A combined cycle fatigue (CCF) testing system with ultrasonic frequency component was developed toevaluate the CCF properties of S350 steel welded joints in this study. The fatigue testing results indicated that the...A combined cycle fatigue (CCF) testing system with ultrasonic frequency component was developed toevaluate the CCF properties of S350 steel welded joints in this study. The fatigue testing results indicated that the S-Ncurves of CCF did not have fatigue limit, which agreed with those of pure high frequency fatigue of welded joints. TheS-N curves showed that the CCF strength of welded joints dropped greatly with the increasing interaction between highand low frequency fatigue loading. An approximation design method of CCF was presented using amplitude envelopeas the stress range.展开更多
For the simulation of isothermal mechanically loaded components, it is indispensable to have a material model, which describes the material behavior very accurately. In this case, a combined hardening model was chosen...For the simulation of isothermal mechanically loaded components, it is indispensable to have a material model, which describes the material behavior very accurately. In this case, a combined hardening model was chosen in order to reflect the prevalent deformation behavior. The combined hardening model enables simulation independent of the number of load cycles and the chosen strain amplitude. The main point is the declaration of the parameters from the chosen material model. This work deals with the estimation of the parameters. For validation and as input data of the here defined approach low cycle fatigue (LCF) tests were performed on cast aluminum and at 250°C. The comparison of the test results and the simulations indicated that σmax from the simulated hysteresis lies inside a range of ±5% referred to the test results.展开更多
Laser shock peening (LSP) is a novel effective surface treatment method to improve the fatigue performance of turbine blades. To study the effect of LSP on combined low- and high-cycle fatigue (CCF) life of turbin...Laser shock peening (LSP) is a novel effective surface treatment method to improve the fatigue performance of turbine blades. To study the effect of LSP on combined low- and high-cycle fatigue (CCF) life of turbine blades, the CCF tests were conducted at elevated temperatures on two types of full-scale turbine blades, which were made of K403 by casting and GH4133B by forging. Probabilistic analysis was conducted to find out the effect of LSP on fatigue life of those two kinds of blades. The results indicated that LSP extended the CCF life of both casting blades and forging blades obviously, and the effect of LSP on casting blades was more evident; besides, a threshold vibration stress existed for both casting blades and forging blades, and the CCF life tended to be extended by LSP only when the vibration stress was below the threshold vibra- tion stress. Further study of fractography was also conducted, indicating that due to the presence of compressive residual stress and refined grains induced by LSP, the crack initiation sources in LSP blades were obviously less, and the life of LSP blades was also longer; since the compressive residual stress was released by plastic deformation, LSP had no effect or adverse effect on CCF life of blade when the vibration stress of blade was above the threshold vibration stress.展开更多
The nonlinear cumulative damage model is modified to have high prediction accuracy when the high-low cycle stress frequency ratio m is large(m500).The low cycle fatigue(LCF)tests,high cycle fatigue(HCF)tests and combi...The nonlinear cumulative damage model is modified to have high prediction accuracy when the high-low cycle stress frequency ratio m is large(m500).The low cycle fatigue(LCF)tests,high cycle fatigue(HCF)tests and combined high and low cycle fatigue(CCF)tests of TC11 titanium alloy were carried out,and the influencing factors of CCF life were analysed.The CCF life declines with the decrease of the ratio of high-low cycle stress frequency m.Both linear and nonlinear cumulative damage models are used to predict the CCF life.The CCF life prediction error of the linear cumulative damage model is great and the predictions tend to be overestimated,which is dangerous for engineering application.The accuracy is relatively high when the high-low cycle stress frequency ratio m500.The accuracy of nonlinear cumulative damage model is higher than that of linear model when the high-low cycle stress frequency ratio m500.Based on the relationship between high cycle average stress rmajor and material yield limit rp,0.2,a correction term is added to the nonlinear cumulative damage model and verified,which made the modified model more accurate when m500.展开更多
As the outfield load spectrum is so complicated that it cannot be used directly for test study in laboratory.This paper presents a method to determine load spectrum for high and low cycle combined fatigue of turbine m...As the outfield load spectrum is so complicated that it cannot be used directly for test study in laboratory.This paper presents a method to determine load spectrum for high and low cycle combined fatigue of turbine mortise at elevated temperature through experimental and numerical method.First of all,the low cycle load spectrum with duration time is determined through cumulative damage rule.The rain flow counting method is applied to obtain main cycles and sub cycles,and then the stress cycle is converted into pulsation cycle(stress ratio=0)based on the S-N curve and the Goodman curve;Secondly,three groups of different amplitudes tests are established to determine the high cycle amplitude.Finally,another three groups of the high-low combined cycle fatigue(HLCCF)tests for turbine mortise of a certain type engine are carried out.The results show that the macro and micro failure modes are identical with outfield's,which verifies the accuracy of the conversion method.展开更多
基金Supported by the National Natural Science Foundation of China(No.51305295,No.51375331 and No.51105133)
文摘A combined cycle fatigue (CCF) testing system with ultrasonic frequency component was developed toevaluate the CCF properties of S350 steel welded joints in this study. The fatigue testing results indicated that the S-Ncurves of CCF did not have fatigue limit, which agreed with those of pure high frequency fatigue of welded joints. TheS-N curves showed that the CCF strength of welded joints dropped greatly with the increasing interaction between highand low frequency fatigue loading. An approximation design method of CCF was presented using amplitude envelopeas the stress range.
