Curcumin is a natural polyphenol that is used in various traditional medicines.However,its inherent properties,such as its rapid degradation and metabolism,low bioavailability,and short half-life,are serious problems ...Curcumin is a natural polyphenol that is used in various traditional medicines.However,its inherent properties,such as its rapid degradation and metabolism,low bioavailability,and short half-life,are serious problems that must be resolved.To this end,a drug carrier incorporating natural magnetic cores in a zeolite framework was developed and applied to the loading of curcumin in ethanol solutions.In this system,curcumin is encapsulated in a zeolite Na(ZNA)magnetic core–shell structure(Fe@Si/ZNA),which can be easily synthesized using an in situ method.Synthesis of Fe_(3)O_(4) nanoparticles was carried out from natural materials using a co-precipitation method.Analysis of the prepared magnetic core–shell structures and composites was carried out using vibrating-sample magnetometery,Fourier transform infrared spectroscopy,transmission electron microscopy,and x-ray diffraction.The cumulative loading of curcumin in the ZNA composite with 9%nanoparticles was found to reach 90.70%with a relatively long half-life of 32.49 min.Stability tests of curcumin loading in the composite showed that adding magnetic particles to the zeolite framework also increased the stability of the composite structure.Adsorption kinetics and isotherm studies also found that the system follows the pseudo-second-order and Langmuir isotherm models.展开更多
Magnetically separable bismuth ferrite(BiFeO3)nanoparticles were fabricated by a citrate self‐combustion method and coated with titanium dioxide(TiO2)by hydrolysis of titanium butoxide(Ti(OBu)4)to form BiFeO3@TiO2cor...Magnetically separable bismuth ferrite(BiFeO3)nanoparticles were fabricated by a citrate self‐combustion method and coated with titanium dioxide(TiO2)by hydrolysis of titanium butoxide(Ti(OBu)4)to form BiFeO3@TiO2core-shell nanocomposites with different mass ratios of TiO2to BiFeO3.The photocatalytic performance of the catalysts was comprehensively investigated via photocatalytic oxidation of methyl violet(MV)under both ultraviolet and visible‐light irradiation.The BiFeO3@TiO2samples exhibited better photocatalytic performance than either BiFeO3or TiO2alone,and a BiFeO3@TiO2sample with a mass ratio of1:1and TiO2shell thickness of50-100nm showed the highest photo‐oxidation activity of the catalysts.The enhanced photocatalytic activity was ascribed to the formation of a p‐n junction of BiFeO3and TiO2with high charge separation efficiency as well as strong light absorption ability.Photoelectrochemical Mott-Schottky(MS)measurements revealed that both the charge carrier transportation and donor density of BiFeO3were markedly enhanced after introduction of TiO2.The mechanism of MV degradation is mainly attributed to hydroxyl radicals and photogenerated electrons based on energy band theory and the formation of an internal electrostatic field.In addition,the unique core-shell structure of BiFeO3@TiO2also promotes charge transfer at the BiFeO3/TiO2interface by increasing the contact area between BiFeO3and TiO2.Finally,the photocatalytic activity of BiFeO3@TiO2was further confirmed by degradation of other industrial dyes under visible‐light irradiation.展开更多
In this study, magnetic core–shell structure Fe3O4@MCM-41 nanoparticles were synthesized with vesicles as soft templates. In the preparation, Fe Cl2 and tetraethy orthosilicate(TEOS) were selected as Fe processor and...In this study, magnetic core–shell structure Fe3O4@MCM-41 nanoparticles were synthesized with vesicles as soft templates. In the preparation, Fe Cl2 and tetraethy orthosilicate(TEOS) were selected as Fe processor and Si precursor, respectively. Stable vesicles first formed in 0.03 mol·L-11:2 mixture of anionic surfactant sodium dodecyl sulfate and cationic surfactant cetyltrimethyl ammonium bromide. Then, TEOS was added in the vesicle aqueous solution, leading to a highly dispersed solution. After high-temperature calcination, Fe3O4@MCM-41 nanoparticles were obtained. Their structure and morphology were characterized by Saturn Digisizer, transmission electron microscope and vibrating sample magneto-meter. The results indicate that the vesicles are spherical and their size could be tuned between 20 and 50 nm. The average grain diameter of synthesize magnetic core–shell Fe3O4@MCM-41 particles is 100–150 nm and most of them are in elliptical shape. The dispersion of magnetic particles is very good and magnetization values are up to 33.44 emu·g-1, which are superior to that of other Fe3O4 materials reported.展开更多
Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric const...Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2) as the core,MXene as the intermediate layer,and MoS_(2) as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2) nanosheets.Notably,the synergistic combination of SiO_(2) and MoS_(2) with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2) nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.”展开更多
Advanced biomaterial-based strategies for treatment of peripheral nerve injury require precise control over both topological and biological cues for facilitating rapid and directed nerve regeneration.As a highly bioac...Advanced biomaterial-based strategies for treatment of peripheral nerve injury require precise control over both topological and biological cues for facilitating rapid and directed nerve regeneration.As a highly bioactive and tissue-specifc natural material,decellularized extracellular matrix(dECM)derived from peripheral nerves(decellularized nerve matrix,DNM)has drawn increasing attention in the feld of regenerative medicine,due to its outstanding capabilities in facilitating neurite outgrowth and remyelination.To induce and maintain sufcient topological guidance,electrospinning was conducted for fabrication of axially aligned nanofbers consisting of DNM and poly(ε-caprolactone)(PCL).Core–shell structured fbers were prepared by coaxial electrospinning using DNM as the shell and PCL as the core.Compared to the aligned electrospun fbers using preblended DNM/PCL,the core–shell structured fbers exhibited lower tensile strength,faster degradation,but considerable toughness for nerve guidance conduit preparation and relatively intact fbrous structure after long-term degradation.More importantly,the full DNM surface coverage of the aligned core–shell fbers efectively promoted axonal extension and Schwann cells migration.The DNM contents further triggered neurite bundling and myelin formation toward nerve fber maturation and functionalization.Herein,we not only pursue a multi-functional scafold design for nerve regeneration,a detailed comparison between core–shell structured and preblended electrospinning of DNM/PCL composites was also provided as an applicable paradigm for advanced tissue-engineered strategies using dECM-based biomaterials.展开更多
Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclu...Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclusters,serving as exemplary models,significantly expand the range of accessible structures through diverse cores and ligands,creating an exceptional platform for the investigation of catalytic reactions.Notably,ligand‐protected Au nanoclusters(NCs)with precisely defined core numbers offer a distinct advantage in elucidating the correlation between their specific structures and the reaction mechanisms in electrocatalysis.The strategic modulation of the fine microstructures of Au NCs presents crucial opportunities for tailoring their electrocatalytic performance across various reactions.This review delves into the profound structural effects of Au NC cores and ligands in electrocatalysis,elucidating their underlying mechanisms.A detailed exploration of the fundamentals of Au NCs,considering core and ligand structures,follows.Subsequently,the interaction between the core and ligand structures of Au NCs and their impact on electrocatalytic performance in diverse reactions are examined.Concluding the discourse,challenges and personal prospects are presented to guide the rational design of efficient electrocatalysts and advance electrocatalytic reactions.展开更多
A stable and highly active core‐shell heterostructure electrocatalyst is essential for catalyzing oxygen evolution reaction(OER).Here,a dual‐trimetallic core‐shell heterostructure OER electrocatalyst that consists ...A stable and highly active core‐shell heterostructure electrocatalyst is essential for catalyzing oxygen evolution reaction(OER).Here,a dual‐trimetallic core‐shell heterostructure OER electrocatalyst that consists of a NiFeWS_(2) inner core and an amorphous NiFeW(OH)_(z)outer shell is designed and synthesized using in situ electrochemical tuning.The electrochemical measurements of different as‐synthesized catalysts with a similar mass loading suggest that the core‐shell Ni_(0.66)Fe_(0.17)W_(0.17)S_(2)@amorphous NiFeW(OH)_(z) nanosheets exhibit the highest overall performance compared with that of other bimetallic reference catalysts for the OER.Additionally,the nanosheet arrays were in situ grown on hydrophilic‐treated carbon paper to fabricate an integrated three‐dimensional electrode that affords a current density of 10 mA cm^(−2) at a small overpotential of 182 mV and a low Tafel slope of 35 mV decade^(−1) in basic media.The Faradaic efficiency of core‐shell Ni_(0.66)Fe_(0.17)W_(0.17)S_(2)@amorphous NiFeW(OH)_(z) is as high as 99.5% for OER.The scanning electron microscope,transmission electron microscope,and X‐ray photoelectron spectroscopy analyses confirm that this electrode has excellent stability in morphology and elementary composition after long‐term electrochemical measurements.Importantly,density functional theory calculations further indicate that the core‐shell heterojunction increased the conductivity of the catalyst,optimized the adsorption energy of the OER intermediates,and improved the OER activity.This study provides a universal strategy for designing more active core‐shell structure electrocatalysts based on the rule of coordinated regulation between electronic transport and active sites.展开更多
Cellular thin-shell structures are widely applied in ultralightweight designs due to their high bearing capacity and strength-to-weight ratio.In this paper,a full-scale isogeometric topology optimization(ITO)method ba...Cellular thin-shell structures are widely applied in ultralightweight designs due to their high bearing capacity and strength-to-weight ratio.In this paper,a full-scale isogeometric topology optimization(ITO)method based on Kirchhoff-Love shells for designing cellular tshin-shell structures with excellent damage tolerance ability is proposed.This method utilizes high-order continuous nonuniform rational B-splines(NURBS)as basis functions for Kirchhoff-Love shell elements.The geometric and analysis models of thin shells are unified by isogeometric analysis(IGA)to avoid geometric approximation error and improve computational accuracy.The topological configurations of thin-shell structures are described by constructing the effective density field on the controlmesh.Local volume constraints are imposed in the proximity of each control point to obtain bone-like cellular structures.To facilitate numerical implementation,the p-norm function is used to aggregate local volume constraints into an equivalent global constraint.Several numerical examples are provided to demonstrate the effectiveness of the proposed method.After simulation and comparative analysis,the results indicate that the cellular thin-shell structures optimized by the proposed method exhibit great load-carrying behavior and high damage robustness.展开更多
A focus of the current nanotechnology has shifted from routine fabrication of nanostructures to designing functional electronic devices and realizing their immense potentials for applications. Due to infusion of multi...A focus of the current nanotechnology has shifted from routine fabrication of nanostructures to designing functional electronic devices and realizing their immense potentials for applications. Due to infusion of multi-functionality into a single system, the utilization of hetero-, core/shell and hierarchical nanostructures has become the key issue for building such devices. ZnS, due to its direct wide bandgap, high index of refraction, high transparency in the visible range and intrinsic polarity, is one of the most useful semiconductors for a wide range of electronics applications. This article provides a dense review of the state-of-the-art research activities in one-dimensional (1D) ZnS-based hetero-, core/shell and hierarchical nanostructures. The particular emphasis is put on their syntheses and applications.展开更多
