期刊文献+
共找到910篇文章
< 1 2 46 >
每页显示 20 50 100
Computational Fluid Dynamics Approach for Predicting Pipeline Response to Various Blast Scenarios: A Numerical Modeling Study
1
作者 Farman Saifi Mohd Javaid +1 位作者 Abid Haleem S.M.Anas 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2747-2777,共31页
Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile fac... Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events. 展开更多
关键词 Blast loading computational fluid dynamics computer modeling pipe networks response prediction structural safety
下载PDF
Computational fluid dynamics modeling of rapid pyrolysis of solid waste magnesium nitrate hydrate under different injection methods
2
作者 Wenchang Wu Kefan Yu +1 位作者 Liang Zhao Hui Dong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期224-237,共14页
This study developed a numerical model to efficiently treat solid waste magnesium nitrate hydrate through multi-step chemical reactions.The model simulates two-phase flow,heat,and mass transfer processes in a pyrolysi... This study developed a numerical model to efficiently treat solid waste magnesium nitrate hydrate through multi-step chemical reactions.The model simulates two-phase flow,heat,and mass transfer processes in a pyrolysis furnace to improve the decomposition rate of magnesium nitrate.The performance of multi-nozzle and single-nozzle injection methods was evaluated,and the effects of primary and secondary nozzle flow ratios,velocity ratios,and secondary nozzle inclination angles on the decomposition rate were investigated.Results indicate that multi-nozzle injection has a higher conversion efficiency and decomposition rate than single-nozzle injection,with a 10.3%higher conversion rate under the design parameters.The decomposition rate is primarily dependent on the average residence time of particles,which can be increased by decreasing flow rate and velocity ratios and increasing the inclination angle of secondary nozzles.The optimal parameters are injection flow ratio of 40%,injection velocity ratio of 0.6,and secondary nozzle inclination of 30°,corresponding to a maximum decomposition rate of 99.33%. 展开更多
关键词 MULTI-NOZZLE computational fluid dynamics Thermal decomposition reaction Pyrolysis furnace
下载PDF
Application of Computational Fluid Dynamics and Fluid Structure Interaction Techniques for Calculating the 3D Transient Flow of Journal Bearings Coupled with Rotor Systems 被引量:20
3
作者 LI Qiang YU Guichang +1 位作者 LIU Shulian ZHENG Shuiying 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期926-932,共7页
Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simpli... Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simplified physical model and classic Reynolds equation are always applied. While the application of the general computational fluid dynamics (CFD)-fluid structure interaction (FSI) techniques is more beneficial for analysis of the fluid field in a journal bearing when more detailed solutions are needed. This paper deals with the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearings and rotor dynamics with CFD-FSI techniques. The fluid dynamics of oil film is calculated by applying the so-called "dynamic mesh" technique. A new mesh movement approacb is presented while the dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The proposed mesh movement approach is based on the structured mesh. When the joumal moves, the movement distance of every grid in the flow field of bearing can be calculated, and then the update of the volume mesh can be handled automatically by user defined function (UDF). The journal displacement at each time step is obtained by solving the moving equations of the rotor-bearing system under the known oil film force condition. A case study is carried out to calculate the locus of the journal center and pressure distribution of the journal in order to prove the feasibility of this method. The calculating results indicate that the proposed method can predict the transient flow field of a journal bearing in a rotor-bearing system where more realistic models are involved. The presented calculation method provides a basis for studying the nonlinear dynamic behavior of a general rotor-bearing system. 展开更多
关键词 mesh movement transient flow computational fluid dynamics (CFD) fluid-structure interaction (FSI) journal bearing
下载PDF
Urban Green Space Planning Based on Computational Fluid Dynamics Model and Landscape Ecology Principle:A Case Study of Liaoyang City,Northeast China 被引量:9
4
作者 ZHOU Yuan SHI Tiemao +4 位作者 HU Yuanman GAO Chang LIU Miao FU Shilei WANG Shizhe 《Chinese Geographical Science》 SCIE CSCD 2011年第4期465-475,共11页
