期刊文献+
共找到1,282篇文章
< 1 2 65 >
每页显示 20 50 100
Intelligent geochemical interpretation of mass chromatograms:Based on convolution neural network
1
作者 Kai-Ming Su Jun-Gang Lu +2 位作者 Jian Yu Zi-Xing Lu Shi-Jia Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期752-764,共13页
Gas chromatography-mass spectrometry(GC-MS)is an extremely important analytical technique that is widely used in organic geochemistry.It is the only approach to capture biomarker features of organic matter and provide... Gas chromatography-mass spectrometry(GC-MS)is an extremely important analytical technique that is widely used in organic geochemistry.It is the only approach to capture biomarker features of organic matter and provides the key evidence for oil-source correlation and thermal maturity determination.However,the conventional way of processing and interpreting the mass chromatogram is both timeconsuming and labor-intensive,which increases the research cost and restrains extensive applications of this method.To overcome this limitation,a correlation model is developed based on the convolution neural network(CNN)to link the mass chromatogram and biomarker features of samples from the Triassic Yanchang Formation,Ordos Basin,China.In this way,the mass chromatogram can be automatically interpreted.This research first performs dimensionality reduction for 15 biomarker parameters via the factor analysis and then quantifies the biomarker features using two indexes(i.e.MI and PMI)that represent the organic matter thermal maturity and parent material type,respectively.Subsequently,training,interpretation,and validation are performed multiple times using different CNN models to optimize the model structure and hyper-parameter setting,with the mass chromatogram used as the input and the obtained MI and PMI values for supervision(label).The optimized model presents high accuracy in automatically interpreting the mass chromatogram,with R2values typically above 0.85 and0.80 for the thermal maturity and parent material interpretation results,respectively.The significance of this research is twofold:(i)developing an efficient technique for geochemical research;(ii)more importantly,demonstrating the potential of artificial intelligence in organic geochemistry and providing vital references for future related studies. 展开更多
关键词 Organic geochemistry BIOMARKER Mass chromatographic analysis Automated interpretation convolution neural network Machine learning
下载PDF
UNet Based onMulti-Object Segmentation and Convolution Neural Network for Object Recognition
2
作者 Nouf Abdullah Almujally Bisma Riaz Chughtai +4 位作者 Naif Al Mudawi Abdulwahab Alazeb Asaad Algarni Hamdan A.Alzahrani Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2024年第7期1563-1580,共18页
The recent advancements in vision technology have had a significant impact on our ability to identify multiple objects and understand complex scenes.Various technologies,such as augmented reality-driven scene integrat... The recent advancements in vision technology have had a significant impact on our ability to identify multiple objects and understand complex scenes.Various technologies,such as augmented reality-driven scene integration,robotic navigation,autonomous driving,and guided tour systems,heavily rely on this type of scene comprehension.This paper presents a novel segmentation approach based on the UNet network model,aimed at recognizing multiple objects within an image.The methodology begins with the acquisition and preprocessing of the image,followed by segmentation using the fine-tuned UNet architecture.Afterward,we use an annotation tool to accurately label the segmented regions.Upon labeling,significant features are extracted from these segmented objects,encompassing KAZE(Accelerated Segmentation and Extraction)features,energy-based edge detection,frequency-based,and blob characteristics.For the classification stage,a convolution neural network(CNN)is employed.This comprehensive methodology demonstrates a robust framework for achieving accurate and efficient recognition of multiple objects in images.The experimental results,which include complex object datasets like MSRC-v2 and PASCAL-VOC12,have been documented.After analyzing the experimental results,it was found that the PASCAL-VOC12 dataset achieved an accuracy rate of 95%,while the MSRC-v2 dataset achieved an accuracy of 89%.The evaluation performed on these diverse datasets highlights a notably impressive level of performance. 展开更多
关键词 UNet segmentation BLOB fourier transform convolution neural network
下载PDF
Single event effects evaluation on convolution neural network in Xilinx 28 nm system on chip
3
作者 赵旭 杜雪成 +4 位作者 熊旭 马超 杨卫涛 郑波 周超 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期638-644,共7页