Zinc-air batteries(ZABs)hold tremendous promise for clean and efficient energy storage with the merits of high theoretical energy density and environmental friendliness.However,the performance of practical ZABs is sti...Zinc-air batteries(ZABs)hold tremendous promise for clean and efficient energy storage with the merits of high theoretical energy density and environmental friendliness.However,the performance of practical ZABs is still unsatisfactory because of the inevitably decreased activity of electrocatalysts when assembly into a thick electrode with high mass loading.Herein,we report a hierarchical electrocatalyst based on carbon microtube@nanotube core-shell nanostructure(CMT@CNT),which demonstrates superior electrocatalytic activity for oxygen reduction reaction and oxygen evolution reaction with a small potential gap of 0.678 V.Remarkably,when being employed as air-cathode in ZAB,the CMT@CNT presents an excellent performance with a high power density(160.6 mW cm^−2),specific capacity(781.7 mAhgZn^−1)as well as long cycle stability(117 h,351 cycles).Moreover,the ZAB performance of CMT@CNT is maintained well even under high mass loading(3 mg cm−2,three times as much as traditional usage),which could afford high power density and energy density for advanced electronic equipment.We believe that this work is promising for the rational design of hierarchical structured electrocatalysts for advanced metal-air batteries.展开更多
A simple sonochemical route for the surface coating of titanium dioxide on cadmium sulfide nanocrystal was reported. After 2 h ultrasonic irradiation treatment, the mixture of CdS nanocrystals and tetrabutyl titanate ...A simple sonochemical route for the surface coating of titanium dioxide on cadmium sulfide nanocrystal was reported. After 2 h ultrasonic irradiation treatment, the mixture of CdS nanocrystals and tetrabutyl titanate in an aqueous medium yielded CdS/TiO2 nanocrystals composites with core/shell structure. The thickness of TiO2 layer with smooth interface could be easily controlled via changing the concentration of the precursors and the time of irradiation. The core/shell nanocrysrals were characterized by X-ray diffraction, transmission electron microscope and UV-vis spectrometry techniques. The prepared semiconductor composites with particular band structure present appealing properties especially in photochemical activity.展开更多
Nanowire-based photovoltaic devices have the advantages over planar devices in light absorption and charge transport and collection.Recently,a new strategy relying on type-Ⅱ band alignment has been proposed to facili...Nanowire-based photovoltaic devices have the advantages over planar devices in light absorption and charge transport and collection.Recently,a new strategy relying on type-Ⅱ band alignment has been proposed to facilitate efficient charge separation in core/shell nanowire solar cells.This paper reviews the type-Ⅱ heterojunction solar cells based on core/shell nanowire arrays,and specifically focuses on the progress of theoretical design and fabrication of type-Ⅱ Zn O/Zn Se core/shell nanowire-based solar cells.A strong photoresponse associated with the type-Ⅱ interfacial transition exhibits a threshold of 1.6 e V,which demonstrates the feasibility and great potential for exploring all-inorganic versions of type-Ⅱ heterojunction solar cells using wide bandgap semiconductors.Future prospects in this area are also outlooked.展开更多
The colloidal Au core/Ag shell structure composite nanoparticles were synthesized in PEG-acetone solution by photochemical route. The monodispersed Au nanoparticles with average diameter of 3.9 nm were used as growth ...The colloidal Au core/Ag shell structure composite nanoparticles were synthesized in PEG-acetone solution by photochemical route. The monodispersed Au nanoparticles with average diameter of 3.9 nm were used as growth seeds. The optical property of colloids and the sizes of composite nanoparticles were characterized when the molar ratio of Au to Ag ranges from 4∶1 to 1∶4. The results show that a composite nanoparticle structure similar to strawberry shape is formed at the molar ratio of Au to Ag from 4∶1 to 1∶1; the composite nanoparticles consisting of a core of Au and shell of Ag were generated at the 1∶4 molar ratio, having a striking feature of forming (interconnected) network structure.展开更多
Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still fac...Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance.展开更多
A novel core-shell structure Ag@Al2O3 nano-particles were synthesized and doped into polyimide as conductive fillers to prepare the composite films with high dielectric properties and low dielectric loss. The morpholo...A novel core-shell structure Ag@Al2O3 nano-particles were synthesized and doped into polyimide as conductive fillers to prepare the composite films with high dielectric properties and low dielectric loss. The morphology and structures of the Ag@Al2O3 nano-particles were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-visible spectroscopy. All the results proved that the Ag@Al2O3 nano-parficles had a typical core-shell structure, for the Ag particles were coated by Al2O3 shell and the average sizes ofAg@Al2O3 particles were between 30 to 150 nm. The as-prepared Ag@Al2O3 nanoparticles were doped into the polyimide with different mass fractions to fabricate the Ag@Al2O3/PI composite films via in-situ polymerization process. SEM analysis of composite films showed that the Ag@Al2O3 nano- particles homogeneously dispersed in polyimide matrix with nanoseale. As dielectric materials for electronic packaging systems, the Ag@Al2O3/PI composites exhibited appropriate mechanical properties and erthaneed dielectric properties, including greatly enhanced dielectric constant and just a slight increase in dielectric loss. These improvements were attributed to the core-shell structure of fillers and their fine dispersion in the PI matrix.展开更多
