Most seed gums have been widely used in oral and topical pharmaceutical formulations, cosmetics, and food products because of their hydrophilic properties. Gums from Tamariudus indica and Cassia fistula seeds were che...Most seed gums have been widely used in oral and topical pharmaceutical formulations, cosmetics, and food products because of their hydrophilic properties. Gums from Tamariudus indica and Cassia fistula seeds were chemically modified by carboxymethylation to improve their functionalities. The objective of the present study was to characterize and evaluate crude and carboxymethylated gums from T. indica and C. fistula seeds to achieve the controlled-release of diclofenac sodium(DS) in matrix tablet form. Both crude and carboxymethylated gums were characterized by Fourier transform infrared spectroscopy, Xray diffraction, and scanning electron microscopy. The results revealed that the gums were successfully modified by carboxymethylation and that the modified gums were amorphous in structure and had better flow properties. The carboxymethylated gums from both plant seeds did not exhibit cytotoxicity at concentrations lower than 0.5 mg/ml. All gum samples used as polymeric controlled-release agents were formulated into DS matrix tablets. Hardness and thickness tests were conducted as in-process tests. Drug content estimation and in vitro drug release studies were carried out to evaluate the matrix tablets. Increasing the concentration of gums increased compression time and hardness while it reduced the thickness. Furthermore, the results fitted well with the Korsmeyer–Peppas model. Moreover, the DS tablets were found to release the drug by super case II transport(relaxation). In summary, the carboxymethylated gum from T. indica and C. fistula seeds is an excellent, naturally sourced gum with high physicochemical and functional qualities, and can potentially be used in pharmaceutical applications as a disintegrant, diluent, and drug release-controlling agent.展开更多
Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of...Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of obtaining a second harvest from tillers originating from the stubble of the previously harvested main crop.In this study,a 2-year field experiment using a randomized complete block design was conducted to determine the effects of CRU on the yield,NUE,and economic benefits of ratoon rice,including the main crop,to provide a theoretical basis for fertilization of ratoon rice.The experiment included four treatments:(i)no N fertilizer(CK);(ii)traditional practice with 5 applications of urea applied at different crop growth stages by surface broadcasting(FFP);(iii)one-time basal application of CRU(BF1);and(iv)one-time basal application of CRU combined with common urea(BF2).The BF1 and BF2 treatments significantly increased the main crop yield by 17.47 and 15.99%in 2019,and by 17.91 and 16.44%in 2020,respectively,compared with FFP treatment.The BF2 treatment achieved similar yield of the ratoon crop to the FFP treatment,whereas the BF1 treatment significantly increased the yield of the ratoon crop by 14.81%in 2019 and 12.21%in 2020 compared with the FFP treatment.The BF1 and BF2 treatments significantly improved the 2-year apparent N recovery efficiency,agronomic NUE,and partial factor productivity of applied N by 11.47-16.66,27.31-44.49,and 9.23-15.60%,respectively,compared with FFP treatment.The BF1 and BF2 treatments reduced the chalky rice rate and chalkiness of main and ratoon crops relative to the FFP treatment.Furthermore,emergy analysis showed that the production efficiency of the BF treatments was higher than that of the FFP treatment.The BF treatments reduced labor input due to reduced fertilization times and improved the economic benefits of ratoon rice.Compared with the FFP treatment,the BF1 and BF2 treatments increased the net income by 14.21-16.87 and 23.76-25.96%,respectively.Overall,the one-time blending use of CRU and common urea should be encouraged to achieve high yield,high nitrogen use efficiency,and good quality of ratoon rice,which has low labor input and low apparent N loss.展开更多
未来6G网络将内生支持通信和AI一体化服务,赋能丰富多彩的新业务,支撑社会高效可持续发展。为此,借鉴了IT行业AI Agent的应用范式,基于电信应用场景创新地提出了6G AI Agent技术框架的三大设计理念,包括多模型融合、定制化Agent和插件...未来6G网络将内生支持通信和AI一体化服务,赋能丰富多彩的新业务,支撑社会高效可持续发展。为此,借鉴了IT行业AI Agent的应用范式,基于电信应用场景创新地提出了6G AI Agent技术框架的三大设计理念,包括多模型融合、定制化Agent和插件式环境交互,并基于该理念构建了6G AI Agent技术框架。通过环境交互层、Agent引擎层、模型调度层、模型基座层交互协同,实现了自主环境感知、自主任务生成和自主执行任务的能力。此外,以移动网络的智能感知任务为例,探索了AI Agent的使用场景及价值,为AI新技术在电信领域发展提供了新的思路和技术支撑。展开更多
