With the rapid development of cloud manufacturing technology and the new generation of artificial intelligence technology,the new cloud manufacturing system(NCMS)built on the connotation of cloud manufacturing 3.0 pre...With the rapid development of cloud manufacturing technology and the new generation of artificial intelligence technology,the new cloud manufacturing system(NCMS)built on the connotation of cloud manufacturing 3.0 presents a new business model of“Internet of everything,intelligent leading,data driving,shared services,cross-border integration,and universal innovation”.The network boundaries are becoming increasingly blurred,NCMS is facing security risks such as equipment unauthorized use,account theft,static and extensive access control policies,unauthorized access,supply chain attacks,sensitive data leaks,and industrial control vulnerability attacks.Traditional security architectures mainly use information security technology,which cannot meet the active security protection requirements of NCMS.In order to solve the above problems,this paper proposes an integrated cloud-edge-terminal security system architecture of NCMS.It adopts the zero trust concept and effectively integrates multiple security capabilities such as network,equipment,cloud computing environment,application,identity,and data.It adopts a new access control mode of“continuous verification+dynamic authorization”,classified access control mechanisms such as attribute-based access control,rolebased access control,policy-based access control,and a new data security protection system based on blockchain,achieving“trustworthy subject identity,controllable access behavior,and effective protection of subject and object resources”.This architecture provides an active security protection method for NCMS in the digital transformation of large enterprises,and can effectively enhance network security protection capabilities and cope with increasingly severe network security situations.展开更多
In a cloud manufacturing environment with abundant functionally equivalent cloud services,users naturally desire the highest-quality service(s).Thus,a comprehensive measurement of quality of service(QoS)is needed.Opti...In a cloud manufacturing environment with abundant functionally equivalent cloud services,users naturally desire the highest-quality service(s).Thus,a comprehensive measurement of quality of service(QoS)is needed.Opti-mizing the plethora of cloud services has thus become a top priority.Cloud ser-vice optimization is negatively affected by untrusted QoS data,which are inevitably provided by some users.To resolve these problems,this paper proposes a QoS-aware cloud service optimization model and establishes QoS-information awareness and quantification mechanisms.Untrusted data are assessed by an information correction method.The weights discovered by the variable precision Rough Set,which mined the evaluation indicators from historical data,providing a comprehensive performance ranking of service quality.The manufacturing cloud service optimization algorithm thus provides a quantitative reference for service selection.In experimental simulations,this method recommended the optimal services that met users’needs,and effectively reduced the impact of dis-honest users on the selection results.展开更多
Cloud manufacturing is a new, networked and intelligent manufacturing model that is service-oriented. know edge based, high performance, and energy efficient. In this model, state-of-the-art technologies such as infor...Cloud manufacturing is a new, networked and intelligent manufacturing model that is service-oriented. know edge based, high performance, and energy efficient. In this model, state-of-the-art technologies such as informatized manufacturing, cloud computing, intemet of Things, semantic Web, aria high-performance computing are integrated in oroer to provide secure, reliabte. and high quality on-demand services at low prices for those involved in the whole manufacturing lifecycie. As an important part of cioud manufacturing, cloud simulation technology based on the COSIM-CSP platform has primarily been aoplied in thedesign of a multidisciplinary virtual prototype of a flight vehicle. This lays the foundation for further research into cloud manufacturina.展开更多
With the continuous development of cloud manufacturing technology,in order to solve more complex manufacturing problem and conduct large-scale networked manufacturing,combining with the characteristic of discrete manu...With the continuous development of cloud manufacturing technology,in order to solve more complex manufacturing problem and conduct large-scale networked manufacturing,combining with the characteristic of discrete manufacturing enterprise's demands and RFID( Radio Frequency Identification),a kind of RFIDbased cloud manufacturing resource-aware and access technology is proposed. Firstly,the architecture of the cloud manufacturing system and RFID system is briefly introduced. Then,the key technologies of manufacturing resource-aware and access technology are analyzed,including anti-collision technology,reader management technology and so on. Finally,taking the manufacturing of the key components in discrete manufacturing enterprise as an example,the practicality and feasibility of the technology is verified. The results show that the application of this technology provides a strong guarantee for the sharing and collaboration of manufacturing resources and capacity in the discrete manufacturing industry.展开更多
