期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
High energy density in ultra-thick and flexible electrodes enabled by designed conductive agent/binder composite
1
作者 Xiaoyu Shen Hailong Yu +6 位作者 Liubin Ben Wenwu Zhao Qiyu Wang Guanjun Cen Ronghan Qiao Yida Wu Xuejie Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期133-143,I0005,共12页
Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated us... Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes. 展开更多
关键词 conductive agent/binder composite Dry process Ultra-thick electrodes High energy density CEI reconstruction ToF-SIMS
下载PDF
Effects of conductive agent type on lithium extraction from salt lake brine with LiFePO_(4) electrodes
2
作者 Zhen Zhang Pan Luo +7 位作者 Yan Zhang Yuhan Wang Li Liao Bo Yu Mingshan Wang Junchen Chen Bingshu Guo Xing Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期678-687,共10页
Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines gi... Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines give rise to challenges,such as prolonged lithium extraction periods,diminished lithium extraction efficiency,and considerable environmental pollution.In this work,Li FePO4(LFP)served as the electrode material for electrochemical lithium extraction.The conductive network in the LFP electrode was optimized by adjusting the type of conductive agent.This approach resulted in high lithium extraction efficiency and extended cycle life.When the single conductive agent of acetylene black(AB)or multiwalled carbon nanotubes(MWCNTs)was replaced with the mixed conductive agent of AB/MWCNTs,the average diffusion coefficient of Li+in the electrode increased from 2.35×10^(-9)or 1.77×10^(-9)to 4.21×10^(-9)cm^(2)·s^(-1).At the current density of 20 mA·g^(-1),the average lithium extraction capacity per gram of LFP electrode increased from 30.36 mg with the single conductive agent(AB)to 35.62 mg with the mixed conductive agent(AB/MWCNTs).When the mixed conductive agent was used,the capacity retention of the electrode after 30 cycles reached 82.9%,which was considerably higher than the capacity retention of 65.8%obtained when the single AB was utilized.Meanwhile,the electrode with mixed conductive agent of AB/MWCNTs provided good cycling performance.When the conductive agent content decreased or the loading capacity increased,the electrode containing the mixed conductive agent continued to show excellent electrochemical performance.Furthermore,a self-designed,highly efficient,continuous lithium extraction device was constructed.The electrode utilizing the AB/MWCNT mixed conductive agent maintained excellent adsorption capacity and cycling performance in this device.This work provides a new perspective for the electrochemical extraction of lithium using LFP electrodes. 展开更多
关键词 salt lake brine lithium extraction electrochemical lithium extraction conductive agent extraction efficiency adsorption capacity
下载PDF
Impact of Morphology of Conductive Agent and Anode Material on Lithium Storage Properties 被引量:6
3
作者 Xiaobing Zhang Ji Ma Kezheng Chen 《Nano-Micro Letters》 SCIE EI CAS 2015年第4期360-367,共8页
In this study,the impact of morphology of conductive agent and anode material(Fe3O4)on lithium storage properties was throughly investigated.Granular and belt-like Fe3O4active materials were separately blended with tw... In this study,the impact of morphology of conductive agent and anode material(Fe3O4)on lithium storage properties was throughly investigated.Granular and belt-like Fe3O4active materials were separately blended with two kinds of conductive agents(i.e.,granular acetylene black and multi-walled carbon nanotube)as anodes in lithium-ion batteries(LIBs),respectively.It was found that the morphology of conductive agent is of utmost importance in determining LIBs storage properties.In contrast,not as the way we anticipated,the morphology of anode material merely plays a subordinate role in their electrochemical performances.Further,the morphology-matching principle of electrode materials was discussed so as to render their utilization more rational and effective in LIBs. 展开更多
关键词 Lithium-ion batteries MORPHOLOGY conductive agent Anode material
下载PDF
Optimization of mixing speed and time to disperse the composite conductive agent composed of carbon black and graphene in lithium-ion battery slurry