Fine-grained BaTiO3-based X7R ceramic materials were prepared and the effects of milling process on the core-shell structures and dielectric properties were investigated using scanning electron microscope, transmissio...Fine-grained BaTiO3-based X7R ceramic materials were prepared and the effects of milling process on the core-shell structures and dielectric properties were investigated using scanning electron microscope, transmission electron microscope, and energy dispersive spectroscopy (EDS). As the milling time extends, the dielectric constant of the ceramics increases, whereas the temperature coefficient of capacitance at 125℃ drops quickly. The changes in dielectric properties are considered relevant to the microstructure evolution caused by the milling process. Defects on the surface of BaTiO3 particles increase because of the effects of milling process, which will make it easier for additives to diffuse into the interior grains. As the milling time increases, the shell region gets thicker and the core region gets smaller; however, EDS results show that the chemical inhomogeneity between grain core and grain shell becomes weaker.展开更多
Organic carbonyl compounds are considered as promising candidates for lithium batteries due to theirhigh capacity and environmental friendliness, However, they suffer from serious dissolution in the elec-trolyte, lead...Organic carbonyl compounds are considered as promising candidates for lithium batteries due to theirhigh capacity and environmental friendliness, However, they suffer from serious dissolution in the elec-trolyte, leading to fast capacity decay. Here we report core-shell structured 1,4-benzoquinone@titaniumdioxide (BQ@TiO2) composite as cathode for lithium batteries. The composite cathode can deliver a highdischarge capacity of 441.2 mA h/g at 50 mA/g and a high capacity retention of 80.7% after 100 cycles. Thegood cycling performance of BQ@TiO2 composite can be attributed to the suppressed dissolution of BQ,which results from the physical confinement effect of Ti02 shell and the strong interactions between BQand Ti02. Moreover, the combination of ex situ infrared spectra and density functional theory calculationsreveals that the active redox sites of BQ are carbonyl groups. This work provides an alternative way tomitigate the dissolution of small carbonyl compounds and thus enhance their cycling stability.展开更多
Co@Au core shell nanoparticles(NPs) of different shell thicknesses were fabricated by a combination of the displacement process and the reduction-deposition process in a microfluidic reactor. The effect of the shell t...Co@Au core shell nanoparticles(NPs) of different shell thicknesses were fabricated by a combination of the displacement process and the reduction-deposition process in a microfluidic reactor. The effect of the shell thickness on the fine structures(local atom arrangement) of core materials was investigated by X-ray Absorption Near Edge Structure(XANES) and Extended X-ray Absorption Fine Structure(EXAFS).The results indicate that the shell thickness affects the fine structure of the core materials by causing atomic re-arrangement between the hexagonal close pack(hcp) and the face centered cubic(fcc) structure, and forming Co-Au bonds in the core-shell interface.展开更多
Using methyl methacrylate (MMA), butyl acrylate(BA) and hexafluorobutyl acrylate(HFBA) as main raw materials, we prepared self-crosslinked fluorocarbon polymer emulsion with core-shell structure via soap-free em...Using methyl methacrylate (MMA), butyl acrylate(BA) and hexafluorobutyl acrylate(HFBA) as main raw materials, we prepared self-crosslinked fluorocarbon polymer emulsion with core-shell structure via soap-free emulsion polymerization when the conception of particle design and polymer morphology was adopted. Moreover, the influence of mole ratio of BA to MAA, pH value on the oligomer was studied. And the effects of the added amount of oligomer, self-crosslinked monomer and HFBA, mass ratio of BA to MMA, reaction temperature and the initiator on the polymerization technology and the performance of the product, were investigated and optimized. The structure and performance of the fluorocarbon polymer emulsion were characterized and tested with FTIR, TEM, MFT and contact angle and water absorption of the latex film. The experimental results show that the optimal conditions for preparing fluorocarbon polymer emulsion are as follows: for preparing the oligomer, tool ratio of BA to MAA is equal to 1.0 : 1.60, and pH value is controlled within the range of 8.0 and 9.0; for preparing fluorocarbon polymer emulsion, the added amount of oligmer[P(BA/MANa)] is 6%; mass ratio of BA to MMA is 40 " 60; the added amount of self-crosslinked monomer is 2%, the added amount of HFBA is 15 %; reaction temperature is 80 ℃; the mixture of potassium persulfate and sodium bisulfite is used as the initiator. The film-forming stability of the fluorocarbon polymer emul- sion and the performance of the latex film, which is prepared with the soap-free emulsion polymerization, are better than that prepared with the conventional emulsion polymerization.展开更多
A facile method for preparing monodisperse NaYF4@SiO2@Au core-shell nanocomposite was developed. Transmission electron microscopy(TEM) as well as EDX(energy dispersive X-ray) was used to characterize the samples. The ...A facile method for preparing monodisperse NaYF4@SiO2@Au core-shell nanocomposite was developed. Transmission electron microscopy(TEM) as well as EDX(energy dispersive X-ray) was used to characterize the samples. The TEM showed the composite was a core-shell structure, spherical,with the uniform size of about 100 nm. TEM and EDX revealed that the NPs were coated with a layer of SiO2 and Au shell. The core shell structure of NaYF4@SiO2@Au nanocomposite could dispersed in water easily. More importantly,after being coated with SiO2 and Au, it was feasible for function by-SH and-NH2 groups, respectively. The forming process of the Au shell was monitored with TEM. The mechanism of coating Au shell was discussed in detail. It is expected that the core shell nanoparticle will act as multifunctional molecular imaging probes, such as positron emission tomography(PET), magnetic resonance imaging(MRI), optical imaging(OI), or contrast agent for sensing and detection.展开更多
基金funding from the Ministry of Education,Culture,Research,and Technology,Indonesia,through the PDKN Research Grant with Contract No.041/E5/PG.02.00.PL/2023.