Cloud manufacturing is a specific implementation form of the "Internet + manufacturing" strategy. Why and how to develop cloud manufacturing platform(CMP), however, remains the key concern of both platform o...Cloud manufacturing is a specific implementation form of the "Internet + manufacturing" strategy. Why and how to develop cloud manufacturing platform(CMP), however, remains the key concern of both platform operators and users. A microscopic model is proposed to investigate advantages and diffusion forces of CMP through exploration of its diffusion process and mechanism. Specifically, a three-stage basic evolution process of CMP is innovatively proposed. Then, based on this basic process, a more complex CMP evolution model has been established in virtue of complex network theory, with five diffusion forces identified. Thereafter, simulations on CMP diffusion have been conducted. The results indicate that, CMP possesses better resource utilization,user satisfaction, and enterprise utility. Results of simulation on impacts of different diffusion forces show that both the time required for CMP to reach an equilibrium state and the final network size are affected simultaneously by the five diffusion forces. All these analyses indicate that CMP could create an open online cooperation environment and turns out to be an effective implementation of the "Internet + manufacturing" strategy.展开更多
Cloud manufacturing has become a reality. It requires sensing and capturing heterogeneous manufacturing resources and extensive data analysis through the industrial internet. However,the cloud computing and serviceori...Cloud manufacturing has become a reality. It requires sensing and capturing heterogeneous manufacturing resources and extensive data analysis through the industrial internet. However,the cloud computing and serviceoriented architecture are slightly inadequate in dynamic manufacturing resource management. This paper integrates the technology of edge computing and microservice and develops an intelligent edge gateway for internet of thing(IoT)-based manufacturing. Distributed manufacturing resources can be accessed through the edge gateway,and cloud-edge collaboration can be realized. The intelligent edge gateway provides a solution for complex resource ubiquitous perception in current manufacturing scenarios. Finally,a prototype system is developed to verify the effectiveness of the intelligent edge gateway.展开更多
In order to optimize resource integration and optimal scheduling problems in the cloud manufacturing environment,this paper proposes to use load balancing,service cost and service quality as optimization goals for res...In order to optimize resource integration and optimal scheduling problems in the cloud manufacturing environment,this paper proposes to use load balancing,service cost and service quality as optimization goals for resource scheduling,however,resource providers have resource utilization requirements for cloud manufacturing platforms.In the process of resource optimization scheduling,the interests of all parties have conflicts of interest,which makes it impossible to obtain better optimization results for resource scheduling.Therefore,amultithreaded auto-negotiation method based on the Stackelberg game is proposed to resolve conflicts of interest in the process of resource scheduling.The cloud manufacturing platform first calculates the expected value reduction plan for each round of global optimization,using the negotiation algorithm based on the Stackelberg game,the cloud manufacturing platformnegotiates andmediateswith the participants’agents,to maximize self-interest by constantly changing one’s own plan,iteratively find multiple sets of locally optimized negotiation plans and return to the cloud manufacturing platform.Through multiple rounds of negotiation and calculation,we finally get a target expected value reduction plan that takes into account the benefits of the resource provider and the overall benefits of the completion of the manufacturing task.Finally,through experimental simulation and comparative analysis,the validity and rationality of the model are verified.展开更多
As a new mode and means of smart manufacturing,smart cloud manufacturing(SCM)faces great challenges in massive supply and demand,dynamic resource collaboration and intelligent adaptation.To address the problem,this pa...As a new mode and means of smart manufacturing,smart cloud manufacturing(SCM)faces great challenges in massive supply and demand,dynamic resource collaboration and intelligent adaptation.To address the problem,this paper proposes an SCM-oriented dynamic supply-demand(SD)intelligent adaptation model for massive manufacturing services.In this model,a collaborative network model is established based on the properties of both the supply-demand and their relationships;in addition,an algorithm based on deep graph clustering(DGC)and aligned sampling(AS)is used to divide and conquer the large adaptation domain to solve the problem of the slow computational speed caused by the high complexity of spatiotemporal search in the collaborative network model.At the same time,an intelligent supply-demand adaptation method driven by the quality of service(QoS)is established,in which the experiences of adaptation are shared among adaptation subdomains through deep reinforcement learning(DRL)powered by a transfer mechanism to improve the poor adaptation results caused by dynamic uncertainty.The results show that the model and the solution proposed in this paper can performcollaborative and intelligent supply-demand adaptation for themassive and dynamic resources in SCM through autonomous learning and can effectively performglobal supply-demand matching and optimal resource allocation.展开更多