As a result of environmental degradation,urban green space has become a key issue for urban sustainable development.This paper takes Liaoyang City in Northeast China as an example to develop green space planning using... As a result of environmental degradation,urban green space has become a key issue for urban sustainable development.This paper takes Liaoyang City in Northeast China as an example to develop green space planning using the computational fluid dynamics (CFD) model,landscape ecological principles and Geographical Information System (GIS).Based on the influencing factors of topography,building density and orientation,Shou Mountain,Longding Mountain and the Taizi River were selected as the urban ventilation paths to promote wind and oxygen circulation.Oxygen concentration around the green spaces gradually decreased with wind speed increase and wind direction change.There were obvious negative correlation relationships between the oxygen dispersion concentration and urban layout factors such as the building plot ratio and building density.Comparison with the field measurements found that there was significant correlation relationship between simulated oxygen concentration and field measurements (R 2=0.6415,p<0.001),moreover,simulation precision was higher than 92%,which indicated CFD model was effective for urban oxygen concentration simulation.Only less than 10% areas in Liaoyang City proper needed more green space urgently to improve oxygen concentration,mainly concentrated in Baitai and west Wensheng districts.Based on land-scape ecology principle,green space planning at different spatial scales were proposed to create a green space network system for Liaoyang City,including features such as green wedges,green belts and parks.Totally,about 2012 ha of green space need to be constructed as oxygen sources and ventilation paths.Compared with the current green space pattern,proposed green space planning could improve oxygen concentration obviously.The CFD model and research results in this paper could provide an effective way and theory support for sustainable development of urban green space. 展开更多
关键词 green space computational fluid dynamics oxygen dispersion pattern landscape ecology Liaoyang City proper
下载PDF
Simulation and Analysis on the Two-Phase Flow Fields in a Rotating-Stream-Tray Absorber by Using Computational Fluid Dynamics 被引量:8
5
作者 邵雄飞 吴忠标 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第2期169-173,共5页
The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model... The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model, Eulerian multiphase model, and a real-shape 3D model with a huge number of meshes. The simulation results include detailed information about velocity, pressure, volume fraction and so on. Some features of the flow field are obtained: liquid is atomized in a thin annular zone; a high velocity air zone prevents water drops at the bottom from flying towards the wall; the pressure varies sharply at the end of blades and so on. The results will be helpful for structure optimization and engineering design. 展开更多
关键词 rotating-stream-tray two-phase flow field SIMULATION computational fluid dynamics
下载PDF
A Computational Fluid Dynamics (CFD) Analysis of an Undulatory Mechanical Fin Driven by Shape Memory Alloy 被引量:8
6
作者 Yong-Hua Zhang Jian-Hui He +2 位作者 Jie Yang Shi-Wu Zhang Kin Huat Low 《International Journal of Automation and computing》 EI 2006年第4期374-381,共8页
Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady ... Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady computation of an undulatory mechanical fin that is driven by Shape Memory Alloy (SMA). The objective of the computation is to investigate the fluid dynamics of force production associated with the undulatory mechanical fin. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing is used to compute the unsteady flow around the fin through five complete cycles. The pressure distribution on fin surface is computed and integrated to provide fin forces which are decomposed into lift and thrust. The velocity field is also computed throughout the swimming cycle. Finally, a comparison is conducted to reveal the dynamics of force generation according to the kinematic parameters of the undulatory fin (amplitude, frequency and wavelength). 展开更多
关键词 computational fluid dynamics (CFD) undulatory mechanical fin unsteady flow unstructured mesh Shape Memory Alloy (SMA)
下载PDF
COMPUTATIONAL FLUID DYNAMICS(CFD) SIMULATIONS OF DRAG REDUCTION WITH PERIODIC MICRO-STRUCTURED WALL 被引量:4
7
作者 LI Gang ZHOU Ming +2 位作者 WU Bo YE Xia CAI Lan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第2期77-80,共4页
Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds num... Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds number. The purpose of the current study is to numerically find out the effects of periodic micro-structured wall on the flow resistance in rectangular microchannel with the different spacings between microridges ranging from 15 to 60 pm. The simulative results indicate that pressure drop with different spacing between microridges increases linearly with flow velocity and decreases monotonically with slip velocity; Pressure drop reduction also increases with the spacing between microridges at the same condition of slip velocity and flow velocity. The results of numerical simulation are compared with theoretical predictions and experimental results in the literatures. It is found that there is qualitative agreement between them. 展开更多
关键词 Reynoids numbers Slip velocity Drag reduction computational fluid dynamics(CFD) simulations
下载PDF
Computational fluid dynamics evaluation of the effect of different city designs on the wind environment of a downwind natural heritage site 被引量:4
8
作者 BenLi LIU JianJun QU +2 位作者 QingHe NIU JunZhan WANG KeCun ZHANG 《Journal of Arid Land》 SCIE CSCD 2014年第1期69-79,共11页
Disturbance in wind regime and sand erosion deposition balance may lead to burial and eventual vanishing of a site.This study conducted 3D computational fluid dynamics(CFD)simulations to evaluate the effect of a propo... Disturbance in wind regime and sand erosion deposition balance may lead to burial and eventual vanishing of a site.This study conducted 3D computational fluid dynamics(CFD)simulations to evaluate the effect of a proposed city design on the wind environment of the Crescent Spring,a downwind natural heritage site located in Dunhuang,Northwestern China.Satellite terrain data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER)Digital Elevation Model(DEM)were used to construct the solid surface model.Steady-state Reynolds Averaged Navier-Stokes equations(RANS)with shear stress transport(SST)k-ωturbulence model were then applied to solve the flow field problems.Land-use changes were modeled implicitly by dividing the underlying surface into different areas and by applying corresponding aerodynamic roughness lengths.Simulations were performed by using cases with different city areas and building heights.Results show that the selected model could capture the surface roughness changes and could adjust wind profile over a large area.Wind profiles varied over the greenfield to the north and over the Gobi land to the east of the spring.Therefore,different wind speed reduction effects were observed from various city construction scenarios.The current city design would lead to about 2 m/s of wind speed reduction at the downwind city edge and about 1 m/s of wind speed reduction at the north of the spring at 35-m height.Reducing the city height in the north greenfield area could efficiently eliminate the negative effects of wind spee.By contrast,restricting the city area worked better in the eastern Gobi area compared with other parts of the study area.Wind speed reduction in areas near the spring could be limited to 0.1 m/s by combining these two abatement strategies.The CFD method could be applied to simulate the wind environment affected by other land-use changes over a large terrain. 展开更多
关键词 computational fluid dynamics wind environment wind profile large terrain Crescent Spring
下载PDF
Three-dimensional Computational Fluid Dynamics Modeling of Two-phase Flow in a Structured Packing Column 被引量:4
9
作者 张小斌 姚蕾 +1 位作者 邱利民 张学军 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第9期959-966,共8页
Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed... Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed two-phase flow inside the columns. The present paper presents a three-dimensional computational fluid dy- namics (CFD) model to simulate the two-phase flow in a representative unit of the column. The unit consists of an CFD calculations on column packed with Flexipak 1Y were implemented within the volume of fluid (VOF) mathe- matical framework. The CFD model was validated by comparing the calculated thickness of liquid film with the available experimental data. Special attention was given to quantitative analysis of the effects of gravity on the hy- drodynamics. Fluctuations in the liquid mass flow rate and the calculated pressure drop loss were found to be quali- tatively in agreement with the experimental observations. 展开更多
关键词 structured packing column two-phase flow computational fluid dynamics THREE-DIMENSION
下载PDF
Characterization of the Engineering Flow in a Miniaturised Bioreactor by Computational Fluid Dynamics 被引量:3
10