文摘Curcumin is a natural polyphenol that is used in various traditional medicines.However,its inherent properties,such as its rapid degradation and metabolism,low bioavailability,and short half-life,are serious problems that must be resolved.To this end,a drug carrier incorporating natural magnetic cores in a zeolite framework was developed and applied to the loading of curcumin in ethanol solutions.In this system,curcumin is encapsulated in a zeolite Na(ZNA)magnetic core–shell structure(Fe@Si/ZNA),which can be easily synthesized using an in situ method.Synthesis of Fe_(3)O_(4) nanoparticles was carried out from natural materials using a co-precipitation method.Analysis of the prepared magnetic core–shell structures and composites was carried out using vibrating-sample magnetometery,Fourier transform infrared spectroscopy,transmission electron microscopy,and x-ray diffraction.The cumulative loading of curcumin in the ZNA composite with 9%nanoparticles was found to reach 90.70%with a relatively long half-life of 32.49 min.Stability tests of curcumin loading in the composite showed that adding magnetic particles to the zeolite framework also increased the stability of the composite structure.Adsorption kinetics and isotherm studies also found that the system follows the pseudo-second-order and Langmuir isotherm models.
基金supported by the Australian Research Council(ARC DP150103026)the National Natural Science Foundation of China(51278242)~~
文摘Magnetically separable bismuth ferrite(BiFeO3)nanoparticles were fabricated by a citrate self‐combustion method and coated with titanium dioxide(TiO2)by hydrolysis of titanium butoxide(Ti(OBu)4)to form BiFeO3@TiO2core-shell nanocomposites with different mass ratios of TiO2to BiFeO3.The photocatalytic performance of the catalysts was comprehensively investigated via photocatalytic oxidation of methyl violet(MV)under both ultraviolet and visible‐light irradiation.The BiFeO3@TiO2samples exhibited better photocatalytic performance than either BiFeO3or TiO2alone,and a BiFeO3@TiO2sample with a mass ratio of1:1and TiO2shell thickness of50-100nm showed the highest photo‐oxidation activity of the catalysts.The enhanced photocatalytic activity was ascribed to the formation of a p‐n junction of BiFeO3and TiO2with high charge separation efficiency as well as strong light absorption ability.Photoelectrochemical Mott-Schottky(MS)measurements revealed that both the charge carrier transportation and donor density of BiFeO3were markedly enhanced after introduction of TiO2.The mechanism of MV degradation is mainly attributed to hydroxyl radicals and photogenerated electrons based on energy band theory and the formation of an internal electrostatic field.In addition,the unique core-shell structure of BiFeO3@TiO2also promotes charge transfer at the BiFeO3/TiO2interface by increasing the contact area between BiFeO3and TiO2.Finally,the photocatalytic activity of BiFeO3@TiO2was further confirmed by degradation of other industrial dyes under visible‐light irradiation.
基金Supported by the Natural Science Foundation of Heilongjiang Province(B201010)the Education Department of Heilongjiang Province(12511595)
文摘In this study, magnetic core–shell structure Fe3O4@MCM-41 nanoparticles were synthesized with vesicles as soft templates. In the preparation, Fe Cl2 and tetraethy orthosilicate(TEOS) were selected as Fe processor and Si precursor, respectively. Stable vesicles first formed in 0.03 mol·L-11:2 mixture of anionic surfactant sodium dodecyl sulfate and cationic surfactant cetyltrimethyl ammonium bromide. Then, TEOS was added in the vesicle aqueous solution, leading to a highly dispersed solution. After high-temperature calcination, Fe3O4@MCM-41 nanoparticles were obtained. Their structure and morphology were characterized by Saturn Digisizer, transmission electron microscope and vibrating sample magneto-meter. The results indicate that the vesicles are spherical and their size could be tuned between 20 and 50 nm. The average grain diameter of synthesize magnetic core–shell Fe3O4@MCM-41 particles is 100–150 nm and most of them are in elliptical shape. The dispersion of magnetic particles is very good and magnetization values are up to 33.44 emu·g-1, which are superior to that of other Fe3O4 materials reported.
基金Joint Fund of Research and Development Program of Henan Province,Grant/Award Number:222301420002National Natural Science Foundation of China,Grant/Award Number:U21A2064Scientific and Technological Innovation Talents in Colleges and Universities in Henan Province,Grant/Award Number:22HASTIT001。
文摘Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2) as the core,MXene as the intermediate layer,and MoS_(2) as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2) nanosheets.Notably,the synergistic combination of SiO_(2) and MoS_(2) with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2) nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.”
