Members of the family Scenedesmaceae are some of the most common algal taxa in inland ecosystems,and they are widely distributed in freshwaters,aerial,and sub-aerial habitats.With the continuous updating of methods,th...Members of the family Scenedesmaceae are some of the most common algal taxa in inland ecosystems,and they are widely distributed in freshwaters,aerial,and sub-aerial habitats.With the continuous updating of methods,the classic morphological taxonomy of this family needs to be revised.In recent years,many genera of Scenedesmaceae have been established via the use of molecular methods.The phylogenetic relationships within Scenedesmaceae were analyzed using different molecular markers and morphological data,and the new freshwater genus Coccoidesmus Wang,Hou et Liu gen.nov.was described.Two new species in this genus were also described.Phylogenetic analysis based on tufA genes revealed that the new genus formed an independent clade closely related to Comasiella.However,these two genera are characterized by significant morphological differences in colony arrangement and cell shape.The chloroplast genome of the type species was assembled and annotated,and analyses of genome structure and sequences were conducted.More genome data could help clarify the phylogenetic relationships within this family.展开更多
Enhancing photosynthetic efficiency is a major goal for improving crop yields under agricultural field conditions and is associated with chloroplast biosynthesis and development.In this study,we demonstrate that Golde...Enhancing photosynthetic efficiency is a major goal for improving crop yields under agricultural field conditions and is associated with chloroplast biosynthesis and development.In this study,we demonstrate that Golden2-like 1a(BnGLK1a)plays an important role in regulating chloroplast development and photosynthetic efficiency.Overexpressing BnGLK1a resulted in significant increases in chlorophyll content,the number of thylakoid membrane layers and photosynthetic efficiency in Brassica napus,while knocking down BnGLK1a transcript levels through RNA interference(RNAi)had the opposite effects.A yeast two-hybrid screen revealed that BnGLK1a interacts with the abscisic acid receptor PYRABACTIN RESISTANCE 1-LIKE 1-2(BnPYL1-2)and CONSTITUTIVE PHOTOMORPHOGENIC 9 SIGNALOSOME 5A subunit(BnCSN5A),which play essential roles in regulating chloroplast development and photosynthesis.Consistent with this,BnGLK1a-RNAi lines of B.napus display hypersensitivity to the abscisic acid(ABA)response.Importantly,overexpression of BnGLK1a resulted in a 10%increase in thousand-seed weight,whereas seeds from BnGLK1a-RNAi lines were 16%lighter than wild type.We propose that BnGLK1a could be a potential target in breeding for improving rapeseed productivity.Our results not only provide insights into the mechanisms of BnGLK1a function,but also offer a potential approach for improving the productivity of Brassica species.展开更多
Rosaceae represents a vast and complex group of species,with its classification being intricate and contentious.The taxonomic placement of many species within this family has been a subject of ongoing debate.The study ...Rosaceae represents a vast and complex group of species,with its classification being intricate and contentious.The taxonomic placement of many species within this family has been a subject of ongoing debate.The study utilized the Illumina platform to sequence 19 plant species from 10 genera in the Rosaceae.The cp genomes,vary-ing in size from 153,366 to 159,895 bp,followed the typical quadripartite organization consisting of a large single-copy(LSC)region(84,545 to 87,883 bp),a small single-copy(SSC)region(18,174 to 19,259 bp),and a pair of inverted repeat(IR)regions(25,310 to 26,396 bp).These genomes contained 132–138 annotated genes,including 87 to 93 protein-coding genes(PCGs),37 tRNA genes,and 8 rRNA genes using MISA software,52 to 121 simple sequence repeat(SSR)loci were identified.D.arbuscular contained the least of SSRs and did not have hexanotides,A.lineata contained the richest SSRs.Long terminal repeats(LTRs)were primarily composed of palindromic and forward repeat sequences,meanwhile,The richest LTRs were found in Argentina lineata.Except for Argentina lineata,Fragariastrum eriocarpum,and Prunus trichostoma,which varied in gene type and position on both sides of the boundary,the remaining species were found to be mostly conserved according to IR boundary analysis.The examination of the Ka/Ks ratio revealed that only the infA gene had a value greater than 1,indicating that this gene was primarily subjected to positive selection during evolution.Additionally,9 hotspots of variation were identified in the LSC and SSC regions.Phylogenetic analysis confirmed the scientific validity of the genus Prunus L.sensu lato(s.l.)within the Rosaceae family.The separation of the three genera Argentina Hill,Fragariastrum Heist.ex Fabr.and Dasiphora Raf.from Potentilla L.may be a more scientific classification.These results offer fresh perspectives on the taxonomy of the Rosaceae.展开更多
The analysis of chloroplast gene characteristics in Alpinia japonica(Thunb.)Miq.is of great significance for developing relevant genetic resources.The high-throughput sequencing and bioinformatic research were perform...The analysis of chloroplast gene characteristics in Alpinia japonica(Thunb.)Miq.is of great significance for developing relevant genetic resources.The high-throughput sequencing and bioinformatic research were performed to analyze the chloroplast genome characteristics of A.japonica.The total chloroplast genome length of A.japonica was 161,906 bp,with a typical circular tetrameric structure.And 133 genes were annotated,comprising 87 protein-coding,38 tRNA,and 8 rRNA genes.Furthermore,22 genes contained two copies,and 18 genes owned introns.Repeat sequence analysis showed that it contains 321 simple sequence repeats(SSRs)and 37 long segment repeats.Compared with the chloroplast genomes of eight representative plants in the genus Alpinia,the gene structure,type,and quantity were relatively conservative.Rps12 was the highest variation site in the entire chloroplast gene.A phylogenetic tree showed that the genus Alpinia was the most closely related to the genus Amomum.Meanwhile,A.japonica is the most closely related to Alpinia chinensis belonging to the genus Alpinia.Overall,the chloroplast genome of a new species was reported in the genus Alpinia,and a basis was provided for the utilization of Alpinia plants as a medical resource.展开更多
Along with the development of modern molecular biology technologies, complete chloroplast genomes have been sequenced in various plant species to date, and the structure, function and expression of these genes have be...Along with the development of modern molecular biology technologies, complete chloroplast genomes have been sequenced in various plant species to date, and the structure, function and expression of these genes have been deter-mined. The chloroplast genome structure in most higher plants is stable, since the gene number, arrangement and composition are conservative. The determination of sugarcane chloroplast genome sequence laid a good foundation for sugarcane chloroplast related research. This article gives a review on the research progress of sugarcane chloroplast genome through the chloroplast genome map, gene structure, function, chloroplast RNA editing, and phylogenetic analysis in Saccharum and relat-ed genera. This study held great potential to clarify more directions in researches, including sugarcane chloroplast genetic transformation, complete chloroplast nu-cleotide sequence determination in Saccharum and closely related genera, cpSSRs development and application.展开更多