作者 ZHANGHu ParvizAyaziShamlou 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2004年第4期489-493,共5页
Three approaches based on computational fluid dynamics(CFD) techniques have been assessed for their ability to describe the engineering flow environment in a miniaturized mechanically agitated bioreactor. The three a... Three approaches based on computational fluid dynamics(CFD) techniques have been assessed for their ability to describe the engineering flow environment in a miniaturized mechanically agitated bioreactor. The three approaches tested were the source-sink(SS), the multiple reference frames(MRF) and the sliding grids(SG). In all the cases, the predictions of the velocity components agree with reported experimental data. However, the analysis of the results of the turbulent intensities predicted by the three approaches indicates the MRF and the SG techniques under predicted turbulent intensities are comparable to both experimental measurements and the SS method. The predicted power number and pumping number based on the SS approach are closer to typical reported experimental values compared to those obtained from the MRF and SG methods. 展开更多
关键词 Mechanically agitated bioreactor computational fluid dynamics Multiple reference frame Sliding grids SOURCE-SINK
下载PDF
Application of computational fluid dynamics simulation for submarine oil spill 被引量:3
11
作者 YANG Zhenglong YU Jianxing +3 位作者 LI Zhigan CHEN Haicheng JIANG Meirong CHEN Xi 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第11期104-115,共12页
Computational fluid dynamics (CFD) codes are being increasingly used in the simulation of submarine oil spills. This study focuses on the process of oil spills, from damaged submarine pipes, to the sea surface, usin... Computational fluid dynamics (CFD) codes are being increasingly used in the simulation of submarine oil spills. This study focuses on the process of oil spills, from damaged submarine pipes, to the sea surface, using numerical models. The underwater oil spill model is developed, and a description of the governing equations is proposed, along with modifications required for the particalization of the control volume. Available experimental data were introduced to evaluate the validity of the CFD predictions, the results of which proved to be in good agreement with the experimental data. The effects of oil leak rate, leak diameter, current velocity, and oil density are investigated, by the validated CFD model, to estimate the undersea leakage time, the lateral migration distance, and surface diffusion range when the oil reaches the sea surface. Results indicate that the leakage time and lateral migration distance increase with decreasing leak rates and leak diameter, and increase with increasing current velocity and oil density. On the other hand, a large leak diameter, high density, high leak rate, or fast currents result in a greater surface diffusion range. The findings and analysis presented here will provide practical predictions of oil spills, and guidance for emergency rescues. 展开更多
关键词 oil spill computational fluid dynamics (CFD) oil particles current velocity
下载PDF
Computational Fluid Dynamics Based Bulbous Bow Optimization Using a Genetic Algorithm 被引量:5
12
作者 Shahid Mahmood Debo Huang 《Journal of Marine Science and Application》 2012年第3期286-294,共9页
Computational fluid dynamics (CFD) plays a major role in predicting the flow behavior of a ship. With the development of fast computers and robust CFD software, CFD has become an important tool for designers and eng... Computational fluid dynamics (CFD) plays a major role in predicting the flow behavior of a ship. With the development of fast computers and robust CFD software, CFD has become an important tool for designers and engineers in the ship industry. In this paper, the hull form of a ship was optimized for total resistance using CFD as a calculation tool and a genetic algorithm as an optimization tool. CFD based optimization consists of major steps involving automatic generation of geometry based on design parameters, automatic generation of mesh, automatic analysis of fluid flow to calculate the required objective/cost function, and finally an optimization tool to evaluate the cost for optimization. In this paper, integration of a genetic algorithm program, written in MATLAB, was carried out with the geometry and meshing software GAMBIT and CFD analysis software FLUENT. Different geometries of additive bulbous bow were incorporated in the original hull based on design parameters. These design variables were optimized to achieve a minimum cost function of "total resistance". Integration of a genetic algorithm with CFD tools proves to be effective for hull form ootimization. 展开更多
