported by the National Nature Science Foundation of China No.19789503.
文摘Low-Z materials, such as carbon-based materials and Be, are major plasma-facing material (PFM) for current, even in future fusion devices. In this paper, a new type of multielement-doped carbon-based materials developed are presented along with experimental re-sults of their properties. The results indicate a decrease in chemical sputtering yield by one order of magnitude, a decrease in both thermal shock resistance and radiation-enhanced sublimation, an evidently lower temperature desorption spectrum, and combined properties of exposing to plasma.
文摘Biology is a rich source of great ideas that can inspire us to find successful ways to solve the challenging problems in engineering practices including those in the chemical industry. Bio-inspired chemical engineering(Bio Ch E)may be recognized as a significant branch of chemical engineering. It may consist of, but not limited to, the following three aspects: 1) Chemical engineering principles and unit operations in biological systems; 2) Process engineering principles for producing existing or developing new chemical products through living ‘devices';and 3) Chemical engineering processes and equipment that are designed and constructed through mimicking(does not have to reproduce one hundred percent) the biological systems including their physical–chemical and mechanical structures to deliver uniquely beneficial performances. This may also include the bio-inspired sensors for process monitoring. In this paper, the above aspects are defined and discussed which establishes the scope of BioChE.
文摘The phase-transformation in sol-gel preparation of barium hexaferrite and the formation of barium hexaferrite doped with La 3+ were studied by chemical p hase analysis, X-ray diffraction and infrared spectrometry analysis. The expe rimental results show that phase transformation reactions of FeCO 3, Fe 2O 3 and BaFe 2O 4, barium hexaferrite and γ-Fe 2O 3 take place in the heat tr eatment of gel. While the doping lanthanide ion replace barium ion, an equivalen t quantity of Fe 3+ are reduced to Fe 2+ to maintain the charge equili brium.
文摘A vertically aligned anatase TiO2 (A-TiO2) nanotube array has been fabricated by coating a ZnO nanorod (NR) template with a TiO2 precursor solution. After coating, the ZnO NR cores were selectively etched in an acidic environment to form TiO2 nanotubes (NTs). More specifically, after growing the ZnO NRs via a hydrothermal method, one drop of the TiO2 precursor solution was cast to coat the ZnO NRs, the tops of which were previously covered with chemical capping materials by electrostatic interaction, and then the sample was sintered. Finally, the sample was immersed in an acidic solution resulting in selective etching of the ZnO NR cores. Thus, only TiO2 NTs remained on the substrate. The capping material is effectively used to create a perfect, hexagonal open-ended TiO2 NT array, which interestingly extends onset absorption towards the visible region.
基金support by the National Key R&D Program of China(2018YFB1501602)the National Natural Science Foundation of China(22121001 and 22172127)。
文摘Efficient utilization of biomass for the supply of energy and synthetic materials would mitigate the heavy reliance on fossil resources and the growing CO_(2) emission, thus contributing to establishing sustainable and carbon–neutral societies. Much effort has been devoted to catalytic transformations of lignocellulosic biomass, the most abundant and nonedible form of biomass.
基金supported by the National Key Research and Development Program(2016YFA0202500 and 2016YFA0200102)the Natural Scientific Foundation of China(21776019)
文摘The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,most of nitrogen heteroatoms are doped into the bulk phase of carbon without site selectivity, which significantly reduces the contacts of feedstocks with the active dopants in a conductive scaffold. Herein we proposed the chemical vapor deposition of a nitrogen-doped graphene skin on the 3D porous graphene framework and donated the carbon/carbon composite as surface N-doped grapheme(SNG). In contrast with routine N-doped graphene framework(NGF) with bulk distribution of N heteroatoms, the SNG renders a high surface N content of 1.81 at%, enhanced electrical conductivity of 31 S cm^(-1), a large surface area of 1531 m^2 g^(-1), a low defect density with a low I_D/I_G ratio of 1.55 calculated from Raman spectrum, and a high oxidation peak of 532.7 ℃ in oxygen atmosphere. The selective distribution of N heteroatoms on the surface of SNG affords the effective exposure of active sites at the interfaces of the electrode/electrolyte, so that more N heteroatoms are able to contact with oxygen feedstocks in oxygen reduction reaction or serve as polysulfide anchoring sites to retard the shuttle of polysulfides in a lithium–sulfur battery. This work opens a fresh viewpoint on the manipulation of active site distribution in a conductive scaffolds for multi-electron redox reaction based energy conversion and storage.
基金Funded by the National Natural Science Foundation of China(Nos.51408287,and 51668038)the Rolls Supported by Program for Changjiang Scholars and Innovative Research Team in University(IRT_15R29)+2 种基金the Distinguished Young Scholars Fund of Gansu Province(1606RJDA318)the Natural Science Foundation of Gansu Province(1506RJZA064)the Excellent Program of Lanzhou Jiaotong University(201606)
文摘We investigated microstructure morphologies of three asphalts(SK, Karamay, and Esso) used in China using atomic force microscopy(AFM). The topography and phase contrast images were obtained. Topographic profile and three dimensional images were described. Roughnesses of microstructure were calculated. And the chemical compositions of asphalt were tested to explain the microstructural mechanism of the asphalt. The results show that the topography and phase image in atomic force microscopy are appropriate to evaluate the microstructure of the asphalt binder. There are significant differences in microstructural morphologies including bee-like structure, topographic profile, 3D image, and roughness for three asphalts in this study. There are three different phases in microstructure of asphalt binder. The oil source and chemical composition of asphalt, especially asphaltenes content have a great influence on the microstructure.