基金The authors thank Dr.Hong Zhai for her technical support in material characterizationsThis work was funded by National Key R&D Program of China(No.2018YFC1106001)+2 种基金National Natural Science Foundation of China(51903255 and 52073314)The Key Areas Research and Development Program of Guangdong(2020B1111150003 and 2019B020235001)Science and Technology Program of Guangzhou City(201904010364).
文摘Advanced biomaterial-based strategies for treatment of peripheral nerve injury require precise control over both topological and biological cues for facilitating rapid and directed nerve regeneration.As a highly bioactive and tissue-specifc natural material,decellularized extracellular matrix(dECM)derived from peripheral nerves(decellularized nerve matrix,DNM)has drawn increasing attention in the feld of regenerative medicine,due to its outstanding capabilities in facilitating neurite outgrowth and remyelination.To induce and maintain sufcient topological guidance,electrospinning was conducted for fabrication of axially aligned nanofbers consisting of DNM and poly(ε-caprolactone)(PCL).Core–shell structured fbers were prepared by coaxial electrospinning using DNM as the shell and PCL as the core.Compared to the aligned electrospun fbers using preblended DNM/PCL,the core–shell structured fbers exhibited lower tensile strength,faster degradation,but considerable toughness for nerve guidance conduit preparation and relatively intact fbrous structure after long-term degradation.More importantly,the full DNM surface coverage of the aligned core–shell fbers efectively promoted axonal extension and Schwann cells migration.The DNM contents further triggered neurite bundling and myelin formation toward nerve fber maturation and functionalization.Herein,we not only pursue a multi-functional scafold design for nerve regeneration,a detailed comparison between core–shell structured and preblended electrospinning of DNM/PCL composites was also provided as an applicable paradigm for advanced tissue-engineered strategies using dECM-based biomaterials.
基金Guangzhou Key R&D Program/Plan Unveiled Flagship Project,Grant/Award Number:20220602JBGS02Guangzhou Basic and Applied Basic Research Project,Grant/Award Number:202201011449+3 种基金Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology,Grant/Award Numbers:FC202220,FC202216Guangdong Basic and Applied Basic Research Foundation,Grant/Award Numbers:2021A1515010167,2022A1515011196National Natural Science Foundation of China,Grant/Award Numbers:21975292,21978331,22068008,52101186Training Program of the Major Research Plan of the National Natural Science Foundation of China,Grant/Award Number:92061124。
文摘Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclusters,serving as exemplary models,significantly expand the range of accessible structures through diverse cores and ligands,creating an exceptional platform for the investigation of catalytic reactions.Notably,ligand‐protected Au nanoclusters(NCs)with precisely defined core numbers offer a distinct advantage in elucidating the correlation between their specific structures and the reaction mechanisms in electrocatalysis.The strategic modulation of the fine microstructures of Au NCs presents crucial opportunities for tailoring their electrocatalytic performance across various reactions.This review delves into the profound structural effects of Au NC cores and ligands in electrocatalysis,elucidating their underlying mechanisms.A detailed exploration of the fundamentals of Au NCs,considering core and ligand structures,follows.Subsequently,the interaction between the core and ligand structures of Au NCs and their impact on electrocatalytic performance in diverse reactions are examined.Concluding the discourse,challenges and personal prospects are presented to guide the rational design of efficient electrocatalysts and advance electrocatalytic reactions.
基金National Natural Science Foundation of China,Grant/Award Numbers:21978160,52003300,52373087Shaanxi Province Natural Science Foundation,Grant/Award Number:2024JC‐YBMS‐131。
文摘A stable and highly active core‐shell heterostructure electrocatalyst is essential for catalyzing oxygen evolution reaction(OER).Here,a dual‐trimetallic core‐shell heterostructure OER electrocatalyst that consists of a NiFeWS_(2) inner core and an amorphous NiFeW(OH)_(z)outer shell is designed and synthesized using in situ electrochemical tuning.The electrochemical measurements of different as‐synthesized catalysts with a similar mass loading suggest that the core‐shell Ni_(0.66)Fe_(0.17)W_(0.17)S_(2)@amorphous NiFeW(OH)_(z) nanosheets exhibit the highest overall performance compared with that of other bimetallic reference catalysts for the OER.Additionally,the nanosheet arrays were in situ grown on hydrophilic‐treated carbon paper to fabricate an integrated three‐dimensional electrode that affords a current density of 10 mA cm^(−2) at a small overpotential of 182 mV and a low Tafel slope of 35 mV decade^(−1) in basic media.The Faradaic efficiency of core‐shell Ni_(0.66)Fe_(0.17)W_(0.17)S_(2)@amorphous NiFeW(OH)_(z) is as high as 99.5% for OER.The scanning electron microscope,transmission electron microscope,and X‐ray photoelectron spectroscopy analyses confirm that this electrode has excellent stability in morphology and elementary composition after long‐term electrochemical measurements.Importantly,density functional theory calculations further indicate that the core‐shell heterojunction increased the conductivity of the catalyst,optimized the adsorption energy of the OER intermediates,and improved the OER activity.This study provides a universal strategy for designing more active core‐shell structure electrocatalysts based on the rule of coordinated regulation between electronic transport and active sites.
基金supported by the National Key R&D Program of China(Grant Number 2020YFB1708300)China National Postdoctoral Program for Innovative Talents(Grant Number BX20220124)+1 种基金China Postdoctoral Science Foundation(Grant Number 2022M710055)the New Cornerstone Science Foundation through the XPLORER PRIZE,the Knowledge Innovation Program of Wuhan-Shuguang,the Young Top-Notch Talent Cultivation Program of Hubei Province and the Taihu Lake Innovation Fund for Future Technology(Grant Number HUST:2023-B-7).