关键词 bulbous bow genetic algorithm computational fluid dynamics (CFD) total resistance
下载PDF
Computational fluid dynamics simulation of gas-liquid two phases flow in 320 m^3 air-blowing mechanical flotation cell using different turbulence models 被引量:3
13
作者 沈政昌 陈建华 +2 位作者 张谌虎 廖幸锦 李玉琼 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2385-2392,共8页
According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in... According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in flotation cell was simulated using computational fluid dynamics method. It is shown that hexahedral mesh scheme is more suitable for the complex structure of the flotation cell than tetrahedral mesh scheme, and a mesh quality ranging from 0.7 to 1.0 is obtained. Comparative studies of the standard k-ε, k-ω and realizable k-ε turbulence models were carried out. It is indicated that the standard k-ε turbulence model could give a result relatively close to the practice and the liquid phase flow field is well characterized. In addition, two obvious recirculation zones are formed in the mixing zones, and the pressure on the rotor and stator is well characterized. Furthermore, the simulation results using improved standard k-ε turbulence model show that surface tension coefficient of 0.072, drag model of Grace and coefficient of 4, and lift coefficient of 0.001 can be achieved. The research results suggest that gas-fluid two-phase flow in large flotation cell can be well simulated using computational fluid dynamics method. 展开更多
关键词 computational fluid dynamics (CFD) simulation flotation cell gas-liquid two-phases flow
下载PDF
COMPUTATIONAL FLUID DYNAMICS RESEARCH ON PRESSURE LOSS OF CROSS-FLOW PERFORATED MUFFLER 被引量:15
14
作者 HU Xiaodong ZHOU Yiqi +2 位作者 FANG Jianhua MAN Xiliang ZHAO Zhengxu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第2期88-93,共6页
The pressure loss of cross-flow perforated of physical modeling, simulation and data processing. muffler has been computed with the procedure Three-dimensional computational fluid dynamics (CFD) has been used to inv... The pressure loss of cross-flow perforated of physical modeling, simulation and data processing. muffler has been computed with the procedure Three-dimensional computational fluid dynamics (CFD) has been used to investigate the relations of porosities, flow velocity and diameter of the holes with the pressure loss. Accordingly, some preliminary results have been obtained that pressure loss increases with porosity descent as nearly a hyperbolic trend, rising flow velocity of the input makes the pressure loss increasing with parabola trend, diameter of holes affects little about pressure loss of the muffler. Otherwise, the holes on the perforated pipes make the air flow gently and meanly, which decreases the air impact to the wall and pipes in the muffler. A practical perforated muffler is used to illustrate the available of this method for pressure loss computation, and the comparison shows that the computation results with the method of CFD has reference value for muffler design. 展开更多
关键词 Perforated muffler Pressure loss computational fluid dynamics (CFD) Porosity Flow velocity
下载PDF
Optimization study of a PEM fuel cell performance using 3D multi-phase computational fluid dynamics model 被引量:2
15
作者 AL-BAGHDADI Maher A.R. Sadiq AL-JANABI Haroun A.K.Shahad 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第2期285-300,共16页
An optimization study using a comprehensive 3D, multi-phase, non-isothermal model of a PEM (proton exchange membrane) fuel cell that incorporates significant physical processes and key parameters affecting fuel cell... An optimization study using a comprehensive 3D, multi-phase, non-isothermal model of a PEM (proton exchange membrane) fuel cell that incorporates significant physical processes and key parameters affecting fuel cell performance is presented and discussed in detail. The model accounts for both gas and liquid phase in the same computational domain, and thus allows for the implementation of phase change inside the gas diffusion layers. The model includes the transport of gaseous species, liquid water, protons, energy, and water dissolved in the ion-conducting polymer. Water is assumed to be exchanged among three phases: liquid, vapottr, and dissolved, with equilibrium among these phases being assumed. This model also takes into account convection and diffusion of different species in the channels as well as in the porous gas diffusion layer, heat transfer in the solids as well as in the gases, and electrochemical reactions. The results showed that the present multi-phase model is capable of identifying important parameters for the wetting behaviour of the gas diffusion layers and can be used to identify conditions that might lead to the onset of pore plugging, which has a detrimental effect on the fuel cell performance. This model is used to study the effects of several operating, design, and material parameters on fuel cell performance. Detailed analyses of the fuel cell performance under various operating conditions have been conducted and examined. 展开更多