4
作者 Zhilong Wang Jialong Tu +4 位作者 Xinhao Yu Feixiang Li Zhenzhen Zhao Yahui Cui Tong Zhao 《Particuology》 SCIE EI CAS CSCD 2024年第9期1-12,共12页
This paper proposed an optimal approach to disperse the composite conductive agent which is composed of carbon black(CB)and graphene(Gr)within lithium-ion battery(LIB)slurry with different mixing speeds and mixing tim... This paper proposed an optimal approach to disperse the composite conductive agent which is composed of carbon black(CB)and graphene(Gr)within lithium-ion battery(LIB)slurry with different mixing speeds and mixing times.The internal structures of LIB slurry are characterized by Electrochemical Impedance Spectroscopy,Scanning Electron Microscopy,and Raman experiment.Initially,a composite conductive solution is prepared by mixing the composite conductive agent with NMP solvent under the conditions of five different mixing speeds n_(1)(n_(1)=1000,1100,1200,1300,1400 rpm)in the case of mixing time t_(1)=10 min.Subsequently,LIB slurry is prepared by blending the composite conductive solution,LiCoO_(2)and PVDF-NMP solution under the conditions of five different mixing speeds n_(2)(n_(2)=1000±280,1100±280,1200±280,1300±280,1400±280 rpm)in the case of mixing time t_(2)=6 min.By analyzing the internal structure of different LIB slurries,it shows that in the case of n_(1)=n_(2)=1200 rpm,a conductive network structure is well formed within LIB slurry.Additionally,in order to determine the optimal time to prepare the composite conductive solution for LIB slurry,nine different t_(1)(t_(1)=0,10,20,30,40,50,60,70,80 min)are selected.By analyzing the internal structure of different LIB slurries,a well-formed conductive network structure and a uniformly distributed composite conductive agent are deduced in LIB slurry when t_(1)=50 min.Therefore,it can be concluded that the composite conductive agent composed of CB and Gr is able to be uniformly dispersed in LIB slurry by establishing a well-formed conductive network structure under the optimal mixing speed n_(1)=n_(2)=1200 rpm and the optimal mixing time t_(1)=50 min,t_(2)=6 min.This kind of the internal structure has the potential to be used to further analyze the dispersion characterizations of LIB slurry under different composite conductive agent and CB/Gr ratios with the aim of improving the final performance of LIB. 展开更多
关键词 Lithium-ion battery slurry Composite conductive agent Carbon black GRAPHENE
原文传递
Self-supported VO_(2) on polydopamine-derived pyroprotein-based fibers for ultrastable and flexible aqueous zinc-ion batteries
5
作者 Jeong Seok Yeon Sul Ki Park +10 位作者 Shinik Kim Santosh VMohite Won Il Kim Gun Jang Hyun-Seok Jang Jiyoung Bae Sang Moon Lee Won GHong Byung Hoon Kim Yeonho Kim Ho Seok Park 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期1-13,共13页
A conventional electrode composite for rechargeable zinc-ion batteries(ZIBs)includes a binder for strong adhesion between the electrode material and the current collector.However,the introduction of a binder leads to ... A conventional electrode composite for rechargeable zinc-ion batteries(ZIBs)includes a binder for strong adhesion between the electrode material and the current collector.However,the introduction of a binder leads to electrochemical inactivity and low electrical conductivity,resulting in the decay of the capacity and a low rate capability.We present a binder-and conducting agent-free VO_(2) composite electrode using in situ polymerization of dopamine on a flexible current collector of pyroprotein-based fibers.The as-fabricated composite electrode was used as a substrate for the direct growth of VO_(2) as a self-supported form on polydopamine-derived pyroprotein-based fibers(pp-fibers@VO_(2)(B)).It has a high conductivity and flexible nature as a current collector and moderate binding without conventional binders and conducting agents for the VO_(2)(B) cathode.In addition,their electrochemical mechanism was elucidated.Their energy storage is induced by Zn^(2+)/H^(+) coinsertion during discharging,which can be confirmed by the lattice expansion,the formation of by-products including Zn_(x)(OTf)_(y)(OH)_(2x−y)·nH_(2)O,and the reduction of V^(4+)to V^(3+).Furthermore,the assembled Zn//pp-fibers@VO_(2)(B) pouch cells have excellent flexibility and stable electrochemical performance under various bending states,showing application possibilities for portable and wearable power sources. 展开更多