文摘Cellular thin-shell structures are widely applied in ultralightweight designs due to their high bearing capacity and strength-to-weight ratio.In this paper,a full-scale isogeometric topology optimization(ITO)method based on Kirchhoff-Love shells for designing cellular tshin-shell structures with excellent damage tolerance ability is proposed.This method utilizes high-order continuous nonuniform rational B-splines(NURBS)as basis functions for Kirchhoff-Love shell elements.The geometric and analysis models of thin shells are unified by isogeometric analysis(IGA)to avoid geometric approximation error and improve computational accuracy.The topological configurations of thin-shell structures are described by constructing the effective density field on the controlmesh.Local volume constraints are imposed in the proximity of each control point to obtain bone-like cellular structures.To facilitate numerical implementation,the p-norm function is used to aggregate local volume constraints into an equivalent global constraint.Several numerical examples are provided to demonstrate the effectiveness of the proposed method.After simulation and comparative analysis,the results indicate that the cellular thin-shell structures optimized by the proposed method exhibit great load-carrying behavior and high damage robustness.
基金World Premier International Research Center Initiative(WPI Initiative)on Materials Nanoarchitronics,MEXT,Japanthe Japan Society for the Promotion of Science (JSPS)for a support in the form of a fellowship tenable at the National Institute for Materials Science,Tsukuba,Japan.
文摘A focus of the current nanotechnology has shifted from routine fabrication of nanostructures to designing functional electronic devices and realizing their immense potentials for applications. Due to infusion of multi-functionality into a single system, the utilization of hetero-, core/shell and hierarchical nanostructures has become the key issue for building such devices. ZnS, due to its direct wide bandgap, high index of refraction, high transparency in the visible range and intrinsic polarity, is one of the most useful semiconductors for a wide range of electronics applications. This article provides a dense review of the state-of-the-art research activities in one-dimensional (1D) ZnS-based hetero-, core/shell and hierarchical nanostructures. The particular emphasis is put on their syntheses and applications.
基金supported by the National Natural Science Foundation of China(21922501,21871021 and 21521005)the Beijing Natural Science Foundation(2192040)+1 种基金the National Key Research and Development Programme(2017YFA0206804)the Fundamental Research Funds for the Central Universities(XK1802-6 and 479 XK1803-05).
文摘Zinc-air batteries(ZABs)hold tremendous promise for clean and efficient energy storage with the merits of high theoretical energy density and environmental friendliness.However,the performance of practical ZABs is still unsatisfactory because of the inevitably decreased activity of electrocatalysts when assembly into a thick electrode with high mass loading.Herein,we report a hierarchical electrocatalyst based on carbon microtube@nanotube core-shell nanostructure(CMT@CNT),which demonstrates superior electrocatalytic activity for oxygen reduction reaction and oxygen evolution reaction with a small potential gap of 0.678 V.Remarkably,when being employed as air-cathode in ZAB,the CMT@CNT presents an excellent performance with a high power density(160.6 mW cm^−2),specific capacity(781.7 mAhgZn^−1)as well as long cycle stability(117 h,351 cycles).Moreover,the ZAB performance of CMT@CNT is maintained well even under high mass loading(3 mg cm−2,three times as much as traditional usage),which could afford high power density and energy density for advanced electronic equipment.We believe that this work is promising for the rational design of hierarchical structured electrocatalysts for advanced metal-air batteries.
基金Funded by the National Natural Science Foundation of China (Nos.50532030 and 50625206)the Zhejiang Provincial Natural ScienceFoundation of China (No. Z4080021)
文摘A simple sonochemical route for the surface coating of titanium dioxide on cadmium sulfide nanocrystal was reported. After 2 h ultrasonic irradiation treatment, the mixture of CdS nanocrystals and tetrabutyl titanate in an aqueous medium yielded CdS/TiO2 nanocrystals composites with core/shell structure. The thickness of TiO2 layer with smooth interface could be easily controlled via changing the concentration of the precursors and the time of irradiation. The core/shell nanocrysrals were characterized by X-ray diffraction, transmission electron microscope and UV-vis spectrometry techniques. The prepared semiconductor composites with particular band structure present appealing properties especially in photochemical activity.
基金supported by "973" Program (No.2012CB619301 and 2011CB925600)the National Natural Science Foundations of China (No.61227009,61106008,61106118,90921002,and 60827004)+1 种基金the Natural Science Foundations of Fujian Provincethe fundamental research funds for the central universities (No.2011121042 and 2011121026)
文摘Nanowire-based photovoltaic devices have the advantages over planar devices in light absorption and charge transport and collection.Recently,a new strategy relying on type-Ⅱ band alignment has been proposed to facilitate efficient charge separation in core/shell nanowire solar cells.This paper reviews the type-Ⅱ heterojunction solar cells based on core/shell nanowire arrays,and specifically focuses on the progress of theoretical design and fabrication of type-Ⅱ Zn O/Zn Se core/shell nanowire-based solar cells.A strong photoresponse associated with the type-Ⅱ interfacial transition exhibits a threshold of 1.6 e V,which demonstrates the feasibility and great potential for exploring all-inorganic versions of type-Ⅱ heterojunction solar cells using wide bandgap semiconductors.Future prospects in this area are also outlooked.