关键词 OPTIMIZATION PEM fuel cell MULTI-PHASE Water transport CFD computational fluid dynamics
下载PDF
Computational fluid dynamics(CFD) simulation of effect of baffles on separation in mixer settler 被引量:13
16
作者 Mohsen Ostad Shabani Ali Mazahery +4 位作者 Mehdi Alizadeh Ali Asghar Tofigh Mohammad Reza Rahimipour Mansour Razavi Alireza Kolahi 《International Journal of Mining Science and Technology》 SCIE EI 2012年第5期703-706,共4页
The main ideas in the development of the solvent extraction mixer settler focused on achieving clean phase separation,minimizing the loss of the reagents and decreasing the surface area of the settlers.The role of baf... The main ideas in the development of the solvent extraction mixer settler focused on achieving clean phase separation,minimizing the loss of the reagents and decreasing the surface area of the settlers.The role of baffles in a mechanically agitated vessel is to ensure even distribution,reduce settler turbulence,promote the stability of power drawn by the impeller and to prevent swirling and vortexing of liquid,thus,greatly improving the mixing of liquid.The insertion of the appropriate number of baffles clearly improves the extent of liquid mixing.However,excessive baffling would interrupt liquid mixing and lengthen the mixing time.Computational fluid dynamics(CFD) provides a tool for determining detailed information on fluid flow(hydrodynamics) which is necessary for modeling subprocesses in mixer settler.A total of 54 final CFD runs were carried out representing different combinations of variables like number of baffles,density and impeller speed.CFD data shows that amount of separation increases with increasing baffles number and decreasing impeller speed. 展开更多
关键词 Mixer settler computational fluid dynamics Liquid-liquid Efficiency
下载PDF
Simplifi ed dynamic analysis to evaluate liquefaction-inducedlateral deformation of earth slopes: a computational fluid dynamics approach 被引量:2
17
作者 Yaser Jafarian Ali Ghorbani Omid Ahmadi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第3期555-568,共14页
Lateral deformation of liquefiable soil is a cause of much damage during earthquakes, reportedly more than other forms of liquefaction-induced ground failures. Researchers have presented studies in which the liquefied... Lateral deformation of liquefiable soil is a cause of much damage during earthquakes, reportedly more than other forms of liquefaction-induced ground failures. Researchers have presented studies in which the liquefied soil is considered as viscous fluid. In this manner, the liquefied soil behaves as non-Newtonian fluid, whose viscosity decreases as the shear strain rate increases. The current study incorporates computational fluid dynamics to propose a simplified dynamic analysis for the liquefaction-induced lateral deformation of earth slopes. The numerical procedure involves a quasi-linear elastic model for small to moderate strains and a Bingham fluid model for large strain states during liquefaction. An iterative procedure is considered to estimate the strain-compatible shear stiffness of soil. The post-liquefaction residual strength of soil is considered as the initial Bingham viscosity. Performance of the numerical procedure is examined by using the results of centrifuge model and shaking table tests together with some field observations of lateral ground deformation. The results demonstrate that the proposed procedure predicts the time history of lateral ground deformation with a reasonable degree of precision. 展开更多
关键词 LIQUEFACTION lateral ground deformation simplified dynamic analysis computational fluid dynamics
下载PDF
Computational fluid dynamics simulation of formaldehyde emission characteristics and its experimental validation in environment chamber 被引量:2
18
作者 刘志坚 《Journal of Chongqing University》 CAS 2010年第3期124-132,共9页