Convolutional neural networks(CNNs) exhibit excellent performance in the areas of image recognition and object detection, which can enhance the intelligence level of spacecraft. However, in aerospace, energetic partic... Convolutional neural networks(CNNs) exhibit excellent performance in the areas of image recognition and object detection, which can enhance the intelligence level of spacecraft. However, in aerospace, energetic particles, such as heavy ions, protons, and alpha particles, can induce single event effects(SEEs) that lead CNNs to malfunction and can significantly impact the reliability of a CNN system. In this paper, the MNIST CNN system was constructed based on a 28 nm systemon-chip(SoC), and then an alpha particle irradiation experiment and fault injection were applied to evaluate the SEE of the CNN system. Various types of soft errors in the CNN system have been detected, and the SEE cross sections have been calculated. Furthermore, the mechanisms behind some soft errors have been explained. This research will provide technical support for the design of radiation-resistant artificial intelligence chips. 展开更多
关键词 single event effects convolutional neural networks alpha particle system on chip fault injection
下载PDF
An Emotion Analysis Method Using Multi-Channel Convolution Neural Network in Social Networks 被引量:2
4
作者 Xinxin Lu Hong Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第10期281-297,共17页
As an interdisciplinary comprehensive subject involving multidisciplinary knowledge,emotional analysis has become a hot topic in psychology,health medicine and computer science.It has a high comprehensive and practica... As an interdisciplinary comprehensive subject involving multidisciplinary knowledge,emotional analysis has become a hot topic in psychology,health medicine and computer science.It has a high comprehensive and practical application value.Emotion research based on the social network is a relatively new topic in the field of psychology and medical health research.The text emotion analysis of college students also has an important research significance for the emotional state of students at a certain time or a certain period,so as to understand their normal state,abnormal state and the reason of state change from the information they wrote.In view of the fact that convolutional neural network cannot make full use of the unique emotional information in sentences,and the need to label a large number of highquality training sets for emotional analysis to improve the accuracy of the model,an emotional analysismodel using the emotional dictionary andmultichannel convolutional neural network is proposed in this paper.Firstly,the input matrix of emotion dictionary is constructed according to the emotion information,and the different feature information of sentences is combined to form different network input channels,so that the model can learn the emotion information of input sentences from various feature representations in the training process.Then,the loss function is reconstructed to realize the semi supervised learning of the network.Finally,experiments are carried on COAE 2014 and self-built data sets.The proposed model can not only extract more semantic information in emotional text,but also learn the hidden emotional information in emotional text.The experimental results show that the proposed emotion analysis model can achieve a better classification performance.Compared with the best benchmark model gram-CNN,the F1 value can be increased by 0.026 in the self-built data set,and it can be increased by 0.032 in the COAE 2014 data set. 展开更多
关键词 Emotion analysis model emotion dictionary convolution neural network semi supervised learning deep learning pooling feature feature mapping
下载PDF
Facial Expression Recognition Using Enhanced Convolution Neural Network with Attention Mechanism 被引量:2
5
作者 K.Prabhu S.SathishKumar +2 位作者 M.Sivachitra S.Dineshkumar P.Sathiyabama 《Computer Systems Science & Engineering》 SCIE EI 2022年第4期415-426,共12页
Facial Expression Recognition(FER)has been an interesting area of research in places where there is human-computer interaction.Human psychol-ogy,emotions and behaviors can be analyzed in FER.Classifiers used in FER hav... Facial Expression Recognition(FER)has been an interesting area of research in places where there is human-computer interaction.Human psychol-ogy,emotions and behaviors can be analyzed in FER.Classifiers used in FER have been perfect on normal faces but have been found to be constrained in occluded faces.Recently,Deep Learning Techniques(DLT)have gained popular-ity in applications of real-world problems including recognition of human emo-tions.The human face reflects emotional states and human intentions.An expression is the most natural and powerful way of communicating non-verbally.Systems which form communications between the two are termed Human Machine Interaction(HMI)systems.FER can improve HMI systems as human expressions convey useful information to an observer.This paper proposes a FER scheme called EECNN(Enhanced Convolution Neural Network with Atten-tion mechanism)to recognize seven types of human emotions with satisfying results in its experiments.Proposed EECNN achieved 89.8%accuracy in classi-fying the images. 展开更多