基金Funded by the National Natural Science Foundation of China(51165006)
文摘A new method of fabricating C/C composite materials, namely electric heating CVD method, was used, which electrified the carbon fiber directly by using the conductivity of itself. Acetylene was used as the carbon source with nitrogen as dilution gas, and the pyrolytic carbon started to deposit on the carbon fiber surface when the deposition temperature was reached. The morphology of pyrolytic carbon was characterized by SEM, and the surface properties of carbon fibers before and after CVD were characterized by Raman spectroscopy. The experimental results show that the electric heating method is a novel method to fabricate C/C composite materials, which can form a dense C/C composite material in a short time. The order degree and the average crystallite size of the carbon fiber surface were decreased after the experiment.
基金financial support from the Department of Science and Technology(DST),Government of India(No,SR/S2/Cmp-0009/2011)partial support from the Board of Research in Nuclear Sciences(BRNS),Department of Atomic Energy(DAE),Government of India(No.-34/14/43/2014-BRNS)with ATC
文摘An abrasive free chemical mechanical planarization(AFCMP) of semi-polar(1122) Al N surface has been demonstrated. The effect of slurry p H, polishing pressure, and platen velocity on the material removal rate(MRR) and surface quality(RMS roughness) have been studied. The effect of polishing pressure on the AFCMP of the(1122) Al N surface has been compared with that of the(1122) Al Ga N surface. The maximum MRR has been found to be 562 nm/h for the semi-polar(1122) Al N surface, under the experimental conditions of 38 k Pa pressure,90 rpm platen velocity, 30 rpm carrier velocity, slurry p H 3 and 0.4 M oxidizer concentration. The best root mean square(RMS) surface roughness of 1.2 nm and 0.7 nm, over a large scanning area of 0.70×0.96 mm^2, has been achieved on AFCMP processed semi-polar(1122) AlN and(AlGaN) surfaces using optimized slurry chemistry and processing parameters.
基金supported by the National Key Basic Research Program of China(No.2014CB441003)the National Key Research and Development of China(No.2016YFD0200302)
文摘The chemical characteristics,element contents,mineral compositions,and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied depending on the source biomass material. An increase in the concrete shuttering contents in the biomass materials led to higher alkalinity,and higher Ca and Mg levels in biomass ashes,which made them particularly good at ameliorating effects on soil acidity. However,heavy metal contents,such as Cr,Cu,and Zn in the ashes,were relatively high. The incorporation of all ashes increased soil p H,exchangeable base cations,and available phosphorus,but decreased soil exchangeable acidity. The application of the ashes from biomass materials with a high concrete shuttering content increased the soil available heavy metal contents. Therefore,the biomass ashes from wood and crop residues with low concrete contents were the better acid soil amendments.
基金supported by the National Natural Science Foundation of China(No.21003147)Natural Science Foundation of Shanxi(2011011007-3)the State Key Laboratory of Coal Conversion(SKLCC) in-house project(No.2011BWZ005)
文摘Uniform rhombohedral α-Fe2O3 nanoparticles, -60nm in size, were synthesized via a triphenyl- phosphine-assisted hydrothermal method. Scanning electron micrograph (SEM) and transmission electron micrograph (TEM) analyses showed that the as-synthesized rhombohedral nanoparticles were enclosed by six (1 04) planes. The concentration of triphenylphosphine played an important role in morphological evolution of the α-Fe2O3 nanoparticles. The as-prepared rhombohedral nanoparticles possessed remanent magnetization Mr of 2.6 × 10^-3 emu/g and coercivity Hc of 2.05 Oe, both lower than those of other α-Fe2O3 particles with similar size, indicating their potential applications as superparamagnetic precursor materials. Furthermore, these rbombohedral α-Fe2O3 nanoparticles exhibited good sensor capability toward H2O2 with a linear response in the concentration range of 2-20 mM.
基金the National Natural Science Foundation ofChina(No21176180)Research Fund for the Doctoral Program of Higher Education of China(No20100032110021) for the financial support
文摘Two novel organic hole-transporting materials have been synthesized by combination of triphenylamines(TPA) viaπ-conjugated bonds using Wittig reaction.The structures were characterized by NMR,FT-IR and HRMS.The optical,electrochemical and thermal properties of the materials were studied in detail.The results show that these two compounds have blue emission,proper HOMO levels and high thermal stability.Furthermore,a quantum chemical calculation on electron distribution of the two compounds was performed, which suggests the current synthesized materials would be promising candidates for hole-transporting materials.
基金the Council of Scientific and Industrial Research, India for the award of senior research fellowship (File. 09/1077/(0001)/ 2012/EMR-1)
文摘Superparamagnetic monodisperse Mg0.8Mn0.2Fe2O4 nanoparticles have been successfully synthesized in liquid polyol at elevated temperature of 200 °C. Diethylene glycol(DEG) used here plays dual role in synthesis as it acts as reducing agent and alternatively coats the surface of nanoparticles while synthesis and thereby maintaining uniform size and dispersibility. Powder X-ray diffraction(XRD) and magnetic measurements showed that the sample is cubic spinel and superparamagnetic at room temperature. Raman spectra confirmed the formation of the Mg0.8Mn0.2Fe2O4 nanoparticles.The nanoparticles exhibit very good stability in water due to in situ coating with DEG molecules.