Chloroplast simple sequence repeat (cpSSR) markers in Citrus were developed and successfully used to analyze chloroplast genome inheritance of Citrus somatic hybrids. Twenty-two previously reported cpSSR primer pairs ...Chloroplast simple sequence repeat (cpSSR) markers in Citrus were developed and successfully used to analyze chloroplast genome inheritance of Citrus somatic hybrids. Twenty-two previously reported cpSSR primer pairs from pine (Pinus thunbergii Parl.), rice (Otyza sativa L.) and tobacco (Nicotiana tabacum L.) were tested in Citrus, nine of which could amplify intensive PCR products by agarose gel electrophoresis. Chloroplast genome inheritance of Citrus somatic hybrids from nine fusions was then analyzed, and five of the nine pre-screened primer pairs showed polymorphisms by polyacrylamide gel electrophoresis. The results revealed the random inheritance nature of chloroplast genome in all analyzed Citrus somatic hybrids, which was in agreement with previous reports based on RFLP or CAPS analyses. It was also shown that cpSSR is a more efficient tool in chloroplast genome analyses of somatic hybrids in higher plants, compared with the conventional RFLP or CAPS analyses.展开更多
The inheritance of mitochondrial (mt) DNA and chloroplast (cp) DNA was investigated in intergeneric hybrids from crossing between Cunninghamia lanceolata (Lamb.) Hook. and Cryptomeria fortunei Hooibrenk. The c...The inheritance of mitochondrial (mt) DNA and chloroplast (cp) DNA was investigated in intergeneric hybrids from crossing between Cunninghamia lanceolata (Lamb.) Hook. and Cryptomeria fortunei Hooibrenk. The chloroplast trnL trnF region and one intra genic segment of the mitochondrial gene, Cox Ⅲ, were amplified from those of the parents and hybrids by PCR using gene specific primers. Cp and mtDNA polymorphisms of the amplified regions were detected between the parents after restriction digestions. Restriction fragment length polymorphism (RFLP) analysis revealed that all the F 1 individuals possessed Cox Ⅲ restriction fragment patterns (characteristic of the paternal parent Cryptomeria fortunei ) and the trnL trnF region (identical to the maternal parent Cunninghamia lanceolata ) showing that a different mode of inheritance for organelle DNA has occurred in the hybrids. Furthermore, the maternal inheritance of chloroplast DNA is reported here for the first time in coniferophyta.展开更多
PPF1 is a vegetative growth related gene that encodes a putative membrane protein having high homology with Arabidopsis chloroplast thylakoid protein ALB3. Immunoelectron microscopic assay showed that PPF1 was mainly ...PPF1 is a vegetative growth related gene that encodes a putative membrane protein having high homology with Arabidopsis chloroplast thylakoid protein ALB3. Immunoelectron microscopic assay showed that PPF1 was mainly localized in the thylakold membrane and was highly expressed in well-developed chloroplasts of short day (SD) grown G2 pea while having a very low abundance in chloroplasts of long day (LD) grown plants two weeks after flowering. Comparison of the leaf senescence processes in transgenic Arabidopsis and wild type plants revealed that overexpression of PPF1 delayed leaf senescence, while the depression of its Arabidopsts homologue (ALB3) with PPF1 antisense mRNA accelerated leaf senescence obviously. Ultrastructural analysis of transgenic Arabidopsis plants showed that when PPF1 was overexpressed in Arabidopsis, the chloroplasts were bigger and had much more grana and stroma thylakoid membranes than those of wild type plants. On the contrary, when PPF1 was expressed in antisense orientation to reduce the level of PPF1 homologue in Arabidopsis, the transgenic plants had smaller chloroplasts With less grana. and poorly developed thylakoid membrane systems. These results suggested that the developmental status of chloroplasts was positively correlated with the level of PPF1 or its Arabidopsts homologue, ALB3. Our results suggested that PPF1 gene might regulate plant development by controlling chloroplast development.展开更多
The changes of chlorophyll_protein complexes and photosynthetic activities of chloroplast isolated from lotus ( Nelumbo nucifera Gaertn.) seeds germinating under illumination were studied. SDS PAGE analysis of c...The changes of chlorophyll_protein complexes and photosynthetic activities of chloroplast isolated from lotus ( Nelumbo nucifera Gaertn.) seeds germinating under illumination were studied. SDS PAGE analysis of chlorophyll_protein complexes showed that there was only the light harvesting chlorophyll a/b protein complex from PSⅡ (LHCⅡ) precursor in chloroplast from lotus seeds germinated for 2 to 6 days, while LHC Ⅱ 1, and the chlorophyll_protein complex of PSⅠ (CPⅠ) appeared on the 8th day of germination and PSⅡ reaction center complex appeared later. Studies on the polypeptides composition of the chloroplast revealed the following results: 1) Small amount of the 27 kD polypeptide was synthesized in invisible light; 2) The 30 kD polypeptide existed previously in the plumules of the dry seeds; 3) The amount of the 30 kD polypeptide was more than any other polypeptides before germination and decreased gradually throughout germination, while the 27 kD polypeptide changed in the opposite way; 4) In the process of germination, measurement of the electron transport rate and the fluorescence induction kinetics at room temperature showed that PSⅡ activities and efficiency of primary light energy transformation were only experimentally measurable after 7 days of germination and gradually increased afterwards. At the same time, the chl a/b ratio rose from the lower value to normal; 5) The changes of chloroplast membrane components and its functions are concomitant in concert with that of the ultrastructure of chloroplast membranes during germination, as shown in our earlier work . The results have proved again that a different developmental pathway of chloroplast is likely to exist in the lotus plumules, which might provide an important clue for N. nucifera in having an unique position in the phylogeny of the angiosperm.展开更多
[Objective]The aim was to research the relationship and genetic diversity of Indocalamus.[Method]Using 13 samples of Indocalamus and 3 samples of Sasa as materials,the intergenic regions of trnL-trnF gene in chloropla...[Objective]The aim was to research the relationship and genetic diversity of Indocalamus.[Method]Using 13 samples of Indocalamus and 3 samples of Sasa as materials,the intergenic regions of trnL-trnF gene in chloroplast were amplified by PCR,and sequence analysis and phylogenetic trees construction were carried out.[Result]Using the universal primer,the intergenic regions of trnL-trnF were amplified,the lengths of the segments varied from 1 008 bp to 1 103 bp,of which 940 bp was compared.The dendrogram of trnL-trnF sequences showed that Indocalamus and Sasa were clustered together and they were homologous by 99%.All the samples were divided into five groups,the first group included 12 samples such as Indosalamus pedalis,I.pumilus,I.victorialis,I.longiauritus,I.tessellatus,Sasa sinica,Sasa pygmaea,I.barbatus,I.guangdongensis,I.herklotsii,I.Hirtivaginatus and S.fortunei.I.decorus,I.lacunosus,I.Latifolius and I.Migoi were respectively divided into four groups.[Conclusion]The high homology of all samples showed the low evolution speed and little information sites which suggested that the phylogeny of Indocalamus could not be well resolved by the intergenic region of trnL-trnF.展开更多