关键词 Facial expression recognition linear discriminant analysis animal migration optimization regions of interest enhanced convolution neural network with attention mechanism
下载PDF
Feature Fusion Multi_XMNet Convolution Neural Network for Clothing Image Classification 被引量:2
6
作者 ZHOU Honglei PENG Zhifei +1 位作者 TAO Ran ZHANG Lu 《Journal of Donghua University(English Edition)》 CAS 2021年第6期519-526,共8页
Faced with the massive amount of online shopping clothing images,how to classify them quickly and accurately is a challenging task in image classification.In this paper,we propose a novel method,named Multi_XMNet,to s... Faced with the massive amount of online shopping clothing images,how to classify them quickly and accurately is a challenging task in image classification.In this paper,we propose a novel method,named Multi_XMNet,to solve the clothing images classification problem.The proposed method mainly consists of two convolution neural network(CNN)branches.One branch extracts multiscale features from the whole expressional image by Multi_X which is designed by improving the Xception network,while the other extracts attention mechanism features from the whole expressional image by MobileNetV3-small network.Both multiscale and attention mechanism features are aggregated before making classification.Additionally,in the training stage,global average pooling(GAP),convolutional layers,and softmax classifiers are used instead of the fully connected layer to classify the final features,which speed up model training and alleviate the problem of overfitting caused by too many parameters.Experimental comparisons are made in the public DeepFashion dataset.The experimental results show that the classification accuracy of this method is 95.38%,which is better than InceptionV3,Xception and InceptionV3_Xception by 5.58%,3.32%,and 2.22%,respectively.The proposed Multi_XMNet image classification model can help enterprises and researchers in the field of clothing e-commerce to automaticly,efficiently and accurately classify massive clothing images. 展开更多
关键词 feature extraction feature fusion multiscale feature convolution neural network(CNN) clothing image classification
下载PDF
Intelligent Multiclass Skin Cancer Detection Using Convolution Neural Networks 被引量:1
7
作者 Reham Alabduljabbar Hala Alshamlan 《Computers, Materials & Continua》 SCIE EI 2021年第10期831-847,共17页
The worldwide mortality rate due to cancer is second only to cardiovascular diseases.The discovery of image processing,latest artificial intelligence techniques,and upcoming algorithms can be used to effectively diagn... The worldwide mortality rate due to cancer is second only to cardiovascular diseases.The discovery of image processing,latest artificial intelligence techniques,and upcoming algorithms can be used to effectively diagnose and prognose cancer faster and reduce the mortality rate.Efficiently applying these latest techniques has increased the survival chances during recent years.The research community is making significant continuous progress in developing automated tools to assist dermatologists in decision making.The datasets used for the experimentation and analysis are ISBI 2016,ISBI 2017,and HAM 10000.In this work pertained models are used to extract the efficient feature.The pertained models applied are ResNet,InceptionV3,and classical feature extraction techniques.Before that,efficient preprocessing is conducted on dermoscopic images by applying various data augmentation techniques.Further,for classification,convolution neural networks were implemented.To classify dermoscopic images on HAM 1000 Dataset,the maximum attained accuracy is 89.30%for the proposed technique.The other parameters for measuring the performance attained 87.34%(Sen),86.33%(Pre),88.44%(F1-S),and 11.30%false-negative rate(FNR).The class with the highest TP rate is 97.6%for Melanoma;whereas,the lowest TP rate was for the Dermatofibroma class.For dataset ISBI2016,the accuracy achieved is 97.0%with the proposed classifier,whereas the other parameters for validation are 96.12%(Sen),97.01%(Pre),96.3%(F1-S),and further 3.7%(FNR).For the experiment with the ISBI2017 dataset,Sen,Pre,F1-S,and FNR were 93.9%,94.9%,93.9%,and 5.2%,respectively. 展开更多
关键词 convolution neural networks skin cancer artificial intelligence DERMOSCOPY feature extraction classification
下载PDF
Breast Mammogram Analysis and Classification Using Deep Convolution Neural Network 被引量:1