One-time application of mixed fertilizer formed by the compounding of two controlled-release nitrogen fertilizers(CRUs)with targeted N supply during the periods from transplantation(TS)to panicle initiation(PI)and fro...One-time application of mixed fertilizer formed by the compounding of two controlled-release nitrogen fertilizers(CRUs)with targeted N supply during the periods from transplantation(TS)to panicle initiation(PI)and from PI to heading(HS)is expected to synchronize the double-peak N demand of rice.However,its effects on the yield and N use efficiency(NUE)of labor-intensive double-cropping rice were unknown.Two targeted CRU(CRU_(A)and CRU_(B))were compounded in five ratios(CRU_(A):CRU_(B)=10:0,7:3,5:5,3:7,and 0:10)to form five mixed fertilizers(BBFs):BBF1-5.A field experiment was performed to investigate the characteristics of N supply in early and late seasons under different BBFs and their effects on N uptake,yield,and ammonia volatilization(AV)loss from paddy fields of double-cropping rice.Conventional high-yield fertilization(CK,three split applications of urea)and zero-N treatments were established as controls.The N supply dropped significantly with the increased compound ratio of CRU_(B)during the period from TS to PI,but increased during the period from PI to HS.With the exception of the period from TS to PI in the late rice season,the N uptake of early and late rice maintained close synchronicity with the N supply of BBFs during the double-peak periods.Excessive N supply(BBF1 and BBF2)in the late rice season during the period from TS to PI increased N loss by AV.The effect of BBF on grain yield increase varied widely between seasons,irrespective of year.Among the BBFs,the BBF2 treatment of early rice not only stabilized the spikelets per panicle but also ensured a high number of effective panicles by promoting N uptake during the period from TS to PI and a high grain-filling percentage by appropriately reducing the N supply at the later PI stage,resulting in the highest rice yield.While stabilizing the effective panicle number,the BBF4 treatment of late rice increased the number of spikelets per panicle by promoting N uptake during the period from PI to HS,resulting in the highest rice yield.The two-year average yield and apparent N recovery efficiency of the BBF2 treatment during the early rice season were 9.6 t ha 1 and 45.3%,while those of late rice in BBF4 were 9.6 t ha 1 and 43.0%,respectively.The yield and NUE indexes of BBF2 in early rice and BBF4 in late rice showed no significant difference from those of CK.The AVs of BBF2 during the early rice season and of BBF4 during the late rice season were 50.0%and 76.8%lower,respectively,than those of CK.BBF2 and BBF4 could effectively replace conventional urea split fertilization in early and late rice seasons,ensuring rice yield and NUE and reducing AV loss in paddy fields.展开更多
A mixture of controlled-release urea and normal urea(CRUNU)is an efficient nitrogen(N)fertilizer type,but little is known about its effects on stem lodging resistance,grain yield,and yield stability of wheat.In this s...A mixture of controlled-release urea and normal urea(CRUNU)is an efficient nitrogen(N)fertilizer type,but little is known about its effects on stem lodging resistance,grain yield,and yield stability of wheat.In this study,a 4-year field experiment(from 2017 to 2021)was conducted to analyze the effects of N fertilizer types(CRUNU and normal urea(NU))and application rates(low level(L),135 kg ha^(–1);medium level(M),180 kg ha^(–1);high level(H),225 kg ha^(–1))on population lodging resistance,basal internode strength,lignin content and synthetase activity,stem lodging resistance,grain yield,and yield stability of wheat.Our results showed that the two N fertilizer types had the highest lodging rate under high N application rates,and the M-CRUNU treatment showed the lowest lodging rate.Compared with NU,CRUNU improved the wheat population lodging resistance under the three N application rates,mainly related to improving wheat population characteristics and breaking the strength of the second basal internode.Correlation analysis showed that the breaking strength of the second basal internode was related to the physical characteristics,chemical components,and micro-structure of the internode.Compared with NU,CRUNU significantly increased wheat grain yield by 4.47,14.62,and 3.12%under low,medium,and high N application rates,respectively.In addition,CRUNU showed no significant difference in grain yield under medium and high N application rates,but it presented the highest yield stability under the medium N application rate.In summary,CRUNU,combined with the medium N application rate,is an efficient agronomic management strategy for wheat production.展开更多