[Objective] This study aimed to construct Brassica napus chloroplast multi- cistron double cross-over expression vector, to lay the foundation for the genetic engi- neering research of Brassica napus chloroplast. [Met...[Objective] This study aimed to construct Brassica napus chloroplast multi- cistron double cross-over expression vector, to lay the foundation for the genetic engi- neering research of Brassica napus chloroplast. [Method] Two primers were designed based on the known Brassica napus chloroplast DNA sequences AF267640 and Z50868 in GenBank. By using PCR method, two Brassica napus L. chloroplast DNA fragments were obtained, which were named RbcL and ACCD. The two Brassica na- pus chloroplast DNA homologous fragments were then cloned into plasmid pMD18-T to obtain recombinant plasmid pHBM715. Tandem expression cassette harboring spectinomycin-resistant gene aadA, mannanase gene man and green fluorescent pro- tein gene gfp was cloned into the plasmid pHBM715, thereby constructing Brassica napus chloroplast multicistron double cross-over expression vector pHBM716, which was transformed into Escherichia coil for expression and identification. [Result] Plate qualitative analysis was conducted for the functional identification of expression cas- sette in the constructed Brassica napus chloroplast multicistron double cross-over ex- pression vector, results showed that the three genes of the same multicistron were all expressed in E. coil [Conclusion] This study successfully constructed Brassica napus chloroplast multicistron double cross-over expression vector, which laid the foundation for the genetic engineering of Brassica napus chloroplast.展开更多
Wheat ( Triticum aestivum L.) plants were grown under ambient and doubled_CO 2(plus 350 μL/L) concentration in cylindrical open_top chamber to examine their effects on the ultrastructure, supramolecular architect...Wheat ( Triticum aestivum L.) plants were grown under ambient and doubled_CO 2(plus 350 μL/L) concentration in cylindrical open_top chamber to examine their effects on the ultrastructure, supramolecular architecture, absorption spectrum and low temperature (77 K) fluorescence emission spectrum of the chloroplasts from wheat leaves. The results were briefly summarized as follows: (1) The wheat leaves possessed normally developed chloroplasts with intact grana and stroma thylakoid membranes; The grana intertwined with stroma thylakoid membranes and increased slightly in stacking degree and the width of granum, in spite of more accumulated starch grains within the chloroplasts than those in control; (2) The particle density in the stacked region of the endoplasmic fracture face (EFs) and protoplasmic fracture face (PFs) and in the unstacked region the endoplasmic fracture face (EFu) and the protoplasmic fracture face (PFu) was significantly higher than that of control. Furthermore, in some cases many more particles on EFs faces of thylakoid membranes appeared as a paracrystalline particle array; (3) The variations in the structure of chloroplasts were consistent with the absorption spectra and the low temperature (77 K) fluorescence emission spectra of the chloroplasts developed under the doubled_CO 2 concentration. Results indicate that the capability of light energy absorption of chloroplasts and regulative capability of excitation energy distribution between PSⅡ and PSⅠ were raised by doubled_CO 2 concentration. This is very favorable for final productivity of wheat.展开更多
The interrelations between thylakoid polypeptide components and Mg 2+ induced Chl a fluorescence and thylakoid surface charge changes were investigated in Zostera marina chloroplasts treated with Ca 2+ and...The interrelations between thylakoid polypeptide components and Mg 2+ induced Chl a fluorescence and thylakoid surface charge changes were investigated in Zostera marina chloroplasts treated with Ca 2+ and trypsin. It was observed that:1. The increase of Mg 2+ induced PSⅡ fluorescence intensity was closely related to the decrease of Mg 2+ induced surface charge density of the thylakoid membrane in the normal chloroplast; 2. Removal of the 32~34 kD polypeptides of the thylakoid surface by Ca 2+ extraction of the chloroplast did not affect the Mg 2+ induced phenomena; 3. If the Ca 2+ treated chloroplast was further digested by trypsin to remove the 26 kD polypeptide of the membrane surface, the Mg 2+ induced phenomena disappeared completely. These results clearly indicated that the 26 kD polypeptide of thylakoid surface is the specific acting site of the cation that induced these two correlated phenomena in the chloroplast from Zostera marina. The mechanism on the regulating effect of the cation on excitation energy distribution between PSⅡ and PSⅠ was discussed.展开更多
Chloroplast genetic engineering, with several advantages over nuclear genetic engineering, is now regarded as an attractive new technology in basic and applied research, including deepening our understanding of plasti...Chloroplast genetic engineering, with several advantages over nuclear genetic engineering, is now regarded as an attractive new technology in basic and applied research, including deepening our understanding of plastid genome, engineering plant metabolic system, generating transplastomic plants with higher resistance to insect, disease, drought and herbicide and bioproducing of antibodies and vaccines. In this review, the principle and operating system for chloroplast genetic engineering and its application in higher plants have been discussed.展开更多
Marine microalga Isochrysis galbana is an important feed species with a high nutritional value.Different from other uni-cellular algae,its cell contains two chloroplasts which are the major sites for lipid synthesis.H...Marine microalga Isochrysis galbana is an important feed species with a high nutritional value.Different from other uni-cellular algae,its cell contains two chloroplasts which are the major sites for lipid synthesis.Here,we optimized a chloroplast isola-tion approach suitable for the isolation of I.galbana chloroplasts and determined the purity and integrity of the isolated chloroplasts through microscopic observations and enzyme activity assay.The chloroplast lipids were analyzed with a ultrahigh-performance li-quid chromatography-Q Exactive Orbitrap-mass spectrometry.This newly developed isolation approach is simple and reliable to isolate chloroplasts with high integrity and purity.The average yield of intact chloroplasts was 15.3%±0.1%.Glycolipids and acyl-glycerols were the main chloroplast lipids.Glycolipids accounted for 56.6%of chloroplast lipid.Digalactosyldiacylglycerol(DGDG),monogalactosyldiacylglycerol(MGDG)and sulfoquinovosyldiacylglycerol(SQDG)were the main glyceroglycolipids.The fatty acyl R1/R2 were mostly 18:4/16:1,18:3/16:1 and 18:4/18:5 in DGDGs,14:0/18:4,18:4/18:5,18:4/18:4 and 18:3/18:4 in MGDGs and 16:0/14:0,16:0/18:3,and 18:4/18:3 in SQDGs.In addition,diacylglycerol(DAG)was the most abundant acylglycerols;the content of 22:6/18:4-DAG was the highest.There was a little amount of glycosphingolipid(GSL)in chloroplast.Digalactosylmonoglyceride(DGMG),monogalactosylmonoglyceride(MGMG),sulfoquinovosylmonoacylglycerol(SQMG),monoglyceride(MAG),phospholi-pids(PLs),ceramide(Cer)and betaine lipids were nearly undetectable in chloroplast.The fatty acid proportions of DGDGs,MGDGs,SQDGs,DAGs,triglycerides(TAGs)and GSLs were either higher or lower than or similar to those of whole-cell.Collectively,our isolation approach is applicable to many aspects of chloroplast biology,and may offer a reference for the isolation of chloroplasts from other marine microalgae.展开更多