关键词 aqueous battery binder free conducting agent‐free flexible electrode zinc‐ion battery
下载PDF
Tailoring the electronic conductivity of high-loading cathode electrodes for practical sulfide-based all-solid-state batteries
6
作者 Huaqing Shen Shenghao Jing +6 位作者 Siliang Liu Yuting Huang Fangbo He Yang Liu Zhi Zhuang Zongliang Zhang Fangyang Liu 《Advanced Powder Materials》 2023年第4期63-72,共10页
Sulfide-based all-solid-state batteries(ASSBs)exhibit unparalleled application value due to the high ionic conductivity and good processability of sulfide solid electrolytes(SSEs).Carbon-based conductive agents(CAs)are ... Sulfide-based all-solid-state batteries(ASSBs)exhibit unparalleled application value due to the high ionic conductivity and good processability of sulfide solid electrolytes(SSEs).Carbon-based conductive agents(CAs)are often used in the construction of electronic conductive networks to achieve rapid electron transfer.However,CAs accelerate the formation of decomposition products of SSEs,and their effects on sulfide-based ASSBs are not fully understood.Herein,the effect of CAs(super P,vaper-grown carbonfibers,and carbon nanotubes)on the performance of sulfide-based ASSBs is investigated under different cathode active materials mass loading(8 and 25 mg⋅cm^(-2)).The results show that under low mass loading,the side reaction between the CAs and the SSEs deteriorates the performance of the cell,while the charge transfer promotion caused by the addition of CAs is only manifested under high mass loading.Furthermore,the gradient design strategy(enrichment of CAs near the current collector side and depletion of CAs near the electrolyte side)is applied to maximize the benefits of CAs in electron transport and reduce the adverse effects of CAs.The charge carrier transport barrier inside the high mass loading electrode is significantly reduced through the regulation of electronic conductivity.Consequently,the optimized electrode achieves a high areal capacity of 5.6 mAh⋅cm^(-2)at high current density(1.25 mA⋅cm2,0.2℃)at 25℃with a capacity retention of 87.85%after 100 cycles.This work provides a promising way for the design of high-mass loading electrodes with practical application value. 展开更多
关键词 All-solid-state-batteries conductive agents Sulfide electrolytes High mass loading Gradient designing
下载PDF
Conductive composite binder for recyclable LiFePO_4 cathode
7
作者 Wendi Dou Guangying Wan +7 位作者 Tiefeng Liu Lin Han Wu Zhang Chuang Sun Rensheng Song Jianhui Zheng Yujing Liu Xinyong Tao 《Chinese Chemical Letters》 SCIE CAS 2024年第11期535-538,共4页
In order to solve the problem of poor conductivity of traditional LiFePO_(4)cathode binders,we developed sodium alginate-Congo red copolymers(SA-CR)as water-soluble electrically conductive and mechanically robust comp... In order to solve the problem of poor conductivity of traditional LiFePO_(4)cathode binders,we developed sodium alginate-Congo red copolymers(SA-CR)as water-soluble electrically conductive and mechanically robust composite binder.Unlike most other electrically conductive polymer binders,the procedure is straightforward and low-cost to prepare SA-CR binder.Various SA-CR copolymers were prepared with different degree of compounding of CR to investigate the effect of CR on the electrochemical and physical properties of the prepared electrodes.The copolymer whose composition was filled with a mixture of SA and CR at a 3:1 mass ratio showed the best cell performance,due to the well-balanced electrical conductivity and mechanical properties.It exhibited a specific capacity of 118.8 m Ah/g at the 100th cycle with 92.1%capacity retention,significantly better than the 108.5 m Ah/g of conventional acetylene black electrodes.CR as a conduction-promoting agent in water-soluble composite binder favors the formation of continuous and homogenous conducting bridges throughout the electrode and increases the compaction density of electrode by reducing the conducting agent content of acetylene black and thus the improvement of electrode performance is realized. 展开更多
关键词 Lithium-ion batteries LiFePO_(4)cathode conductive binder Copolymer Conducting agent
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部