The pharmaceutical industry’s increasing adoption of cloud-based technologies has introduced new challenges in computerized systems validation (CSV). This paper explores the evolving landscape of cloud validation in ...The pharmaceutical industry’s increasing adoption of cloud-based technologies has introduced new challenges in computerized systems validation (CSV). This paper explores the evolving landscape of cloud validation in pharmaceutical manufacturing, focusing on ensuring data integrity and regulatory compliance in the digital era. We examine the unique characteristics of cloud-based systems and their implications for traditional validation approaches. A comprehensive review of current regulatory frameworks, including FDA and EMA guidelines, provides context for discussing cloud-specific validation challenges. The paper introduces a risk-based approach to cloud CSV, detailing methodologies for assessing and mitigating risks associated with cloud adoption in pharmaceutical environments. Key considerations for maintaining data integrity in cloud systems are analyzed, particularly when applying ALCOA+ principles in distributed computing environments. The article presents strategies for adapting traditional Installation Qualification (IQ), Operational Qualification (OQ), and Performance Qualification (PQ) models to cloud-based systems, highlighting the importance of continuous validation in dynamic cloud environments. The paper also explores emerging trends, including integrating artificial intelligence and edge computing in pharmaceutical manufacturing and their implications for future validation strategies. This research contributes to the evolving body of knowledge on cloud validation in pharmaceuticals by proposing a framework that balances regulatory compliance with the agility offered by cloud technologies. The findings suggest that while cloud adoption presents unique challenges, a well-structured, risk-based approach to validation can ensure the integrity and compliance of cloud-based systems in pharmaceutical manufacturing.展开更多
Our next generation of industry-lndustry 4.0-holds the promise of increased flexibility in manufacturing, along with mass customization, better quality, and improved productivity. It thus enables companies to cope wit...Our next generation of industry-lndustry 4.0-holds the promise of increased flexibility in manufacturing, along with mass customization, better quality, and improved productivity. It thus enables companies to cope with the challenges of producing increasingly individualized products with a short lead-time to market and higher quality. Intelligent manufacturing plays an important role in Industry 4.0. Typical resources are converted into intelligent objects so that they are able to sense, act, and behave within a smart environment. In order to fully understand intelligent manufacturing in the context of Industry 4.0, this paper provides a comprehensive review of associated topics such as intelligent manufacturing, Internet of Things (IoT)- enabled manufacturing, and cloud manufacturing. Similarities and differences in these topics are highlighted based on our analysis. We also review key technologies such as the loT, cyber-physical systems (CPSs), cloud computing, big data analytics (BDA), and information and communications technology (ICT) that are used to enable intelligent manufacturing. Next, we describe worldwide movements in intelligent manufacturing, including governmental strategic plans from different countries and strategic plans from major international companies in the European Union, United States, Japan, and China. Finally, we present current challenges and future research directions. The concepts discussed in this paper will spark new ideas in the effort to realize the much-anticipated Fourth Industrial Revolution.展开更多
With ever-increasing market competition and advances in technology, more and more countries are prioritizing advanced manufacturing technology as their top priority for economic growth. Germany announced the Industry ...With ever-increasing market competition and advances in technology, more and more countries are prioritizing advanced manufacturing technology as their top priority for economic growth. Germany announced the Industry 4.0 strategy in 2013. The US government launched the Advanced Manufacturing Partnership (AMP) in 2011 and the National Network for Manufacturing Innovation (NNMI) in 2014. Most recently, the Manufacturing USA initiative was officially rolled out to further "leverage existing resources... to nurture manufacturing innovation and accelerate commercialization" by fostering close collaboration between industry, academia, and government partners. In 2015, the Chinese government officially published a 10- year plan and roadmap toward manufacturing: Made in China 2025. In all these national initiatives, the core technology development and implementation is in the area of advanced manufacturing systems. A new manufacturing paradigm is emerging, which can be characterized by two unique features: integrated manufacturing and intelligent manufacturing. This trend is in line with the progress of industrial revolutions, in which higher efficiency in production systems is being continuously pursued. To this end, 10 major technologies can be identified for the new manufacturing paradigm. This paper describes the rationales and needs for integrated and intelligent manufacturing (i2M) systems. Related technologies from different fields are also described. In particular, key technological enablers, such as the Intemet of Things and Services (IoTS), cyber-physical systems (CPSs), and cloud computing are discussed. Challenges are addressed with applica- tions that are based on commercially available platforms such as General Electric (GE)'s Predix and PTC's ThingWorx.展开更多