Characterization of energy-transduction on die chloroplast thylakoid membranes from spinach (Spinacia oleracca L.) after thermal pretreatment was investigated. The related reactions of energy-transduction in chloropla...Characterization of energy-transduction on die chloroplast thylakoid membranes from spinach (Spinacia oleracca L.) after thermal pretreatment was investigated. The related reactions of energy-transduction in chloroplasts were seriously affected by thermal pretreatment. The results were obtained as following: (1) The rate of cyclic photophosphorylation declined when the pretreatment temperature increased in the range of 25 to 45 degreesC. (2) The thermal pretreatment led to a decrease of the activity of thylakoid membrane-bounded ATPase. (3) Proton uptake of chloroplasts acid the fluorescence quenching of 9-aminoacridine (9-AA) in thylakoid membrane decreased after the thermal pretreatment, but addition of dicyclohexylcarbodiimide (DCCD) could partially restore the fluorescence quenching of 9-AA. (4) Both the rates of fast phase in electrochroism absorption change at 515 nm and the millisecond delayed light emission (ms-DLE) of chloroplast showed a progressive decrease upon raising the temperature of pretreatment. (5) Immunbloting analysis showed that the thermal pretreatment caused the changes of protein content and the electrophoresis mobility of thylakoid membrane-bound ATPase and its alpha -subunit. (6) If the temperature of pretreatment were higher than 33 degreesC, oxygen uptake of PS I -mediated in the samples was rapidly inhibited, but addition of sinapine into the reaction medium could partially restore the ability of oxygen uptake in the samples. These results are briefly discussed in relation to the change of permeability of thylakoid membranes, the dissociation of coupling factor complex as well as accumulation of the radicals in the thylakoid membranes after thermal pretreatment.展开更多
The ε-subunit is the smallest subunit of chloroplast ATP synthase, and is known to inhibit ATPase activity in isolated CF1-ATPase. As a result ε is sometimes called an inhibitory subunit. In addition, and perhaps mo...The ε-subunit is the smallest subunit of chloroplast ATP synthase, and is known to inhibit ATPase activity in isolated CF1-ATPase. As a result ε is sometimes called an inhibitory subunit. In addition, and perhaps more importantly, the ε -subunit is essential for the coupling of proton translocation to ATP synthesis (as proton gate). The relation between the structure and function of ε -subunit of ATP synthase in higher plant chloroplast has been studied by molecular biological methods such as site-directed mu-tagenesis and truncations for C- or N-terminus of ε -subunit. The results showed that: (1) Thr42 of ε-subunit is important for its structure and function; (2) compared with the ε-subunit in E.coli, the ε-subunit of chloroplast ATP synthase is more sensitive to C- or N-terminus truncations.展开更多
Codon usage in chloroplast genome of six seed plants (Arabidopsis thaliana, Populus alba, Zea mays, Triticum aestivum, Pinus koraiensis and Cycas taitungensis) was analyzed to find general patterns of codon usage in...Codon usage in chloroplast genome of six seed plants (Arabidopsis thaliana, Populus alba, Zea mays, Triticum aestivum, Pinus koraiensis and Cycas taitungensis) was analyzed to find general patterns of codon usage in chloroplast genomes of seed plants. The results show that chloroplast genomes of the six seed plants had similar codon usage patterns, with a strong bias towards a high representation of NNA and NNT codons. In chloroplast genomes of the six seed plants, the effective number of codons (ENC) for most genes was similar to that of the expected ENC based on the GC content at the third codon position, but several genes with low ENC values were laying below the expected curve. All of these data indicate that codon usage was dominated by a mutational bias in chloroplast genomes of seed plants and that selection appeared to be limited to a subset of genes and to only subtly affect codon usage. Meantime, four, six, eight, nine, ten and 12 codons were defined as the optimal codons in chloroplast genomes of the six seed plants.展开更多
Effects of silicon on photosynthetic parameters and antioxidant enzymes of chloroplast in cucumber seedlings under excess Mn were studied. Compared with the control, excess Mn significantly inhibited net photosyntheti...Effects of silicon on photosynthetic parameters and antioxidant enzymes of chloroplast in cucumber seedlings under excess Mn were studied. Compared with the control, excess Mn significantly inhibited net photosynthetic rate (Pn), stomatal conductance, as well as the maximum yield of the photosystem II photochemical reactions (Fv/Fm) and the quantum yield of photosysytem II electron transport (Φ PSII), application of Si reversed the negative effects of excess Mn. In the further investigation, it was obtained that application of Si significantly increased the activities of enzymes related with ascorbate-glutathione cycle including ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) in cucumber chloroplast under excess Mn, this could be responsible for the lower accumulation of H2O2 and lower lipid peroxidation of chloroplast induced by Mn, and resulted in keeping higher photosynthesis.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.32000167,32370219)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2020L0524)+1 种基金the Fundamental Research Program of Shanxi Province(No.20210302124302)the Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin,Taiyuan Normal University。
文摘Members of the family Scenedesmaceae are some of the most common algal taxa in inland ecosystems,and they are widely distributed in freshwaters,aerial,and sub-aerial habitats.With the continuous updating of methods,the classic morphological taxonomy of this family needs to be revised.In recent years,many genera of Scenedesmaceae have been established via the use of molecular methods.The phylogenetic relationships within Scenedesmaceae were analyzed using different molecular markers and morphological data,and the new freshwater genus Coccoidesmus Wang,Hou et Liu gen.nov.was described.Two new species in this genus were also described.Phylogenetic analysis based on tufA genes revealed that the new genus formed an independent clade closely related to Comasiella.However,these two genera are characterized by significant morphological differences in colony arrangement and cell shape.The chloroplast genome of the type species was assembled and annotated,and analyses of genome structure and sequences were conducted.More genome data could help clarify the phylogenetic relationships within this family.