8
作者 V.Ulagamuthalvi G.Kulanthaivel +1 位作者 A.Balasundaram Arun Kumar Sivaraman 《Computer Systems Science & Engineering》 SCIE EI 2022年第10期275-289,共15页
One of the fast-growing disease affecting women’s health seriously is breast cancer.It is highly essential to identify and detect breast cancer in the earlier stage.This paper used a novel advanced methodology than m... One of the fast-growing disease affecting women’s health seriously is breast cancer.It is highly essential to identify and detect breast cancer in the earlier stage.This paper used a novel advanced methodology than machine learning algorithms such as Deep learning algorithms to classify breast cancer accurately.Deep learning algorithms are fully automatic in learning,extracting,and classifying the features and are highly suitable for any image,from natural to medical images.Existing methods focused on using various conventional and machine learning methods for processing natural and medical images.It is inadequate for the image where the coarse structure matters most.Most of the input images are downscaled,where it is impossible to fetch all the hidden details to reach accuracy in classification.Whereas deep learning algorithms are high efficiency,fully automatic,have more learning capability using more hidden layers,fetch as much as possible hidden information from the input images,and provide an accurate prediction.Hence this paper uses AlexNet from a deep convolution neural network for classifying breast cancer in mammogram images.The performance of the proposed convolution network structure is evaluated by comparing it with the existing algorithms. 展开更多
关键词 Medical image processing deep learning convolution neural network breast cancer feature extraction classification
下载PDF
Research on High Resolution Satellite Image Classification Algorithm based on Convolution Neural Network 被引量:2
9
作者 Gaiping He 《International Journal of Technology Management》 2016年第9期53-55,共3页
Artifi cial neural network is a kind of artificial intelligence method to simulate the function of human brain, and deep learning technology can establish a depth network model with hierarchical structure on the basis... Artifi cial neural network is a kind of artificial intelligence method to simulate the function of human brain, and deep learning technology can establish a depth network model with hierarchical structure on the basis of artificial neural network. Deep learning brings new development direction to artificial neural network. Convolution neural network is a new artificial neural network method, which combines artificial neural network and deep learning technology, and this new neural network is widely used in many fields of computer vision. Modern image recognition algorithm requires classifi cation system to adapt to different types of tasks, and deep network and convolution neural network is a hot research topic in neural networks. According to the characteristics of satellite digital image, we use the convolution neural network to classify the image, which combines texture features with spectral features. The experimental results show that the convolution neural network algorithm can effectively classify the image. 展开更多
关键词 High Resolution Satellite Image Classification convolution neural network Clustering Algorithm.
下载PDF
Early Identification and Visualization of Parkinsonian Gaits and their Stages Using Convolution Neural Networks and Finite Element Techniques 被引量:1
10
作者 Musthaq AHAMED P.D.S.H.GUNAWARDANE Nimali T.MEDAGEDARA 《Instrumentation》 2020年第3期33-42,共10页
Parkinson’s Disease(PD)is a neurodegenerative disease which shows a deficiency in dopaminehormone in the brain.It is a common irreversible impairment among elderly people.Identifying this disease in its preliminary s... Parkinson’s Disease(PD)is a neurodegenerative disease which shows a deficiency in dopaminehormone in the brain.It is a common irreversible impairment among elderly people.Identifying this disease in its preliminary stage is important to improve the efficacy of the treatment process.Disordered gait is one of the key indications of early symptoms of PD.Therefore,the present paper introduces a novel approach to identify pa rkinsonian gait using raw vertical spatiotemporal ground reaction force.A convolution neural network(CNN)is implemented to identify the features in the parkinsonian gaits and their progressive stages.Moreover,the var iations of the gait pressures were visually recreated using ANSYS finite element software package.The CNN model has shown a 97%accuracy of recognizing parkinsonian gait and their different stages,and ANSYS model is implemented to visualize the pressure variation of the foot during a bottom-up approach. 展开更多