In existing research,the optimization of algorithms applied to cloud manufacturing service composition based on the quality of service often suffers from decreased convergence rates and solution quality due to single-...In existing research,the optimization of algorithms applied to cloud manufacturing service composition based on the quality of service often suffers from decreased convergence rates and solution quality due to single-population searches in fixed spaces and insufficient information exchange.In this paper,we introduce an improved Sparrow Search Algorithm(ISSA)to address these issues.The fixed solution space is divided into multiple subspaces,allowing for parallel searches that expedite the discovery of target solutions.To enhance search efficiency within these subspaces and significantly improve population diversity,we employ multiple group evolution mechanisms and chaotic perturbation strategies.Furthermore,we incorporate adaptive weights and a global capture strategy based on the golden sine to guide individual discoverers more effectively.Finally,differential Cauchy mutation perturbation is utilized during sparrow position updates to strengthen the algorithm's global optimization capabilities.Simulation experiments on benchmark problems and service composition optimization problems show that the ISSA delivers superior optimization accuracy and convergence stability compared to other methods.These results demonstrate that our approach effectively balances global and local search abilities,leading to enhanced performance in cloud manufacturing service composition.展开更多
After reviewing the development of industrial manufacturing, a novel concept called social manufacturing(SM) and service are proposed as an innovative manufacturing solution for the coming personalized customization e...After reviewing the development of industrial manufacturing, a novel concept called social manufacturing(SM) and service are proposed as an innovative manufacturing solution for the coming personalized customization era. SM can realize a customer's requirements of "from mind to products", and fulfill tangible and intangible needs of a prosumer, i.e., producer and consumer at the same time. It represents a manufacturing trend,and is expected to become popular in more and more industries.First, a comparison between mass customization and SM is given out, and the basis and motivation from social network to SM is analyzed. Then, its basic theories and supporting technologies,like Internet of Things(Io T), social networks, cloud computing,3 D printing, and intelligent systems, are introduced and analyzed,and an SM platform prototype is developed. Finally, three transformation modes towards SM and 3 D printing are suggested for different user cases.展开更多
Social manufacturing(SM), a novel distributed,collaborative and intelligent manufacturing mode, is proposed and developed for high-end apparel customization. The main components of SM cloud are designed, and its resea...Social manufacturing(SM), a novel distributed,collaborative and intelligent manufacturing mode, is proposed and developed for high-end apparel customization. The main components of SM cloud are designed, and its research topics are summarized. Then, SM's key technologies are studied. 3D technologies for apparel customization, like 3D modeling, 3D fitting mirror and 3D customization, are developed to improve the customization precision and user experience. Information based collaborative management is realized to share, communicate,and handle the information efficiently among all groups and individuals of SM cloud. Suppliers' evaluation mechanism is designed to support the optimal decisions making. Next, SM cloud is constructed in five layers for high-end apparel customization.By using SM cloud based crowd-sourcing, social resources can be allocated rationally and utilized efficiently, consumer can customize the product in any processes like innovation, design,making, marketing and service, and traditional apparel enterprise can be upgraded into SM mode for keeping it competitive in the future customization markets.展开更多
From the perspective of the geographical distribution, considering production fare, supply chain information and quality rating of the manufacturing resource(MR), a manufacturing resource allocation(MRA) model conside...From the perspective of the geographical distribution, considering production fare, supply chain information and quality rating of the manufacturing resource(MR), a manufacturing resource allocation(MRA) model considering the geographical distribution in cloud manufacturing(CM) environment is built. The model includes two stages, preliminary selection stage and optimal selection stage. The membership function is used to select MRs from cloud resource pool(CRP) in the first stage, and then the candidate resource pool is built. In the optimal selection stage, a multi-objective optimization algorithm, particle swarm optimization(PSO) based on the method of relative entropy of fuzzy sets(REFS_PSO), is used to select optimal MRs from the candidate resource pool, and an optimal manufacturing resource supply chain is obtained at last. To verify the performance of REFS_PSO, NSGA-Ⅱ and PSO based on random weighting(RW_PSO) are selected as the comparison algorithms. They all are used to select optimal MRs at the second stage. The experimental results show solution obtained by REFS_PSO is the best. The model and the method proposed are appropriate for MRA in CM.展开更多
Modern manufacturing aims to reduce downtime and track process anomalies to make profitable business decisions.This ideology is strengthened by Industry 4.0,which aims to continuously monitor high-value manufacturing ...Modern manufacturing aims to reduce downtime and track process anomalies to make profitable business decisions.This ideology is strengthened by Industry 4.0,which aims to continuously monitor high-value manufacturing assets.This article builds upon the Industry 4.0 concept to improve the efficiency of manufacturing systems.The major contribution is a framework for continuous monitoring and feedback-based control in the friction stir welding(FSW)process.It consists of a CNC manufacturing machine,sensors,edge,cloud systems,and deep neural networks,all working cohesively in real time.The edge device,located near the FSW machine,consists of a neural network that receives sensory information and predicts weld quality in real time.It addresses time-critical manufacturing decisions.Cloud receives the sensory data if weld quality is poor,and a second neural network predicts the new set of welding parameters that are sent as feedback to the welding machine.Several experiments are conducted for training the neural networks.The framework successfully tracks process quality and improves the welding by controlling it in real time.The system enables faster monitoring and control achieved in less than 1 s.The framework is validated through several experiments.展开更多