基金This work was funded by the National Natural Science Foundation of China(32172597 and 31830067)the Chongqing Talents of Exceptional Young Talents Project,China(CQYC202005097,cstc2021ycjh-bgzxm0204,and cstc2021jcyj-bshX0002)+2 种基金the China Agriculture Research System of MOF and MARA(CARS-12)the 111 Project,China(B12006)the Germplasm Creation Special Program of Southwest University,China。
文摘Enhancing photosynthetic efficiency is a major goal for improving crop yields under agricultural field conditions and is associated with chloroplast biosynthesis and development.In this study,we demonstrate that Golden2-like 1a(BnGLK1a)plays an important role in regulating chloroplast development and photosynthetic efficiency.Overexpressing BnGLK1a resulted in significant increases in chlorophyll content,the number of thylakoid membrane layers and photosynthetic efficiency in Brassica napus,while knocking down BnGLK1a transcript levels through RNA interference(RNAi)had the opposite effects.A yeast two-hybrid screen revealed that BnGLK1a interacts with the abscisic acid receptor PYRABACTIN RESISTANCE 1-LIKE 1-2(BnPYL1-2)and CONSTITUTIVE PHOTOMORPHOGENIC 9 SIGNALOSOME 5A subunit(BnCSN5A),which play essential roles in regulating chloroplast development and photosynthesis.Consistent with this,BnGLK1a-RNAi lines of B.napus display hypersensitivity to the abscisic acid(ABA)response.Importantly,overexpression of BnGLK1a resulted in a 10%increase in thousand-seed weight,whereas seeds from BnGLK1a-RNAi lines were 16%lighter than wild type.We propose that BnGLK1a could be a potential target in breeding for improving rapeseed productivity.Our results not only provide insights into the mechanisms of BnGLK1a function,but also offer a potential approach for improving the productivity of Brassica species.
基金funded by the Jiangxi Provincial Natural Science Foundation,Grant Number 20232BAB216119.
文摘Rosaceae represents a vast and complex group of species,with its classification being intricate and contentious.The taxonomic placement of many species within this family has been a subject of ongoing debate.The study utilized the Illumina platform to sequence 19 plant species from 10 genera in the Rosaceae.The cp genomes,vary-ing in size from 153,366 to 159,895 bp,followed the typical quadripartite organization consisting of a large single-copy(LSC)region(84,545 to 87,883 bp),a small single-copy(SSC)region(18,174 to 19,259 bp),and a pair of inverted repeat(IR)regions(25,310 to 26,396 bp).These genomes contained 132–138 annotated genes,including 87 to 93 protein-coding genes(PCGs),37 tRNA genes,and 8 rRNA genes using MISA software,52 to 121 simple sequence repeat(SSR)loci were identified.D.arbuscular contained the least of SSRs and did not have hexanotides,A.lineata contained the richest SSRs.Long terminal repeats(LTRs)were primarily composed of palindromic and forward repeat sequences,meanwhile,The richest LTRs were found in Argentina lineata.Except for Argentina lineata,Fragariastrum eriocarpum,and Prunus trichostoma,which varied in gene type and position on both sides of the boundary,the remaining species were found to be mostly conserved according to IR boundary analysis.The examination of the Ka/Ks ratio revealed that only the infA gene had a value greater than 1,indicating that this gene was primarily subjected to positive selection during evolution.Additionally,9 hotspots of variation were identified in the LSC and SSC regions.Phylogenetic analysis confirmed the scientific validity of the genus Prunus L.sensu lato(s.l.)within the Rosaceae family.The separation of the three genera Argentina Hill,Fragariastrum Heist.ex Fabr.and Dasiphora Raf.from Potentilla L.may be a more scientific classification.These results offer fresh perspectives on the taxonomy of the Rosaceae.
基金The Natural Science Foundation of China(32060078)the Natural Science Foundation of Jiangxi(20171BAB214024,20202BABL 203044)+4 种基金the Special Program of Science and Technology Cooperation of Jiangxi Provincial Department of Science and Technology(20212BDH81022)The Education Reform Program of Jiangxi Provincial Department of Education(JXJG-22-23-3,JXJG-23-23-5)the“Biology and Medicine”Discipline Construction Project of Nanchang Normal University(100/20149)Jiangxi Province Key Laboratory of Oil Crops Biology(YLKFKT202203)Education Reform Program of Nanchang Normal University(NSJG-21-25).