Controlled-release urea(CRU)is widely reported to supply crop nitrogen(N)demand with one basal application,thus effectively replacing split applications of urea without diminishing grain yield and N use efficiency(NUE...Controlled-release urea(CRU)is widely reported to supply crop nitrogen(N)demand with one basal application,thus effectively replacing split applications of urea without diminishing grain yield and N use efficiency(NUE).However,its use for replacement for high-yield split applications of urea(CK)for rice is untested.In addition,the degree to which greenhouse gas(GHG)emissions in rice systems are affected when CRU is substituted for CK remains unclear.During 2017 and 2018,we sampled plant growth and gas emissions in a rice paddy field treated with three CRU types(sulfur-coated urea[SCU],polymer-coated urea[PCU],and bulk blended CRU[BBU])applied via two methods(surface broadcasting on the soil and subsurface banding at 5 cm depth),with CK as a control.The three CRUs led to different soil NH_(4)^(+)-N dynamics,and the N supply pattern under BBU was more beneficial for rice seedling establishment than under SCU and PCU,resulting in grain yield and NUE comparable to those under CK.CRU type showed no significant effect on either CH_(4) emissions or N_(2)O emissions,and broadcast CRUs exhibited significantly higher total GHG emissions than CK.However,banded CRUs significantly reduced the total GHG emissions in comparison with broadcast CRUs,by 9.2%averaged across the two years.Reduced CH_(4) emissions,particularly during the period prior to the middle drainage,contributed largely to the GHG difference.With comparably high grain yield and low total GHG emissions,banded BBU showed a low yield-scaled GHG(GHG emissions divided by grain yield)comparable to that under CK in both years.Overall,our study suggested that N management synchronized with rice demand and contributing to a high NUE tended to minimize yield-scaled GHG.Broadcast CRU can hardly substitute for CK in terms of either grain yield or GHG emissions,but banded BBU is a promising N management strategy for sustaining rice production while minimizing environmental impacts.展开更多
Silica aerogel with different hydrophilicities were prepared from tetramethoxysilane,Methymethoxysilane,tetramethoxysilane-propyltrimethoxysilane,or tetramethoxysilane-phenyltrimethoxysilane mixtures via supercritical...Silica aerogel with different hydrophilicities were prepared from tetramethoxysilane,Methymethoxysilane,tetramethoxysilane-propyltrimethoxysilane,or tetramethoxysilane-phenyltrimethoxysilane mixtures via supercritical drying process(labelled as TMOS-AG Me-TMOS-AG,Pr-TMOS-AG,or Ph-TMOS-AG,respectively).Three fragrances,including geraniol,ethyl vanillin,and menthol,were loaded to TMOS-AG.The thermal analysis confirmed all loading fragrances are stable until over 200℃.And among all fragrances,geraniol presented the maximum loading contents(L_(m)).Concentration dependences indicated the geraniol was mono layer absorbed.Py-GC/MS of geraniol in TMOS-AG under both N_(2)and mimic air atmosphere(90%N_(2)and 10%O_(2))confirmed that loaded geraniol could be thermally controlled-released beginning at 200℃.As N_(2)absorption confirmed,even absorption/desorption equilibrium constant(k)was determined mainly by hydrophilicity of silica aerogels,and the maximum loading contents(L_(m))were influenced more by the pore size.Due to mono layered absorption,bigger pores usually give less specific areas and less absorbing sites for geraniol,and then present lower L_(m).展开更多
While newer,more efficient Lithium-ion batteries(LIBs)and extinguishing agents have been developed to reduce the occurrence of thermal runaway accidents,there is still a scarcity of research focused on the application...While newer,more efficient Lithium-ion batteries(LIBs)and extinguishing agents have been developed to reduce the occurrence of thermal runaway accidents,there is still a scarcity of research focused on the application of surfactants in different LIBs extinguishing agents,particularly in terms of patented technologies.The aim of this review paper is to provide an overview of the technological progress of LIBs and LIBs extinguishing agents in terms of patents in Korea,Japan,Europe,the United States,China,etc.The initial part of this review paper is sort out LIBs technology development in different regions.In