We investigated the effect of supply air rate and temperature on formaldehyde emission characteristics in an environment chamber.A three-dimensional computational fluid dynamics(CFD) chamber model for simulating forma... We investigated the effect of supply air rate and temperature on formaldehyde emission characteristics in an environment chamber.A three-dimensional computational fluid dynamics(CFD) chamber model for simulating formaldehyde emission in twelve different cases was developed for obtaining formaldehyde concentration by the area-weighted average method.Laboratory experiments were conducted in an environment chamber to validate the simulation results of twelve different cases and the formaldehyde concentration was measured by continuous sampling.The results show that there was good agreement between the model prediction and the experimental values within 4.3 difference for each case.The CFD simulation results varied in the range from 0.21 mg/m3 to 0.94 mg/m3,and the measuring results in the range from 0.17 mg/m3 to 0.87 mg/m3.The variation trend of formaldehyde concentration with supply air rate and temperature variation for CFD simulation and experiment measuring was consistent.With the existence of steady formaldehyde emission sources,formaldehyde concentration generally increased with the increase of temperature,and it decreased with the increase of air supply rate.We also provided some reasonable suggestions to reduce formaldehyde concentration and to improve indoor air quality for newly decorated rooms. 展开更多
关键词 formaldehyde concentration environment chamber computational fluid dynamics simulation supply air rate TEMPERATURE
下载PDF
Analysis of interaction between surface and sewer pipe system based on computational fluid dynamics 被引量:2
19
作者 Geng Yanfen Mao Jiandong +1 位作者 Wang Zhili Guo Huaqiang 《Journal of Southeast University(English Edition)》 EI CAS 2020年第2期198-205,共8页
To verify the accuracy of weir and orifice formula and analyze the hydraulic characteristics of exchange flow in a manhole,a three-dimensional numerical model was proposed to assess the exchange flow rate between the ... To verify the accuracy of weir and orifice formula and analyze the hydraulic characteristics of exchange flow in a manhole,a three-dimensional numerical model was proposed to assess the exchange flow rate between the surface and sewer pipe systems based on the real-world scale model.The hydrodynamic model is based on the three-dimensional Navier-Stokes equations including the standard k-εmodel for turbulence processes,and the volume of fluid(VOF)method for capturing the free surface.The results of the computational fluid dynamics(CFD)simulation are compared with the conventional overflow equations,showing that the weir and orifice formula is appropriate to determine the exchange flow rate between two systems in this specific study case.Streamlines and velocity contours at the center profile under both the inflow and surcharge conditions show that the exchange flow is directly related to the water level on the surface and the junction area between the manhole and right pipe.The results demonstrate the potential application of CFD in analyzing the interaction of urban flood flows,which can provide much clearer details of the interaction process. 展开更多
关键词 computational fluid dynamics(CFD) exchange flow rate urban flood model weir and orifice formula
下载PDF
Optimization of the Internal Circulating Fluidized Bed Using Computational Fluid Dynamics Technology 被引量:2
20
作者 Xiangxi Du Muyun Liu Yanhua Sun 《Fluid Dynamics & Materials Processing》 EI 2022年第2期303-312,共10页
The computational fluid dynamics(CFD)technology is analyzed and calculated utilizing the turbulence model and multiphase flow model to explore the performance of internal circulating fluidized beds(ICFB)based on CFD.T... The computational fluid dynamics(CFD)technology is analyzed and calculated utilizing the turbulence model and multiphase flow model to explore the performance of internal circulating fluidized beds(ICFB)based on CFD.The three-dimensional simulation method can study the hydrodynamic properties of the ICFB,and the performance of the fluidized bed is optimized.The fluidization performance of the ICFB is improved through the experimental study of the cross-shaped baffle.Then,through the cross-shaped baffle and funnel-shaped baffle placement,the fluidized bed reaches a coupled optimization.The results show that CFD simulation technology can effectively improve the mass transfer efficiency and performance of sewage treatment.The base gap crossshaped baffle can improve the hydraulic conditions of the fluidized bed and reduce the system energy consumption.The cross-shaped baffle and funnel-shaped baffle can perfect the performance of the reactor and effectively strengthen the treatment in the intense aerobic process of industrial sewage. 展开更多
关键词 Internal circulating fluidized bed computational fluid dynamics optimization design INTERNAL
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部