文摘With the rapid development of cloud manufacturing technology and the new generation of artificial intelligence technology,the new cloud manufacturing system(NCMS)built on the connotation of cloud manufacturing 3.0 presents a new business model of“Internet of everything,intelligent leading,data driving,shared services,cross-border integration,and universal innovation”.The network boundaries are becoming increasingly blurred,NCMS is facing security risks such as equipment unauthorized use,account theft,static and extensive access control policies,unauthorized access,supply chain attacks,sensitive data leaks,and industrial control vulnerability attacks.Traditional security architectures mainly use information security technology,which cannot meet the active security protection requirements of NCMS.In order to solve the above problems,this paper proposes an integrated cloud-edge-terminal security system architecture of NCMS.It adopts the zero trust concept and effectively integrates multiple security capabilities such as network,equipment,cloud computing environment,application,identity,and data.It adopts a new access control mode of“continuous verification+dynamic authorization”,classified access control mechanisms such as attribute-based access control,rolebased access control,policy-based access control,and a new data security protection system based on blockchain,achieving“trustworthy subject identity,controllable access behavior,and effective protection of subject and object resources”.This architecture provides an active security protection method for NCMS in the digital transformation of large enterprises,and can effectively enhance network security protection capabilities and cope with increasingly severe network security situations.
基金supported by the National Natural Science Foundation,China (Grant No:61602413,Jianwei Zheng,https://www.nsfc.gov.cn)the Natural Science Foundation of Zhejiang Province (Grant No:LY15E050007,Wenlong Ma,http://zjnsf.kjt.zj.gov.cn/portal/index.html).
文摘In a cloud manufacturing environment with abundant functionally equivalent cloud services,users naturally desire the highest-quality service(s).Thus,a comprehensive measurement of quality of service(QoS)is needed.Opti-mizing the plethora of cloud services has thus become a top priority.Cloud ser-vice optimization is negatively affected by untrusted QoS data,which are inevitably provided by some users.To resolve these problems,this paper proposes a QoS-aware cloud service optimization model and establishes QoS-information awareness and quantification mechanisms.Untrusted data are assessed by an information correction method.The weights discovered by the variable precision Rough Set,which mined the evaluation indicators from historical data,providing a comprehensive performance ranking of service quality.The manufacturing cloud service optimization algorithm thus provides a quantitative reference for service selection.In experimental simulations,this method recommended the optimal services that met users’needs,and effectively reduced the impact of dis-honest users on the selection results.
基金funded by the National Basic Research Program of China ("973" Program)under Grant No. 2007CB310900the National High Technology Research and Development Program of China "(863"Program) under Grant No. 2007AA04Z153
文摘Cloud manufacturing is a new, networked and intelligent manufacturing model that is service-oriented. know edge based, high performance, and energy efficient. In this model, state-of-the-art technologies such as informatized manufacturing, cloud computing, intemet of Things, semantic Web, aria high-performance computing are integrated in oroer to provide secure, reliabte. and high quality on-demand services at low prices for those involved in the whole manufacturing lifecycie. As an important part of cioud manufacturing, cloud simulation technology based on the COSIM-CSP platform has primarily been aoplied in thedesign of a multidisciplinary virtual prototype of a flight vehicle. This lays the foundation for further research into cloud manufacturina.
基金Sponsored by the National High Technology Research and Development Program of China(863 Program)(Grant No.2007AA04Z146)
文摘With the continuous development of cloud manufacturing technology,in order to solve more complex manufacturing problem and conduct large-scale networked manufacturing,combining with the characteristic of discrete manufacturing enterprise's demands and RFID( Radio Frequency Identification),a kind of RFIDbased cloud manufacturing resource-aware and access technology is proposed. Firstly,the architecture of the cloud manufacturing system and RFID system is briefly introduced. Then,the key technologies of manufacturing resource-aware and access technology are analyzed,including anti-collision technology,reader management technology and so on. Finally,taking the manufacturing of the key components in discrete manufacturing enterprise as an example,the practicality and feasibility of the technology is verified. The results show that the application of this technology provides a strong guarantee for the sharing and collaboration of manufacturing resources and capacity in the discrete manufacturing industry.