addition,to compare LIBs extinguishing agent progress and challenges of liquid,solid,combination of multiple,and microencapsulated.The subsequent section of this review focuses on an in-depth analysis dedicated to the efficiency and challenges faced by the surfactants corresponding design principles of LIBs extinguishing agents,such as nonionic and anionic surfactants.A total of 451,760 LIBs-related patent and 20 LIBs-fire-extinguishing agent-related patent were included in the analyses.The extinguishing effect,cooling performance,and anti-recombustion on different agents have been highlighted.After a comprehensive comparison of these agents,this review suggests that temperature-sensitive hydrogel extinguishing agent is ideal for the effective control of LIBs fire.The progress and challenges of surfactants have been extensively examined,focusing on key factors such as surface activity,thermal stability,foaming properties,environmental friendliness,and electrical conductivity.Moreover,it is crucial to emphasize that the selection of a suitable surfactant must align with the extinguishing strategy of the extinguishing agent for optimal firefighting effectiveness.展开更多
General anesthetic agents can impact brain function through interactions with neurons and their effects on glial cells.Oligodendrocytes perform essential roles in the central nervous system,including myelin sheath for...General anesthetic agents can impact brain function through interactions with neurons and their effects on glial cells.Oligodendrocytes perform essential roles in the central nervous system,including myelin sheath formation,axonal metabolism,and neuroplasticity regulation.They are particularly vulnerable to the effects of general anesthetic agents resulting in impaired proliferation,differentiation,and apoptosis.Neurologists are increasingly interested in the effects of general anesthetic agents on oligodendrocytes.These agents not only act on the surface receptors of oligodendrocytes to elicit neuroinflammation through modulation of signaling pathways,but also disrupt metabolic processes and alter the expression of genes involved in oligodendrocyte development and function.In this review,we summarize the effects of general anesthetic agents on oligodendrocytes.We anticipate that future research will continue to explore these effects and develop strategies to decrease the incidence of adverse reactions associated with the use of general anesthetic agents.展开更多
基金the Higher Education Research Promotion-National Research Universities(HERP-NRU)for financial support under grant no.2559A10862013
文摘Most seed gums have been widely used in oral and topical pharmaceutical formulations, cosmetics, and food products because of their hydrophilic properties. Gums from Tamariudus indica and Cassia fistula seeds were chemically modified by carboxymethylation to improve their functionalities. The objective of the present study was to characterize and evaluate crude and carboxymethylated gums from T. indica and C. fistula seeds to achieve the controlled-release of diclofenac sodium(DS) in matrix tablet form. Both crude and carboxymethylated gums were characterized by Fourier transform infrared spectroscopy, Xray diffraction, and scanning electron microscopy. The results revealed that the gums were successfully modified by carboxymethylation and that the modified gums were amorphous in structure and had better flow properties. The carboxymethylated gums from both plant seeds did not exhibit cytotoxicity at concentrations lower than 0.5 mg/ml. All gum samples used as polymeric controlled-release agents were formulated into DS matrix tablets. Hardness and thickness tests were conducted as in-process tests. Drug content estimation and in vitro drug release studies were carried out to evaluate the matrix tablets. Increasing the concentration of gums increased compression time and hardness while it reduced the thickness. Furthermore, the results fitted well with the Korsmeyer–Peppas model. Moreover, the DS tablets were found to release the drug by super case II transport(relaxation). In summary, the carboxymethylated gum from T. indica and C. fistula seeds is an excellent, naturally sourced gum with high physicochemical and functional qualities, and can potentially be used in pharmaceutical applications as a disintegrant, diluent, and drug release-controlling agent.
基金supported by the Key R&D Plan of Hubei Province,China(2022BBA002)the Carbon Account Accounting and Carbon Reduction and Sequestration Technology Research of Quzhou City of China(2022-31).
