The study of estimation of conditional extreme quantile in incomplete data frameworks is of growing interest. Specially, the estimation of the extreme value index in a censorship framework has been the purpose of many...The study of estimation of conditional extreme quantile in incomplete data frameworks is of growing interest. Specially, the estimation of the extreme value index in a censorship framework has been the purpose of many inves<span style="font-family:Verdana;">tigations when finite dimension covariate information has been considered. In this paper, the estimation of the conditional extreme quantile of a </span><span style="font-family:Verdana;">heavy-tailed distribution is discussed when some functional random covariate (</span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> valued in some infinite-dimensional space) information is available and the scalar response variable is right-censored. A Weissman-type estimator of conditional extreme quantiles is proposed and its asymptotic normality is established under mild assumptions. A simulation study is conducted to assess the finite-sample behavior of the proposed estimator and a comparison with two simple estimations strategies is provided.</span>展开更多
This paper aims to explore the application of Extreme Value Theory (EVT) in estimating the conditional extreme quantile for time-to-event outcomes by examining the functional relationship between ambulatory blood pres...This paper aims to explore the application of Extreme Value Theory (EVT) in estimating the conditional extreme quantile for time-to-event outcomes by examining the functional relationship between ambulatory blood pressure trajectories and clinical outcomes in stroke patients. The study utilizes EVT to analyze the functional connection between ambulatory blood pressure trajectories and clinical outcomes in a sample of 297 stroke patients. The 24-hour ambulatory blood pressure measurement curves for every 15 minutes are considered, acknowledging a censored rate of 40%. The findings reveal that the sample mean excess function exhibits a positive gradient above a specific threshold, confirming the heavy-tailed distribution of data in stroke patients with a positive extreme value index. Consequently, the estimated conditional extreme quantile indicates that stroke patients with higher blood pressure measurements face an elevated risk of recurrent stroke occurrence at an early stage. This research contributes to the understanding of the relationship between ambulatory blood pressure and recurrent stroke, providing valuable insights for clinical considerations and potential interventions in stroke management.展开更多
Estimation of the extreme conditional quantiles with functional covariate is an important problem in quantile regression. The existing methods, however, are only applicable for heavy-tailed distributions with a positi...Estimation of the extreme conditional quantiles with functional covariate is an important problem in quantile regression. The existing methods, however, are only applicable for heavy-tailed distributions with a positive conditional tail index. In this paper, we propose a new framework for estimating the extreme conditional quantiles with functional covariate that combines the nonparametric modeling techniques and extreme value theory systematically. Our proposed method is widely applicable, no matter whether the conditional distribution of a response variable Y given a vector of functional covariates X is short, light or heavy-tailed. It thus enriches the existing literature.展开更多
文摘The study of estimation of conditional extreme quantile in incomplete data frameworks is of growing interest. Specially, the estimation of the extreme value index in a censorship framework has been the purpose of many inves<span style="font-family:Verdana;">tigations when finite dimension covariate information has been considered. In this paper, the estimation of the conditional extreme quantile of a </span><span style="font-family:Verdana;">heavy-tailed distribution is discussed when some functional random covariate (</span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> valued in some infinite-dimensional space) information is available and the scalar response variable is right-censored. A Weissman-type estimator of conditional extreme quantiles is proposed and its asymptotic normality is established under mild assumptions. A simulation study is conducted to assess the finite-sample behavior of the proposed estimator and a comparison with two simple estimations strategies is provided.</span>
文摘This paper aims to explore the application of Extreme Value Theory (EVT) in estimating the conditional extreme quantile for time-to-event outcomes by examining the functional relationship between ambulatory blood pressure trajectories and clinical outcomes in stroke patients. The study utilizes EVT to analyze the functional connection between ambulatory blood pressure trajectories and clinical outcomes in a sample of 297 stroke patients. The 24-hour ambulatory blood pressure measurement curves for every 15 minutes are considered, acknowledging a censored rate of 40%. The findings reveal that the sample mean excess function exhibits a positive gradient above a specific threshold, confirming the heavy-tailed distribution of data in stroke patients with a positive extreme value index. Consequently, the estimated conditional extreme quantile indicates that stroke patients with higher blood pressure measurements face an elevated risk of recurrent stroke occurrence at an early stage. This research contributes to the understanding of the relationship between ambulatory blood pressure and recurrent stroke, providing valuable insights for clinical considerations and potential interventions in stroke management.
基金Supported by the National Natural Science Foundation of China(Grant No.11671338)the Hong Kong Baptist University(Grant Nos.FRG1/16-17/018 and FRG2/16-17/074)
文摘Estimation of the extreme conditional quantiles with functional covariate is an important problem in quantile regression. The existing methods, however, are only applicable for heavy-tailed distributions with a positive conditional tail index. In this paper, we propose a new framework for estimating the extreme conditional quantiles with functional covariate that combines the nonparametric modeling techniques and extreme value theory systematically. Our proposed method is widely applicable, no matter whether the conditional distribution of a response variable Y given a vector of functional covariates X is short, light or heavy-tailed. It thus enriches the existing literature.