关键词 convolution neural networks Vertical Ground Reaction Force Parkinsonian Gait Finite Element Analysis
下载PDF
Detection of Omicron Caused Pneumonia from Radiology Images Using Convolution Neural Network(CNN)
11
作者 Arfat Ahmad Khan Malik Muhammad Ali Shahid +4 位作者 Rab Nawaz Bashir Salman Iqbal Arshad Shehzad Ahmad Shahid Javeria Maqbool Chitapong Wechtaisong 《Computers, Materials & Continua》 SCIE EI 2023年第2期3743-3761,共19页
COVID-19 disease caused by the SARS-CoV-2 virus has created social and economic disruption across theworld.The ability of the COVID-19 virus to quickly mutate and transfer has created serious concerns across the world... COVID-19 disease caused by the SARS-CoV-2 virus has created social and economic disruption across theworld.The ability of the COVID-19 virus to quickly mutate and transfer has created serious concerns across the world.It is essential to detectCOVID-19 infection caused by different variants to take preventive measures accordingly.The existing method of detection of infections caused by COVID-19 and its variants is costly and time-consuming.The impacts of theCOVID-19 pandemic in developing countries are very drastic due to the unavailability of medical facilities and infrastructure to handle the pandemic.Pneumonia is the major symptom of COVID-19 infection.The radiology of the lungs in varies in the case of bacterial pneumonia as compared to COVID-19-caused pneumonia.The pattern of pneumonia in lungs in radiology images can also be used to identify the cause associated with pneumonia.In this paper,we propose the methodology of identifying the cause(either due to COVID-19 or other types of infections)of pneumonia from radiology images.Furthermore,because different variants of COVID-19 lead to different patterns of pneumonia,the proposed methodology identifies pneumonia,the COVID-19 caused pneumonia,and Omicron caused pneumonia from the radiology images.To fulfill the above-mentioned tasks,we have used three Convolution Neural Networks(CNNs)at each stage of the proposed methodology.The results unveil that the proposed step-by-step solution enhances the accuracy of pneumonia detection along with finding its cause,despite having a limited dataset. 展开更多
关键词 COVID-19 PNEUMONIA radiology images omicron convolution neural network(CNN) microscopy
下载PDF
Defect Detection in Printed Circuit Boards with Pre-Trained Feature Extraction Methodology with Convolution Neural Networks
12
作者 Mohammed A.Alghassab 《Computers, Materials & Continua》 SCIE EI 2022年第1期637-652,共16页
Printed Circuit Boards(PCBs)are very important for proper functioning of any electronic device.PCBs are installed in almost all the electronic device and their functionality is dependent on the perfection of PCBs.If P... Printed Circuit Boards(PCBs)are very important for proper functioning of any electronic device.PCBs are installed in almost all the electronic device and their functionality is dependent on the perfection of PCBs.If PCBs do not function properly then the whole electric machine might fail.So,keeping this in mind researchers are working in this field to develop error free PCBs.Initially these PCBs were examined by the human beings manually,but the human error did not give good results as sometime defected PCBs were categorized as non-defective.So,researchers and experts transformed this manual traditional examination to automated systems.Further to this research image processing and computer vision came into actions where the computer vision experts applied image processing techniques to extract the defects.But,this also did not yield good results.So,to further explore this area Machine Learning and Artificial Intelligence Techniques were applied.In this studywe have appliedDeep Neural Networks to detect the defects in the PCBS.PretrainedVGG16and Inception networkswere applied to extract the relevant features.DeepPCB dataset was used in this study,it has 1500 pairs of both defected and non-defected images.Image pre-processing and data augmentation techniques were applied to increase the training set.Convolution neural networks were applied to classify the test data.The results were compared with state-of-the art technique and it proved that the proposed methodology outperformed it.Performance evaluation metrics were applied to evaluate the proposed methodology.Precision 94.11%,Recall 89.23%,F-Measure 91.91%,and Accuracy 92.67%. 展开更多
关键词 Printed circuit board convolution neural network INCEPTION vgg16 data augmentation
下载PDF
Identification of Key Links in Electric Power Operation Based-Spatiotemporal Mixing Convolution Neural Network
13
作者 Lei Feng Bo Wang +2 位作者 Fuqi Ma Hengrui Ma Mohamed AMohamed 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1487-1501,共15页