文摘Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of obtaining a second harvest from tillers originating from the stubble of the previously harvested main crop.In this study,a 2-year field experiment using a randomized complete block design was conducted to determine the effects of CRU on the yield,NUE,and economic benefits of ratoon rice,including the main crop,to provide a theoretical basis for fertilization of ratoon rice.The experiment included four treatments:(i)no N fertilizer(CK);(ii)traditional practice with 5 applications of urea applied at different crop growth stages by surface broadcasting(FFP);(iii)one-time basal application of CRU(BF1);and(iv)one-time basal application of CRU combined with common urea(BF2).The BF1 and BF2 treatments significantly increased the main crop yield by 17.47 and 15.99%in 2019,and by 17.91 and 16.44%in 2020,respectively,compared with FFP treatment.The BF2 treatment achieved similar yield of the ratoon crop to the FFP treatment,whereas the BF1 treatment significantly increased the yield of the ratoon crop by 14.81%in 2019 and 12.21%in 2020 compared with the FFP treatment.The BF1 and BF2 treatments significantly improved the 2-year apparent N recovery efficiency,agronomic NUE,and partial factor productivity of applied N by 11.47-16.66,27.31-44.49,and 9.23-15.60%,respectively,compared with FFP treatment.The BF1 and BF2 treatments reduced the chalky rice rate and chalkiness of main and ratoon crops relative to the FFP treatment.Furthermore,emergy analysis showed that the production efficiency of the BF treatments was higher than that of the FFP treatment.The BF treatments reduced labor input due to reduced fertilization times and improved the economic benefits of ratoon rice.Compared with the FFP treatment,the BF1 and BF2 treatments increased the net income by 14.21-16.87 and 23.76-25.96%,respectively.Overall,the one-time blending use of CRU and common urea should be encouraged to achieve high yield,high nitrogen use efficiency,and good quality of ratoon rice,which has low labor input and low apparent N loss.
文摘未来6G网络将内生支持通信和AI一体化服务,赋能丰富多彩的新业务,支撑社会高效可持续发展。为此,借鉴了IT行业AI Agent的应用范式,基于电信应用场景创新地提出了6G AI Agent技术框架的三大设计理念,包括多模型融合、定制化Agent和插件式环境交互,并基于该理念构建了6G AI Agent技术框架。通过环境交互层、Agent引擎层、模型调度层、模型基座层交互协同,实现了自主环境感知、自主任务生成和自主执行任务的能力。此外,以移动网络的智能感知任务为例,探索了AI Agent的使用场景及价值,为AI新技术在电信领域发展提供了新的思路和技术支撑。
基金provided by the National Key Research and Development Program of China(2018YFD0300904)Anhui Natural Science Foundation(2008085QC119)Key Fund Project of Anhui Department of Education(KJ2019A0176).
文摘One-time application of mixed fertilizer formed by the compounding of two controlled-release nitrogen fertilizers(CRUs)with targeted N supply during the periods from transplantation(TS)to panicle initiation(PI)and from PI to heading(HS)is expected to synchronize the double-peak N demand of rice.However,its effects on the yield and N use efficiency(NUE)of labor-intensive double-cropping rice were unknown.Two targeted CRU(CRU_(A)and CRU_(B))were compounded in five ratios(CRU_(A):CRU_(B)=10:0,7:3,5:5,3:7,and 0:10)to form five mixed fertilizers(BBFs):BBF1-5.A field experiment was performed to investigate the characteristics of N supply in early and late seasons under different BBFs and their effects on N uptake,yield,and ammonia volatilization(AV)loss from paddy fields of double-cropping rice.Conventional high-yield fertilization(CK,three split applications of urea)and zero-N treatments were established as controls.The N supply dropped significantly with the increased compound ratio of CRU_(B)during the period from TS to PI,but increased during the period from PI to HS.With the exception of the period from TS to PI in the late rice season,the N uptake of early and late rice maintained close synchronicity with the N supply of BBFs during the double-peak periods.Excessive N supply(BBF1 and BBF2)in the late rice season during the period from TS to PI increased N loss by AV.The effect of BBF on grain yield increase varied widely between seasons,irrespective of year.Among the BBFs,the BBF2 treatment of early rice not only stabilized the spikelets per panicle but also ensured a high number of effective panicles by promoting N uptake during the period from TS to PI and a high grain-filling percentage by appropriately reducing the N supply at the later PI stage,resulting in the highest rice yield.While stabilizing the effective panicle number,the BBF4 treatment of late rice increased the number of spikelets per panicle by promoting N uptake during the period from PI to HS,resulting in the highest rice yield.The two-year average yield and apparent N recovery efficiency of the BBF2 treatment during the early rice season were 9.6 t ha 1 and 45.3%,while those of late rice in BBF4 were 9.6 t ha 1 and 43.0%,respectively.The yield and NUE indexes of BBF2 in early rice and BBF4 in late rice showed no significant difference from those of CK.The AVs of BBF2 during the early rice season and of BBF4 during the late rice season were 50.0%and 76.8%lower,respectively,than those of CK.BBF2 and BBF4 could effectively replace conventional urea split fertilization in early and late rice seasons,ensuring rice yield and NUE and reducing AV loss in paddy fields.