文摘The analysis of chloroplast gene characteristics in Alpinia japonica(Thunb.)Miq.is of great significance for developing relevant genetic resources.The high-throughput sequencing and bioinformatic research were performed to analyze the chloroplast genome characteristics of A.japonica.The total chloroplast genome length of A.japonica was 161,906 bp,with a typical circular tetrameric structure.And 133 genes were annotated,comprising 87 protein-coding,38 tRNA,and 8 rRNA genes.Furthermore,22 genes contained two copies,and 18 genes owned introns.Repeat sequence analysis showed that it contains 321 simple sequence repeats(SSRs)and 37 long segment repeats.Compared with the chloroplast genomes of eight representative plants in the genus Alpinia,the gene structure,type,and quantity were relatively conservative.Rps12 was the highest variation site in the entire chloroplast gene.A phylogenetic tree showed that the genus Alpinia was the most closely related to the genus Amomum.Meanwhile,A.japonica is the most closely related to Alpinia chinensis belonging to the genus Alpinia.Overall,the chloroplast genome of a new species was reported in the genus Alpinia,and a basis was provided for the utilization of Alpinia plants as a medical resource.
基金Supported by National Natural Science Foundation of China(31360357)Natural Science Foundation of Guangxi Zhuang Autonomous Region(2013GXNSFAA019051)Earmarked Fund for China Agriculture Research System(CARS-20-1-3)~~
文摘Along with the development of modern molecular biology technologies, complete chloroplast genomes have been sequenced in various plant species to date, and the structure, function and expression of these genes have been deter-mined. The chloroplast genome structure in most higher plants is stable, since the gene number, arrangement and composition are conservative. The determination of sugarcane chloroplast genome sequence laid a good foundation for sugarcane chloroplast related research. This article gives a review on the research progress of sugarcane chloroplast genome through the chloroplast genome map, gene structure, function, chloroplast RNA editing, and phylogenetic analysis in Saccharum and relat-ed genera. This study held great potential to clarify more directions in researches, including sugarcane chloroplast genetic transformation, complete chloroplast nu-cleotide sequence determination in Saccharum and closely related genera, cpSSRs development and application.
文摘Chloroplast simple sequence repeat (cpSSR) markers in Citrus were developed and successfully used to analyze chloroplast genome inheritance of Citrus somatic hybrids. Twenty-two previously reported cpSSR primer pairs from pine (Pinus thunbergii Parl.), rice (Otyza sativa L.) and tobacco (Nicotiana tabacum L.) were tested in Citrus, nine of which could amplify intensive PCR products by agarose gel electrophoresis. Chloroplast genome inheritance of Citrus somatic hybrids from nine fusions was then analyzed, and five of the nine pre-screened primer pairs showed polymorphisms by polyacrylamide gel electrophoresis. The results revealed the random inheritance nature of chloroplast genome in all analyzed Citrus somatic hybrids, which was in agreement with previous reports based on RFLP or CAPS analyses. It was also shown that cpSSR is a more efficient tool in chloroplast genome analyses of somatic hybrids in higher plants, compared with the conventional RFLP or CAPS analyses.
文摘The inheritance of mitochondrial (mt) DNA and chloroplast (cp) DNA was investigated in intergeneric hybrids from crossing between Cunninghamia lanceolata (Lamb.) Hook. and Cryptomeria fortunei Hooibrenk. The chloroplast trnL trnF region and one intra genic segment of the mitochondrial gene, Cox Ⅲ, were amplified from those of the parents and hybrids by PCR using gene specific primers. Cp and mtDNA polymorphisms of the amplified regions were detected between the parents after restriction digestions. Restriction fragment length polymorphism (RFLP) analysis revealed that all the F 1 individuals possessed Cox Ⅲ restriction fragment patterns (characteristic of the paternal parent Cryptomeria fortunei ) and the trnL trnF region (identical to the maternal parent Cunninghamia lanceolata ) showing that a different mode of inheritance for organelle DNA has occurred in the hybrids. Furthermore, the maternal inheritance of chloroplast DNA is reported here for the first time in coniferophyta.
文摘PPF1 is a vegetative growth related gene that encodes a putative membrane protein having high homology with Arabidopsis chloroplast thylakoid protein ALB3. Immunoelectron microscopic assay showed that PPF1 was mainly localized in the thylakold membrane and was highly expressed in well-developed chloroplasts of short day (SD) grown G2 pea while having a very low abundance in chloroplasts of long day (LD) grown plants two weeks after flowering. Comparison of the leaf senescence processes in transgenic Arabidopsis and wild type plants revealed that overexpression of PPF1 delayed leaf senescence, while the depression of its Arabidopsts homologue (ALB3) with PPF1 antisense mRNA accelerated leaf senescence obviously. Ultrastructural analysis of transgenic Arabidopsis plants showed that when PPF1 was overexpressed in Arabidopsis, the chloroplasts were bigger and had much more grana and stroma thylakoid membranes than those of wild type plants. On the contrary, when PPF1 was expressed in antisense orientation to reduce the level of PPF1 homologue in Arabidopsis, the transgenic plants had smaller chloroplasts With less grana. and poorly developed thylakoid membrane systems. These results suggested that the developmental status of chloroplasts was positively correlated with the level of PPF1 or its Arabidopsts homologue, ALB3. Our results suggested that PPF1 gene might regulate plant development by controlling chloroplast development.
文摘The changes of chlorophyll_protein complexes and photosynthetic activities of chloroplast isolated from lotus ( Nelumbo nucifera Gaertn.) seeds germinating under illumination were studied. SDS PAGE analysis of chlorophyll_protein complexes showed that there was only the light harvesting chlorophyll a/b protein complex from PSⅡ (LHCⅡ) precursor in chloroplast from lotus seeds germinated for 2 to 6 days, while LHC Ⅱ 1, and the chlorophyll_protein complex of PSⅠ (CPⅠ) appeared on the 8th day of germination and PSⅡ reaction center complex appeared later. Studies on the polypeptides composition of the chloroplast revealed the following results: 1) Small amount of the 27 kD polypeptide was synthesized in invisible light; 2) The 30 kD polypeptide existed previously in the plumules of the dry seeds; 3) The amount of the 30 kD polypeptide was more than any other polypeptides before germination and decreased gradually throughout germination, while the 27 kD polypeptide changed in the opposite way; 4) In the process of germination, measurement of the electron transport rate and the fluorescence induction kinetics at room temperature showed that PSⅡ activities and efficiency of primary light energy transformation were only experimentally measurable after 7 days of germination and gradually increased afterwards. At the same time, the chl a/b ratio rose from the lower value to normal; 5) The changes of chloroplast membrane components and its functions are concomitant in concert with that of the ultrastructure of chloroplast membranes during germination, as shown in our earlier work . The results have proved again that a different developmental pathway of chloroplast is likely to exist in the lotus plumules, which might provide an important clue for N. nucifera in having an unique position in the phylogeny of the angiosperm.