基金supported by the National High-Tech R&D Program,China(2015AA042101)
文摘Cloud manufacturing is a specific implementation form of the "Internet + manufacturing" strategy. Why and how to develop cloud manufacturing platform(CMP), however, remains the key concern of both platform operators and users. A microscopic model is proposed to investigate advantages and diffusion forces of CMP through exploration of its diffusion process and mechanism. Specifically, a three-stage basic evolution process of CMP is innovatively proposed. Then, based on this basic process, a more complex CMP evolution model has been established in virtue of complex network theory, with five diffusion forces identified. Thereafter, simulations on CMP diffusion have been conducted. The results indicate that, CMP possesses better resource utilization,user satisfaction, and enterprise utility. Results of simulation on impacts of different diffusion forces show that both the time required for CMP to reach an equilibrium state and the final network size are affected simultaneously by the five diffusion forces. All these analyses indicate that CMP could create an open online cooperation environment and turns out to be an effective implementation of the "Internet + manufacturing" strategy.
基金supported by the National Key Research and Development Program of China (No.2020YFB1710500)the Primary Research & Development Plan of Jiangsu Province(No.BE2021091)。
文摘Cloud manufacturing has become a reality. It requires sensing and capturing heterogeneous manufacturing resources and extensive data analysis through the industrial internet. However,the cloud computing and serviceoriented architecture are slightly inadequate in dynamic manufacturing resource management. This paper integrates the technology of edge computing and microservice and develops an intelligent edge gateway for internet of thing(IoT)-based manufacturing. Distributed manufacturing resources can be accessed through the edge gateway,and cloud-edge collaboration can be realized. The intelligent edge gateway provides a solution for complex resource ubiquitous perception in current manufacturing scenarios. Finally,a prototype system is developed to verify the effectiveness of the intelligent edge gateway.
基金Project was supported by the special projects for the central government to guide the development of local science and technology(ZY20B11).
文摘In order to optimize resource integration and optimal scheduling problems in the cloud manufacturing environment,this paper proposes to use load balancing,service cost and service quality as optimization goals for resource scheduling,however,resource providers have resource utilization requirements for cloud manufacturing platforms.In the process of resource optimization scheduling,the interests of all parties have conflicts of interest,which makes it impossible to obtain better optimization results for resource scheduling.Therefore,amultithreaded auto-negotiation method based on the Stackelberg game is proposed to resolve conflicts of interest in the process of resource scheduling.The cloud manufacturing platform first calculates the expected value reduction plan for each round of global optimization,using the negotiation algorithm based on the Stackelberg game,the cloud manufacturing platformnegotiates andmediateswith the participants’agents,to maximize self-interest by constantly changing one’s own plan,iteratively find multiple sets of locally optimized negotiation plans and return to the cloud manufacturing platform.Through multiple rounds of negotiation and calculation,we finally get a target expected value reduction plan that takes into account the benefits of the resource provider and the overall benefits of the completion of the manufacturing task.Finally,through experimental simulation and comparative analysis,the validity and rationality of the model are verified.
基金This paper was supported in part by the National Natural Science Foundation of China under Grant 62172235in part by Natural Science Foundation of Jiangsu Province of China under Grant BK20191381in part by Primary Research&Development Plan of Jiangsu Province Grant BE2019742.
文摘As a new mode and means of smart manufacturing,smart cloud manufacturing(SCM)faces great challenges in massive supply and demand,dynamic resource collaboration and intelligent adaptation.To address the problem,this paper proposes an SCM-oriented dynamic supply-demand(SD)intelligent adaptation model for massive manufacturing services.In this model,a collaborative network model is established based on the properties of both the supply-demand and their relationships;in addition,an algorithm based on deep graph clustering(DGC)and aligned sampling(AS)is used to divide and conquer the large adaptation domain to solve the problem of the slow computational speed caused by the high complexity of spatiotemporal search in the collaborative network model.At the same time,an intelligent supply-demand adaptation method driven by the quality of service(QoS)is established,in which the experiences of adaptation are shared among adaptation subdomains through deep reinforcement learning(DRL)powered by a transfer mechanism to improve the poor adaptation results caused by dynamic uncertainty.The results show that the model and the solution proposed in this paper can performcollaborative and intelligent supply-demand adaptation for themassive and dynamic resources in SCM through autonomous learning and can effectively performglobal supply-demand matching and optimal resource allocation.