基金the Key R&D Plan of Shaanxi Province Project,China(2023-YBNY-041)the Doctoral Graduates and Postdoctoral Researchers from Shanxi Province Come to Work to Reward Scientific Research Projects,China(SXBYKY2022119)the Key Laboratory Project of Shanxi Province,China(202001-4)。
文摘A mixture of controlled-release urea and normal urea(CRUNU)is an efficient nitrogen(N)fertilizer type,but little is known about its effects on stem lodging resistance,grain yield,and yield stability of wheat.In this study,a 4-year field experiment(from 2017 to 2021)was conducted to analyze the effects of N fertilizer types(CRUNU and normal urea(NU))and application rates(low level(L),135 kg ha^(–1);medium level(M),180 kg ha^(–1);high level(H),225 kg ha^(–1))on population lodging resistance,basal internode strength,lignin content and synthetase activity,stem lodging resistance,grain yield,and yield stability of wheat.Our results showed that the two N fertilizer types had the highest lodging rate under high N application rates,and the M-CRUNU treatment showed the lowest lodging rate.Compared with NU,CRUNU improved the wheat population lodging resistance under the three N application rates,mainly related to improving wheat population characteristics and breaking the strength of the second basal internode.Correlation analysis showed that the breaking strength of the second basal internode was related to the physical characteristics,chemical components,and micro-structure of the internode.Compared with NU,CRUNU significantly increased wheat grain yield by 4.47,14.62,and 3.12%under low,medium,and high N application rates,respectively.In addition,CRUNU showed no significant difference in grain yield under medium and high N application rates,but it presented the highest yield stability under the medium N application rate.In summary,CRUNU,combined with the medium N application rate,is an efficient agronomic management strategy for wheat production.
基金supported by the Natural Science Foundation of Jiangsu Province(BK20200539)Postdoctoral Research Foundation of China(2019M661863)Jiangsu Provincial Key Research and Development Program(BE2019377,BE2019343)。
文摘Controlled-release urea(CRU)is widely reported to supply crop nitrogen(N)demand with one basal application,thus effectively replacing split applications of urea without diminishing grain yield and N use efficiency(NUE).However,its use for replacement for high-yield split applications of urea(CK)for rice is untested.In addition,the degree to which greenhouse gas(GHG)emissions in rice systems are affected when CRU is substituted for CK remains unclear.During 2017 and 2018,we sampled plant growth and gas emissions in a rice paddy field treated with three CRU types(sulfur-coated urea[SCU],polymer-coated urea[PCU],and bulk blended CRU[BBU])applied via two methods(surface broadcasting on the soil and subsurface banding at 5 cm depth),with CK as a control.The three CRUs led to different soil NH_(4)^(+)-N dynamics,and the N supply pattern under BBU was more beneficial for rice seedling establishment than under SCU and PCU,resulting in grain yield and NUE comparable to those under CK.CRU type showed no significant effect on either CH_(4) emissions or N_(2)O emissions,and broadcast CRUs exhibited significantly higher total GHG emissions than CK.However,banded CRUs significantly reduced the total GHG emissions in comparison with broadcast CRUs,by 9.2%averaged across the two years.Reduced CH_(4) emissions,particularly during the period prior to the middle drainage,contributed largely to the GHG difference.With comparably high grain yield and low total GHG emissions,banded BBU showed a low yield-scaled GHG(GHG emissions divided by grain yield)comparable to that under CK in both years.Overall,our study suggested that N management synchronized with rice demand and contributing to a high NUE tended to minimize yield-scaled GHG.Broadcast CRU can hardly substitute for CK in terms of either grain yield or GHG emissions,but banded BBU is a promising N management strategy for sustaining rice production while minimizing environmental impacts.