基金the Supporting Program of the "Eleventh Five-year Plan" for Sci & Tech Research (2006BAD19B0202)The Programof Special Funds for basic scientific research of International Center for Bamboo and Rattan (1632009007)Foundation Item of International Center for Bamboo and Rattan (06 /07-C22)~~
文摘[Objective]The aim was to research the relationship and genetic diversity of Indocalamus.[Method]Using 13 samples of Indocalamus and 3 samples of Sasa as materials,the intergenic regions of trnL-trnF gene in chloroplast were amplified by PCR,and sequence analysis and phylogenetic trees construction were carried out.[Result]Using the universal primer,the intergenic regions of trnL-trnF were amplified,the lengths of the segments varied from 1 008 bp to 1 103 bp,of which 940 bp was compared.The dendrogram of trnL-trnF sequences showed that Indocalamus and Sasa were clustered together and they were homologous by 99%.All the samples were divided into five groups,the first group included 12 samples such as Indosalamus pedalis,I.pumilus,I.victorialis,I.longiauritus,I.tessellatus,Sasa sinica,Sasa pygmaea,I.barbatus,I.guangdongensis,I.herklotsii,I.Hirtivaginatus and S.fortunei.I.decorus,I.lacunosus,I.Latifolius and I.Migoi were respectively divided into four groups.[Conclusion]The high homology of all samples showed the low evolution speed and little information sites which suggested that the phylogeny of Indocalamus could not be well resolved by the intergenic region of trnL-trnF.
基金Supported by National 863 Project of China (2002AA227011)Natural Science Foundation of Hubei Province (2003ABAI18)Natural Science Foundation of Shandong Province (ZR2010HQ054)~~
文摘[Objective] This study aimed to construct Brassica napus chloroplast multi- cistron double cross-over expression vector, to lay the foundation for the genetic engi- neering research of Brassica napus chloroplast. [Method] Two primers were designed based on the known Brassica napus chloroplast DNA sequences AF267640 and Z50868 in GenBank. By using PCR method, two Brassica napus L. chloroplast DNA fragments were obtained, which were named RbcL and ACCD. The two Brassica na- pus chloroplast DNA homologous fragments were then cloned into plasmid pMD18-T to obtain recombinant plasmid pHBM715. Tandem expression cassette harboring spectinomycin-resistant gene aadA, mannanase gene man and green fluorescent pro- tein gene gfp was cloned into the plasmid pHBM715, thereby constructing Brassica napus chloroplast multicistron double cross-over expression vector pHBM716, which was transformed into Escherichia coil for expression and identification. [Result] Plate qualitative analysis was conducted for the functional identification of expression cas- sette in the constructed Brassica napus chloroplast multicistron double cross-over ex- pression vector, results showed that the three genes of the same multicistron were all expressed in E. coil [Conclusion] This study successfully constructed Brassica napus chloroplast multicistron double cross-over expression vector, which laid the foundation for the genetic engineering of Brassica napus chloroplast.
文摘Wheat ( Triticum aestivum L.) plants were grown under ambient and doubled_CO 2(plus 350 μL/L) concentration in cylindrical open_top chamber to examine their effects on the ultrastructure, supramolecular architecture, absorption spectrum and low temperature (77 K) fluorescence emission spectrum of the chloroplasts from wheat leaves. The results were briefly summarized as follows: (1) The wheat leaves possessed normally developed chloroplasts with intact grana and stroma thylakoid membranes; The grana intertwined with stroma thylakoid membranes and increased slightly in stacking degree and the width of granum, in spite of more accumulated starch grains within the chloroplasts than those in control; (2) The particle density in the stacked region of the endoplasmic fracture face (EFs) and protoplasmic fracture face (PFs) and in the unstacked region the endoplasmic fracture face (EFu) and the protoplasmic fracture face (PFu) was significantly higher than that of control. Furthermore, in some cases many more particles on EFs faces of thylakoid membranes appeared as a paracrystalline particle array; (3) The variations in the structure of chloroplasts were consistent with the absorption spectra and the low temperature (77 K) fluorescence emission spectra of the chloroplasts developed under the doubled_CO 2 concentration. Results indicate that the capability of light energy absorption of chloroplasts and regulative capability of excitation energy distribution between PSⅡ and PSⅠ were raised by doubled_CO 2 concentration. This is very favorable for final productivity of wheat.
基金the NationalNaturalScience Foundation ofChina and partly supported
文摘The interrelations between thylakoid polypeptide components and Mg 2+ induced Chl a fluorescence and thylakoid surface charge changes were investigated in Zostera marina chloroplasts treated with Ca 2+ and trypsin. It was observed that:1. The increase of Mg 2+ induced PSⅡ fluorescence intensity was closely related to the decrease of Mg 2+ induced surface charge density of the thylakoid membrane in the normal chloroplast; 2. Removal of the 32~34 kD polypeptides of the thylakoid surface by Ca 2+ extraction of the chloroplast did not affect the Mg 2+ induced phenomena; 3. If the Ca 2+ treated chloroplast was further digested by trypsin to remove the 26 kD polypeptide of the membrane surface, the Mg 2+ induced phenomena disappeared completely. These results clearly indicated that the 26 kD polypeptide of thylakoid surface is the specific acting site of the cation that induced these two correlated phenomena in the chloroplast from Zostera marina. The mechanism on the regulating effect of the cation on excitation energy distribution between PSⅡ and PSⅠ was discussed.
文摘Chloroplast genetic engineering, with several advantages over nuclear genetic engineering, is now regarded as an attractive new technology in basic and applied research, including deepening our understanding of plastid genome, engineering plant metabolic system, generating transplastomic plants with higher resistance to insect, disease, drought and herbicide and bioproducing of antibodies and vaccines. In this review, the principle and operating system for chloroplast genetic engineering and its application in higher plants have been discussed.
基金supported by the Ningbo Science and Technology Research Projects(No.2019B10006)the Na-tional Key Research and Development Program of China(No.2019YFD0900400)+3 种基金the Zhejiang Major Science Pro-ject(No.2019C02057)the China Agriculture Research System of MOF and MARA,the Natural Science Founda-tion of Ningbo(No.2019A610416)the Ningbo Science and Technology Research Projects(No.2019C10023)the National Natural Science Foundation of China(No.31801724).