文摘The pharmaceutical industry’s increasing adoption of cloud-based technologies has introduced new challenges in computerized systems validation (CSV). This paper explores the evolving landscape of cloud validation in pharmaceutical manufacturing, focusing on ensuring data integrity and regulatory compliance in the digital era. We examine the unique characteristics of cloud-based systems and their implications for traditional validation approaches. A comprehensive review of current regulatory frameworks, including FDA and EMA guidelines, provides context for discussing cloud-specific validation challenges. The paper introduces a risk-based approach to cloud CSV, detailing methodologies for assessing and mitigating risks associated with cloud adoption in pharmaceutical environments. Key considerations for maintaining data integrity in cloud systems are analyzed, particularly when applying ALCOA+ principles in distributed computing environments. The article presents strategies for adapting traditional Installation Qualification (IQ), Operational Qualification (OQ), and Performance Qualification (PQ) models to cloud-based systems, highlighting the importance of continuous validation in dynamic cloud environments. The paper also explores emerging trends, including integrating artificial intelligence and edge computing in pharmaceutical manufacturing and their implications for future validation strategies. This research contributes to the evolving body of knowledge on cloud validation in pharmaceuticals by proposing a framework that balances regulatory compliance with the agility offered by cloud technologies. The findings suggest that while cloud adoption presents unique challenges, a well-structured, risk-based approach to validation can ensure the integrity and compliance of cloud-based systems in pharmaceutical manufacturing.
文摘Our next generation of industry-lndustry 4.0-holds the promise of increased flexibility in manufacturing, along with mass customization, better quality, and improved productivity. It thus enables companies to cope with the challenges of producing increasingly individualized products with a short lead-time to market and higher quality. Intelligent manufacturing plays an important role in Industry 4.0. Typical resources are converted into intelligent objects so that they are able to sense, act, and behave within a smart environment. In order to fully understand intelligent manufacturing in the context of Industry 4.0, this paper provides a comprehensive review of associated topics such as intelligent manufacturing, Internet of Things (IoT)- enabled manufacturing, and cloud manufacturing. Similarities and differences in these topics are highlighted based on our analysis. We also review key technologies such as the loT, cyber-physical systems (CPSs), cloud computing, big data analytics (BDA), and information and communications technology (ICT) that are used to enable intelligent manufacturing. Next, we describe worldwide movements in intelligent manufacturing, including governmental strategic plans from different countries and strategic plans from major international companies in the European Union, United States, Japan, and China. Finally, we present current challenges and future research directions. The concepts discussed in this paper will spark new ideas in the effort to realize the much-anticipated Fourth Industrial Revolution.
文摘With ever-increasing market competition and advances in technology, more and more countries are prioritizing advanced manufacturing technology as their top priority for economic growth. Germany announced the Industry 4.0 strategy in 2013. The US government launched the Advanced Manufacturing Partnership (AMP) in 2011 and the National Network for Manufacturing Innovation (NNMI) in 2014. Most recently, the Manufacturing USA initiative was officially rolled out to further "leverage existing resources... to nurture manufacturing innovation and accelerate commercialization" by fostering close collaboration between industry, academia, and government partners. In 2015, the Chinese government officially published a 10- year plan and roadmap toward manufacturing: Made in China 2025. In all these national initiatives, the core technology development and implementation is in the area of advanced manufacturing systems. A new manufacturing paradigm is emerging, which can be characterized by two unique features: integrated manufacturing and intelligent manufacturing. This trend is in line with the progress of industrial revolutions, in which higher efficiency in production systems is being continuously pursued. To this end, 10 major technologies can be identified for the new manufacturing paradigm. This paper describes the rationales and needs for integrated and intelligent manufacturing (i2M) systems. Related technologies from different fields are also described. In particular, key technological enablers, such as the Intemet of Things and Services (IoTS), cyber-physical systems (CPSs), and cloud computing are discussed. Challenges are addressed with applica- tions that are based on commercially available platforms such as General Electric (GE)'s Predix and PTC's ThingWorx.
基金Supported by the National Natural Science Foundation of China(62272214)。
文摘In existing research,the optimization of algorithms applied to cloud manufacturing service composition based on the quality of service often suffers from decreased convergence rates and solution quality due to single-population searches in fixed spaces and insufficient information exchange.In this paper,we introduce an improved Sparrow Search Algorithm(ISSA)to address these issues.The fixed solution space is divided into multiple subspaces,allowing for parallel searches that expedite the discovery of target solutions.To enhance search efficiency within these subspaces and significantly improve population diversity,we employ multiple group evolution mechanisms and chaotic perturbation strategies.Furthermore,we incorporate adaptive weights and a global capture strategy based on the golden sine to guide individual discoverers more effectively.Finally,differential Cauchy mutation perturbation is utilized during sparrow position updates to strengthen the algorithm's global optimization capabilities.Simulation experiments on benchmark problems and service composition optimization problems show that the ISSA delivers superior optimization accuracy and convergence stability compared to other methods.These results demonstrate that our approach effectively balances global and local search abilities,leading to enhanced performance in cloud manufacturing service composition.