文摘Silica aerogel with different hydrophilicities were prepared from tetramethoxysilane,Methymethoxysilane,tetramethoxysilane-propyltrimethoxysilane,or tetramethoxysilane-phenyltrimethoxysilane mixtures via supercritical drying process(labelled as TMOS-AG Me-TMOS-AG,Pr-TMOS-AG,or Ph-TMOS-AG,respectively).Three fragrances,including geraniol,ethyl vanillin,and menthol,were loaded to TMOS-AG.The thermal analysis confirmed all loading fragrances are stable until over 200℃.And among all fragrances,geraniol presented the maximum loading contents(L_(m)).Concentration dependences indicated the geraniol was mono layer absorbed.Py-GC/MS of geraniol in TMOS-AG under both N_(2)and mimic air atmosphere(90%N_(2)and 10%O_(2))confirmed that loaded geraniol could be thermally controlled-released beginning at 200℃.As N_(2)absorption confirmed,even absorption/desorption equilibrium constant(k)was determined mainly by hydrophilicity of silica aerogels,and the maximum loading contents(L_(m))were influenced more by the pore size.Due to mono layered absorption,bigger pores usually give less specific areas and less absorbing sites for geraniol,and then present lower L_(m).
基金supported by the National Key Research and Development Program of China (No.2017YFC0804700)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology (No.KFJJ23-23M)。
文摘While newer,more efficient Lithium-ion batteries(LIBs)and extinguishing agents have been developed to reduce the occurrence of thermal runaway accidents,there is still a scarcity of research focused on the application of surfactants in different LIBs extinguishing agents,particularly in terms of patented technologies.The aim of this review paper is to provide an overview of the technological progress of LIBs and LIBs extinguishing agents in terms of patents in Korea,Japan,Europe,the United States,China,etc.The initial part of this review paper is sort out LIBs technology development in different regions.In addition,to compare LIBs extinguishing agent progress and challenges of liquid,solid,combination of multiple,and microencapsulated.The subsequent section of this review focuses on an in-depth analysis dedicated to the efficiency and challenges faced by the surfactants corresponding design principles of LIBs extinguishing agents,such as nonionic and anionic surfactants.A total of 451,760 LIBs-related patent and 20 LIBs-fire-extinguishing agent-related patent were included in the analyses.The extinguishing effect,cooling performance,and anti-recombustion on different agents have been highlighted.After a comprehensive comparison of these agents,this review suggests that temperature-sensitive hydrogel extinguishing agent is ideal for the effective control of LIBs fire.The progress and challenges of surfactants have been extensively examined,focusing on key factors such as surface activity,thermal stability,foaming properties,environmental friendliness,and electrical conductivity.Moreover,it is crucial to emphasize that the selection of a suitable surfactant must align with the extinguishing strategy of the extinguishing agent for optimal firefighting effectiveness.
基金supported by the Natural Science Foundation of Zhejiang Province(LZ22H090002,2014C33170)National Natural Science Foundation of China(82171260,81641042,81471240)。
文摘General anesthetic agents can impact brain function through interactions with neurons and their effects on glial cells.Oligodendrocytes perform essential roles in the central nervous system,including myelin sheath formation,axonal metabolism,and neuroplasticity regulation.They are particularly vulnerable to the effects of general anesthetic agents resulting in impaired proliferation,differentiation,and apoptosis.Neurologists are increasingly interested in the effects of general anesthetic agents on oligodendrocytes.These agents not only act on the surface receptors of oligodendrocytes to elicit neuroinflammation through modulation of signaling pathways,but also disrupt metabolic processes and alter the expression of genes involved in oligodendrocyte development and function.In this review,we summarize the effects of general anesthetic agents on oligodendrocytes.We anticipate that future research will continue to explore these effects and develop strategies to decrease the incidence of adverse reactions associated with the use of general anesthetic agents.