As the scale of the power system continues to expand,the environment for power operations becomes more and more complex.Existing risk management and control methods for power operations can only set the same risk dete... As the scale of the power system continues to expand,the environment for power operations becomes more and more complex.Existing risk management and control methods for power operations can only set the same risk detection standard and conduct the risk detection for any scenario indiscriminately.Therefore,more reliable and accurate security control methods are urgently needed.In order to improve the accuracy and reliability of the operation risk management and control method,this paper proposes a method for identifying the key links in the whole process of electric power operation based on the spatiotemporal hybrid convolutional neural network.To provide early warning and control of targeted risks,first,the video stream is framed adaptively according to the pixel changes in the video stream.Then,the optimized MobileNet is used to extract the feature map of the video stream,which contains both time-series and static spatial scene information.The feature maps are combined and non-linearly mapped to realize the identification of dynamic operating scenes.Finally,training samples and test samples are produced by using the whole process image of a power company in Xinjiang as a case study,and the proposed algorithm is compared with the unimproved MobileNet.The experimental results demonstrated that the method proposed in this paper can accurately identify the type and start and end time of each operation link in the whole process of electric power operation,and has good real-time performance.The average accuracy of the algorithm can reach 87.8%,and the frame rate is 61 frames/s,which is of great significance for improving the reliability and accuracy of security control methods. 展开更多
关键词 Security risk management key links identifications electric power operation spatiotemporal mixing convolution neural network MobileNet network
下载PDF
Fine-Grained Sleep Apnea Detection Method from Multichannel Ballistocardiogram Using Convolution Neural Network
14
作者 黄永锋 黄琦洪 +2 位作者 孙晨汐 杨树臣 张智明 《Journal of Donghua University(English Edition)》 CAS 2023年第2期185-192,共8页
Sleep apnea is a common health condition that can affect numerous aspects of life and may cause a lot of health problems especially in the middle-aged and elderly population.Polysomnography(PSG),as the gold standard,i... Sleep apnea is a common health condition that can affect numerous aspects of life and may cause a lot of health problems especially in the middle-aged and elderly population.Polysomnography(PSG),as the gold standard,is an expensive and inconvenient way to diagnose sleep apnea.However,ballistocardiogram can be collected by devices embedded in the surrounding environment,enabling inperceptible sleep apnea detection.Moreover,to obtain the fine-grained apnea fragments,a multistage sleep apnea detection model has been proposed.This model firstly uses an improved convolution neural network(CNN)model to coarsely identify apnea events and then a U-Net based model is applied to finely segment apnea fragments.In the experiment,sleep data of 11 patients with apnea for about 70 h have been collected,including BCG data derived from 18 piezoelectric polyvinylidene fluoride(PVDF)sensors embedded in the mattress and PSG data collected synchronously.The results show the accuracy of the classification model as good as 95.7%with 0.818 dice coefficient of the segmentation model,which indicates that the proposed model can almost match the performance of PSG in detecting apnea. 展开更多
关键词 sleep apnea BALLISTOCARDIOGRAM convolution neural network(CNN) deep learning
下载PDF
Grid Side Distributed Energy Storage Cloud Group End Region Hierarchical Time-Sharing Configuration Algorithm Based onMulti-Scale and Multi Feature Convolution Neural Network
15
作者 Wen Long Bin Zhu +3 位作者 Huaizheng Li Yan Zhu Zhiqiang Chen Gang Cheng 《Energy Engineering》 EI 2023年第5期1253-1269,共17页
There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capaci... There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved. 展开更多
关键词 Multiscale and multi feature convolution neural network distributed energy storage at grid side cloud group end region layered time-sharing configuration algorithm
下载PDF
Automatic Detection of COVID-19 Using Chest X-Ray Images and Modified ResNet18-Based Convolution Neural Networks 被引量:3
16
作者 Ruaa A.Al-Falluji Zainab Dalaf Katheeth Bashar Alathari 《Computers, Materials & Continua》 SCIE EI 2021年第2期1301-1313,共13页