文摘Marine microalga Isochrysis galbana is an important feed species with a high nutritional value.Different from other uni-cellular algae,its cell contains two chloroplasts which are the major sites for lipid synthesis.Here,we optimized a chloroplast isola-tion approach suitable for the isolation of I.galbana chloroplasts and determined the purity and integrity of the isolated chloroplasts through microscopic observations and enzyme activity assay.The chloroplast lipids were analyzed with a ultrahigh-performance li-quid chromatography-Q Exactive Orbitrap-mass spectrometry.This newly developed isolation approach is simple and reliable to isolate chloroplasts with high integrity and purity.The average yield of intact chloroplasts was 15.3%±0.1%.Glycolipids and acyl-glycerols were the main chloroplast lipids.Glycolipids accounted for 56.6%of chloroplast lipid.Digalactosyldiacylglycerol(DGDG),monogalactosyldiacylglycerol(MGDG)and sulfoquinovosyldiacylglycerol(SQDG)were the main glyceroglycolipids.The fatty acyl R1/R2 were mostly 18:4/16:1,18:3/16:1 and 18:4/18:5 in DGDGs,14:0/18:4,18:4/18:5,18:4/18:4 and 18:3/18:4 in MGDGs and 16:0/14:0,16:0/18:3,and 18:4/18:3 in SQDGs.In addition,diacylglycerol(DAG)was the most abundant acylglycerols;the content of 22:6/18:4-DAG was the highest.There was a little amount of glycosphingolipid(GSL)in chloroplast.Digalactosylmonoglyceride(DGMG),monogalactosylmonoglyceride(MGMG),sulfoquinovosylmonoacylglycerol(SQMG),monoglyceride(MAG),phospholi-pids(PLs),ceramide(Cer)and betaine lipids were nearly undetectable in chloroplast.The fatty acid proportions of DGDGs,MGDGs,SQDGs,DAGs,triglycerides(TAGs)and GSLs were either higher or lower than or similar to those of whole-cell.Collectively,our isolation approach is applicable to many aspects of chloroplast biology,and may offer a reference for the isolation of chloroplasts from other marine microalgae.
文摘Characterization of energy-transduction on die chloroplast thylakoid membranes from spinach (Spinacia oleracca L.) after thermal pretreatment was investigated. The related reactions of energy-transduction in chloroplasts were seriously affected by thermal pretreatment. The results were obtained as following: (1) The rate of cyclic photophosphorylation declined when the pretreatment temperature increased in the range of 25 to 45 degreesC. (2) The thermal pretreatment led to a decrease of the activity of thylakoid membrane-bounded ATPase. (3) Proton uptake of chloroplasts acid the fluorescence quenching of 9-aminoacridine (9-AA) in thylakoid membrane decreased after the thermal pretreatment, but addition of dicyclohexylcarbodiimide (DCCD) could partially restore the fluorescence quenching of 9-AA. (4) Both the rates of fast phase in electrochroism absorption change at 515 nm and the millisecond delayed light emission (ms-DLE) of chloroplast showed a progressive decrease upon raising the temperature of pretreatment. (5) Immunbloting analysis showed that the thermal pretreatment caused the changes of protein content and the electrophoresis mobility of thylakoid membrane-bound ATPase and its alpha -subunit. (6) If the temperature of pretreatment were higher than 33 degreesC, oxygen uptake of PS I -mediated in the samples was rapidly inhibited, but addition of sinapine into the reaction medium could partially restore the ability of oxygen uptake in the samples. These results are briefly discussed in relation to the change of permeability of thylakoid membranes, the dissociation of coupling factor complex as well as accumulation of the radicals in the thylakoid membranes after thermal pretreatment.
文摘The ε-subunit is the smallest subunit of chloroplast ATP synthase, and is known to inhibit ATPase activity in isolated CF1-ATPase. As a result ε is sometimes called an inhibitory subunit. In addition, and perhaps more importantly, the ε -subunit is essential for the coupling of proton translocation to ATP synthesis (as proton gate). The relation between the structure and function of ε -subunit of ATP synthase in higher plant chloroplast has been studied by molecular biological methods such as site-directed mu-tagenesis and truncations for C- or N-terminus of ε -subunit. The results showed that: (1) Thr42 of ε-subunit is important for its structure and function; (2) compared with the ε-subunit in E.coli, the ε-subunit of chloroplast ATP synthase is more sensitive to C- or N-terminus truncations.
基金supported in part by the Hi-Tech Re-search and Development Program of China ("863" Program) (No. 2007AA02Z329)the National Natural Science Foundation of China (Grant No. 20060213024)
文摘Codon usage in chloroplast genome of six seed plants (Arabidopsis thaliana, Populus alba, Zea mays, Triticum aestivum, Pinus koraiensis and Cycas taitungensis) was analyzed to find general patterns of codon usage in chloroplast genomes of seed plants. The results show that chloroplast genomes of the six seed plants had similar codon usage patterns, with a strong bias towards a high representation of NNA and NNT codons. In chloroplast genomes of the six seed plants, the effective number of codons (ENC) for most genes was similar to that of the expected ENC based on the GC content at the third codon position, but several genes with low ENC values were laying below the expected curve. All of these data indicate that codon usage was dominated by a mutational bias in chloroplast genomes of seed plants and that selection appeared to be limited to a subset of genes and to only subtly affect codon usage. Meantime, four, six, eight, nine, ten and 12 codons were defined as the optimal codons in chloroplast genomes of the six seed plants.
基金supported by the National Key Technologies R&D Program during the 11th Five-Year Plan period of China (2008BADA4B05)the Excellent Young Scientist Foundation of Shandong Province,China (2006BS06019)
文摘Effects of silicon on photosynthetic parameters and antioxidant enzymes of chloroplast in cucumber seedlings under excess Mn were studied. Compared with the control, excess Mn significantly inhibited net photosynthetic rate (Pn), stomatal conductance, as well as the maximum yield of the photosystem II photochemical reactions (Fv/Fm) and the quantum yield of photosysytem II electron transport (Φ PSII), application of Si reversed the negative effects of excess Mn. In the further investigation, it was obtained that application of Si significantly increased the activities of enzymes related with ascorbate-glutathione cycle including ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) in cucumber chloroplast under excess Mn, this could be responsible for the lower accumulation of H2O2 and lower lipid peroxidation of chloroplast induced by Mn, and resulted in keeping higher photosynthesis.