基金supported in part by the National Natural Science Foundation of China(61233001,61773381,71232006,61304201,61533019,61773382)Finnish TEKES’s project“So Ma2020:Social Manufacturing”(2015-2017,211560)Chinese Guangdong’s S&T project(2015B010103001,2016B090910001)
文摘After reviewing the development of industrial manufacturing, a novel concept called social manufacturing(SM) and service are proposed as an innovative manufacturing solution for the coming personalized customization era. SM can realize a customer's requirements of "from mind to products", and fulfill tangible and intangible needs of a prosumer, i.e., producer and consumer at the same time. It represents a manufacturing trend,and is expected to become popular in more and more industries.First, a comparison between mass customization and SM is given out, and the basis and motivation from social network to SM is analyzed. Then, its basic theories and supporting technologies,like Internet of Things(Io T), social networks, cloud computing,3 D printing, and intelligent systems, are introduced and analyzed,and an SM platform prototype is developed. Finally, three transformation modes towards SM and 3 D printing are suggested for different user cases.
基金supported in part by the National Natural Science Foundation of China(71232006,61533019,61233001,61304201,61773381,61773382,71472174,71702182)Finnish TEKESs project“SoMa 2020:Social Manufacturing”(2015-2017,211560)+1 种基金Chinese Guangdong’s S&T Project(2015B010103001,2016B090910001,2017B090912001)Dongguan’s Innovation Talents Project(Gang Xiong)
文摘Social manufacturing(SM), a novel distributed,collaborative and intelligent manufacturing mode, is proposed and developed for high-end apparel customization. The main components of SM cloud are designed, and its research topics are summarized. Then, SM's key technologies are studied. 3D technologies for apparel customization, like 3D modeling, 3D fitting mirror and 3D customization, are developed to improve the customization precision and user experience. Information based collaborative management is realized to share, communicate,and handle the information efficiently among all groups and individuals of SM cloud. Suppliers' evaluation mechanism is designed to support the optimal decisions making. Next, SM cloud is constructed in five layers for high-end apparel customization.By using SM cloud based crowd-sourcing, social resources can be allocated rationally and utilized efficiently, consumer can customize the product in any processes like innovation, design,making, marketing and service, and traditional apparel enterprise can be upgraded into SM mode for keeping it competitive in the future customization markets.
基金Sponsored by the Program of Department of Science and Technology of Fujian Province(Grant No.2016H0015)the Collaborative Innovation Center of High-End Equipment Manufacturing in Fujian(Grant No.2015A003)
文摘From the perspective of the geographical distribution, considering production fare, supply chain information and quality rating of the manufacturing resource(MR), a manufacturing resource allocation(MRA) model considering the geographical distribution in cloud manufacturing(CM) environment is built. The model includes two stages, preliminary selection stage and optimal selection stage. The membership function is used to select MRs from cloud resource pool(CRP) in the first stage, and then the candidate resource pool is built. In the optimal selection stage, a multi-objective optimization algorithm, particle swarm optimization(PSO) based on the method of relative entropy of fuzzy sets(REFS_PSO), is used to select optimal MRs from the candidate resource pool, and an optimal manufacturing resource supply chain is obtained at last. To verify the performance of REFS_PSO, NSGA-Ⅱ and PSO based on random weighting(RW_PSO) are selected as the comparison algorithms. They all are used to select optimal MRs at the second stage. The experimental results show solution obtained by REFS_PSO is the best. The model and the method proposed are appropriate for MRA in CM.
文摘Modern manufacturing aims to reduce downtime and track process anomalies to make profitable business decisions.This ideology is strengthened by Industry 4.0,which aims to continuously monitor high-value manufacturing assets.This article builds upon the Industry 4.0 concept to improve the efficiency of manufacturing systems.The major contribution is a framework for continuous monitoring and feedback-based control in the friction stir welding(FSW)process.It consists of a CNC manufacturing machine,sensors,edge,cloud systems,and deep neural networks,all working cohesively in real time.The edge device,located near the FSW machine,consists of a neural network that receives sensory information and predicts weld quality in real time.It addresses time-critical manufacturing decisions.Cloud receives the sensory data if weld quality is poor,and a second neural network predicts the new set of welding parameters that are sent as feedback to the welding machine.Several experiments are conducted for training the neural networks.The framework successfully tracks process quality and improves the welding by controlling it in real time.The system enables faster monitoring and control achieved in less than 1 s.The framework is validated through several experiments.