The latest studies with radiological imaging techniques indicate that X-ray images provide valuable details on the Coronavirus disease 2019(COVID-19).The usage of sophisticated artificial intelligence technology(AI)an... The latest studies with radiological imaging techniques indicate that X-ray images provide valuable details on the Coronavirus disease 2019(COVID-19).The usage of sophisticated artificial intelligence technology(AI)and the radiological images can help in diagnosing the disease reliably and addressing the problem of the shortage of trained doctors in remote villages.In this research,the automated diagnosis of Coronavirus disease was performed using a dataset of X-ray images of patients with severe bacterial pneumonia,reported COVID-19 disease,and normal cases.The goal of the study is to analyze the achievements for medical image recognition of state-of-the-art neural networking architectures.Transfer Learning technique has been implemented in this work.Transfer learning is an ambitious task,but it results in impressive outcomes for identifying distinct patterns in tiny datasets of medical images.The findings indicate that deep learning with X-ray imagery could retrieve important biomarkers relevant for COVID-19 disease detection.Since all diagnostic measures show failure levels that pose questions,the scientific profession should determine the probability of integration of X-rays with the clinical treatment,utilizing the results.The proposed model achieved 96.73%accuracy outperforming the ResNet50 and traditional Resnet18 models.Based on our findings,the proposed system can help the specialist doctors in making verdicts for COVID-19 detection. 展开更多
关键词 COVID-19 artificial intelligence convolutional neural network chest x-ray images Resnet18 model
下载PDF
An Optimized Convolution Neural Network Architecture for Paddy Disease Classification 被引量:2
17
作者 Muhammad Asif Saleem Muhammad Aamir +2 位作者 Rosziati Ibrahim Norhalina Senan Tahir Alyas 《Computers, Materials & Continua》 SCIE EI 2022年第6期6053-6067,共15页
Plant disease classification based on digital pictures is challenging.Machine learning approaches and plant image categorization technologies such as deep learning have been utilized to recognize,identify,and diagnose... Plant disease classification based on digital pictures is challenging.Machine learning approaches and plant image categorization technologies such as deep learning have been utilized to recognize,identify,and diagnose plant diseases in the previous decade.Increasing the yield quantity and quality of rice forming is an important cause for the paddy production countries.However,some diseases that are blocking the improvement in paddy production are considered as an ominous threat.Convolution Neural Network(CNN)has shown a remarkable performance in solving the early detection of paddy leaf diseases based on its images in the fast-growing era of science and technology.Nevertheless,the significant CNN architectures construction is dependent on expertise in a neural network and domain knowledge.This approach is time-consuming,and high computational resources are mandatory.In this research,we propose a novel method based on Mutant Particle swarm optimization(MUT-PSO)Algorithms to search for an optimum CNN architecture for Paddy leaf disease classification.Experimentation results show that Mutant Particle swarm optimization Convolution Neural Network(MUTPSO-CNN)can find optimumCNNarchitecture that offers better performance than existing hand-crafted CNN architectures in terms of accuracy,precision/recall,and execution time. 展开更多
关键词 Deep learning optimum CNN architecture particle swarm optimization convolutional neural network parameter optimization
下载PDF
Application of Feature Extraction through Convolution Neural Networks and SVM Classifier for Robust Grading of Apples 被引量:8
18
作者 Yuan CAI Clarence W.DE SILVA +2 位作者 Bing LI Liqun WANG Ziwen WANG 《Instrumentation》 2019年第4期59-71,共13页
This paper proposes a novel grading method of apples,in an automated grading device that uses convolutional neural networks to extract the size,color,texture,and roundness of an apple.The developed machine learning me... This paper proposes a novel grading method of apples,in an automated grading device that uses convolutional neural networks to extract the size,color,texture,and roundness of an apple.The developed machine learning method uses the ability of learning representative features by means of a convolutional neural network(CNN),to determine suitable features of apples for the grading process.This information is fed into a one-to-one classifier that uses a support vector machine(SVM),instead of the softmax output layer of the CNN.In this manner,Yantai apples with similar shapes and low discrimination are graded using four different approaches.The fusion model using both CNN and SVM classifiers is much more accurate than the simple k-nearest neighbor(KNN),SVM,and CNN model when used separately for grading,and the learning ability and the generalization ability of the model is correspondingly increased by the combined method.Grading tests are carried out using the automated grading device that is developed in the present work.It is verified that the actual effect of apple grading using the combined CNN-SVM model is fast and accurate,which greatly reduces the manpower and labor costs of manual grading,and has important commercial prospects. 展开更多