文摘For the simulation of isothermal mechanically loaded components, it is indispensable to have a material model, which describes the material behavior very accurately. In this case, a combined hardening model was chosen in order to reflect the prevalent deformation behavior. The combined hardening model enables simulation independent of the number of load cycles and the chosen strain amplitude. The main point is the declaration of the parameters from the chosen material model. This work deals with the estimation of the parameters. For validation and as input data of the here defined approach low cycle fatigue (LCF) tests were performed on cast aluminum and at 250°C. The comparison of the test results and the simulations indicated that σmax from the simulated hysteresis lies inside a range of ±5% referred to the test results.
基金This work was supported by National Natural Science Foundation of China (Grant Nos. 11602010 and 51505018).
文摘Laser shock peening (LSP) is a novel effective surface treatment method to improve the fatigue performance of turbine blades. To study the effect of LSP on combined low- and high-cycle fatigue (CCF) life of turbine blades, the CCF tests were conducted at elevated temperatures on two types of full-scale turbine blades, which were made of K403 by casting and GH4133B by forging. Probabilistic analysis was conducted to find out the effect of LSP on fatigue life of those two kinds of blades. The results indicated that LSP extended the CCF life of both casting blades and forging blades obviously, and the effect of LSP on casting blades was more evident; besides, a threshold vibration stress existed for both casting blades and forging blades, and the CCF life tended to be extended by LSP only when the vibration stress was below the threshold vibra- tion stress. Further study of fractography was also conducted, indicating that due to the presence of compressive residual stress and refined grains induced by LSP, the crack initiation sources in LSP blades were obviously less, and the life of LSP blades was also longer; since the compressive residual stress was released by plastic deformation, LSP had no effect or adverse effect on CCF life of blade when the vibration stress of blade was above the threshold vibration stress.
基金This study was co-supported by the National Natural Science Foundation of China(No.51301090).
文摘The nonlinear cumulative damage model is modified to have high prediction accuracy when the high-low cycle stress frequency ratio m is large(m500).The low cycle fatigue(LCF)tests,high cycle fatigue(HCF)tests and combined high and low cycle fatigue(CCF)tests of TC11 titanium alloy were carried out,and the influencing factors of CCF life were analysed.The CCF life declines with the decrease of the ratio of high-low cycle stress frequency m.Both linear and nonlinear cumulative damage models are used to predict the CCF life.The CCF life prediction error of the linear cumulative damage model is great and the predictions tend to be overestimated,which is dangerous for engineering application.The accuracy is relatively high when the high-low cycle stress frequency ratio m500.The accuracy of nonlinear cumulative damage model is higher than that of linear model when the high-low cycle stress frequency ratio m500.Based on the relationship between high cycle average stress rmajor and material yield limit rp,0.2,a correction term is added to the nonlinear cumulative damage model and verified,which made the modified model more accurate when m500.
基金This work is supported by National Natural Science Foundation of China(51305012)Doctoral Fund of Ministry of Education of China(20111102120011)National Natural Science Foundation of China(51375031).The writers are grateful。
文摘As the outfield load spectrum is so complicated that it cannot be used directly for test study in laboratory.This paper presents a method to determine load spectrum for high and low cycle combined fatigue of turbine mortise at elevated temperature through experimental and numerical method.First of all,the low cycle load spectrum with duration time is determined through cumulative damage rule.The rain flow counting method is applied to obtain main cycles and sub cycles,and then the stress cycle is converted into pulsation cycle(stress ratio=0)based on the S-N curve and the Goodman curve;Secondly,three groups of different amplitudes tests are established to determine the high cycle amplitude.Finally,another three groups of the high-low combined cycle fatigue(HLCCF)tests for turbine mortise of a certain type engine are carried out.The results show that the macro and micro failure modes are identical with outfield's,which verifies the accuracy of the conversion method.