关键词 Apple Grading k-nearest Neighbour Method convolutional neural network Support Vector Machine Machine Learning
下载PDF
A multiscale adaptive framework based on convolutional neural network:Application to fluid catalytic cracking product yield prediction
19
作者 Nan Liu Chun-Meng Zhu +1 位作者 Meng-Xuan Zhang Xing-Ying Lan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2849-2869,共21页
Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial pro... Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial process parameters and production indicators.While the integrated method of adaptive signal decomposition combined with time series models could effectively predict process variables,it does have limitations in capturing the high-frequency detail of the operation state when applied to complex chemical processes.In light of this,a novel Multiscale Multi-radius Multi-step Convolutional Neural Network(Msrt Net)is proposed for mining spatiotemporal multiscale information.First,the industrial data from the Fluid Catalytic Cracking(FCC)process decomposition using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)extract the multi-energy scale information of the feature subset.Then,convolution kernels with varying stride and padding structures are established to decouple the long-period operation process information encapsulated within the multi-energy scale data.Finally,a reconciliation network is trained to reconstruct the multiscale prediction results and obtain the final output.Msrt Net is initially assessed for its capability to untangle the spatiotemporal multiscale relationships among variables in the Tennessee Eastman Process(TEP).Subsequently,the performance of Msrt Net is evaluated in predicting product yield for a 2.80×10^(6) t/a FCC unit,taking diesel and gasoline yield as examples.In conclusion,Msrt Net can decouple and effectively extract spatiotemporal multiscale information from chemical process data and achieve a approximately reduction of 30%in prediction error compared to other time-series models.Furthermore,its robustness and transferability underscore its promising potential for broader applications. 展开更多
关键词 Fluid catalytic cracking Product yield Data-driven modeling Multiscale prediction Data decomposition convolution neural network
下载PDF
Development of a convolutional neural network based geomechanical upscaling technique for heterogeneous geological reservoir 被引量:1
20
作者 Zhiwei Ma Xiaoyan Ou Bo Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2111-2125,共15页
Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and e... Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and efficient geomechanical upscaling technique for heterogeneous geological reservoirs is lacking to advance the applications of three-dimensional(3D)reservoir-scale geomechanical simulation considering detailed geological heterogeneities.Here,we develop convolutional neural network(CNN)proxies that reproduce the anisotropic nonlinear geomechanical response caused by lithological heterogeneity,and compute upscaled geomechanical properties from CNN proxies.The CNN proxies are trained using a large dataset of randomly generated spatially correlated sand-shale realizations as inputs and simulation results of their macroscopic geomechanical response as outputs.The trained CNN models can provide the upscaled shear strength(R^(2)>0.949),stress-strain behavior(R^(2)>0.925),and volumetric strain changes(R^(2)>0.958)that highly agree with the numerical simulation results while saving over two orders of magnitude of computational time.This is a major advantage in computing the upscaled geomechanical properties directly from geological realizations without the need to perform local numerical simulations to obtain the geomechanical response.The proposed CNN proxybased upscaling technique has the ability to(1)bridge the gap between the fine-scale geocellular models considering geological uncertainties and computationally efficient geomechanical models used to assess the geomechanical risks of large-scale subsurface development,and(2)improve the efficiency of numerical upscaling techniques that rely on local numerical simulations,leading to significantly increased computational time for uncertainty quantification using numerous geological realizations. 展开更多
关键词 Upscaling Lithological heterogeneity convolutional neural network(CNN) Anisotropic shear strength Nonlinear stressestrain behavior
下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部