基金Project(2000E0008Z) supported by Natural Science Foundation of Yunnan Province
文摘The colloidal Au core/Ag shell structure composite nanoparticles were synthesized in PEG-acetone solution by photochemical route. The monodispersed Au nanoparticles with average diameter of 3.9 nm were used as growth seeds. The optical property of colloids and the sizes of composite nanoparticles were characterized when the molar ratio of Au to Ag ranges from 4∶1 to 1∶4. The results show that a composite nanoparticle structure similar to strawberry shape is formed at the molar ratio of Au to Ag from 4∶1 to 1∶1; the composite nanoparticles consisting of a core of Au and shell of Ag were generated at the 1∶4 molar ratio, having a striking feature of forming (interconnected) network structure.
基金the financial support from National Natural Science Foundation of China (No. 21972102)National Key Research and Development Program of China (2021YFA0910400)+3 种基金Natural Science Foundation of Jiangsu Province (BK20200991)Suzhou Science and Technology Planning Project (SS202016)the USTS starting fund (No.332012104)the Natural Science Foundation of Suzhou University of Science and Technology (No.342134401)。
文摘Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance.
基金Funded by the National Natural Science Foundation of China(No.51177030)the National Key Basic Research Development Plan(No.2012CB723308)the Natural Science Foundation of Heilongjiang Province of China(No.E201224)
文摘A novel core-shell structure Ag@Al2O3 nano-particles were synthesized and doped into polyimide as conductive fillers to prepare the composite films with high dielectric properties and low dielectric loss. The morphology and structures of the Ag@Al2O3 nano-particles were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-visible spectroscopy. All the results proved that the Ag@Al2O3 nano-parficles had a typical core-shell structure, for the Ag particles were coated by Al2O3 shell and the average sizes ofAg@Al2O3 particles were between 30 to 150 nm. The as-prepared Ag@Al2O3 nanoparticles were doped into the polyimide with different mass fractions to fabricate the Ag@Al2O3/PI composite films via in-situ polymerization process. SEM analysis of composite films showed that the Ag@Al2O3 nano- particles homogeneously dispersed in polyimide matrix with nanoseale. As dielectric materials for electronic packaging systems, the Ag@Al2O3/PI composites exhibited appropriate mechanical properties and erthaneed dielectric properties, including greatly enhanced dielectric constant and just a slight increase in dielectric loss. These improvements were attributed to the core-shell structure of fillers and their fine dispersion in the PI matrix.
基金supported by the National Science fund for Distinguished Young Scholars (No.50625204)the National Natural Science Foundation of China (Science Fund for Creative Research Groups)(No.50621201)+1 种基金the Major State Basic Research Development Program of China (No.2009CB623301)the National High-Tech Research and Development Program of China (No.2006AA03Z0428), and Samsung Electro-Mechanics Co., Ltd.
文摘Fine-grained BaTiO3-based X7R ceramic materials were prepared and the effects of milling process on the core-shell structures and dielectric properties were investigated using scanning electron microscope, transmission electron microscope, and energy dispersive spectroscopy (EDS). As the milling time extends, the dielectric constant of the ceramics increases, whereas the temperature coefficient of capacitance at 125℃ drops quickly. The changes in dielectric properties are considered relevant to the microstructure evolution caused by the milling process. Defects on the surface of BaTiO3 particles increase because of the effects of milling process, which will make it easier for additives to diffuse into the interior grains. As the milling time increases, the shell region gets thicker and the core region gets smaller; however, EDS results show that the chemical inhomogeneity between grain core and grain shell becomes weaker.
基金supported by the National Programs for NanoKey Project (2017YFA0206700)the National Natural Science Foundation of China (51231003)the Ministry of Education of China (B12015)
文摘Organic carbonyl compounds are considered as promising candidates for lithium batteries due to theirhigh capacity and environmental friendliness, However, they suffer from serious dissolution in the elec-trolyte, leading to fast capacity decay. Here we report core-shell structured 1,4-benzoquinone@titaniumdioxide (BQ@TiO2) composite as cathode for lithium batteries. The composite cathode can deliver a highdischarge capacity of 441.2 mA h/g at 50 mA/g and a high capacity retention of 80.7% after 100 cycles. Thegood cycling performance of BQ@TiO2 composite can be attributed to the suppressed dissolution of BQ,which results from the physical confinement effect of Ti02 shell and the strong interactions between BQand Ti02. Moreover, the combination of ex situ infrared spectra and density functional theory calculationsreveals that the active redox sites of BQ are carbonyl groups. This work provides an alternative way tomitigate the dissolution of small carbonyl compounds and thus enhance their cycling stability.
基金support from National Science Foundation of China(NSFC,Grant No.50971010)the Fundamental Research Funds for the Central Universities(YWF-11-03-Q-002)
文摘Co@Au core shell nanoparticles(NPs) of different shell thicknesses were fabricated by a combination of the displacement process and the reduction-deposition process in a microfluidic reactor. The effect of the shell thickness on the fine structures(local atom arrangement) of core materials was investigated by X-ray Absorption Near Edge Structure(XANES) and Extended X-ray Absorption Fine Structure(EXAFS).The results indicate that the shell thickness affects the fine structure of the core materials by causing atomic re-arrangement between the hexagonal close pack(hcp) and the face centered cubic(fcc) structure, and forming Co-Au bonds in the core-shell interface.
基金Funded by the Jiangsu Provincial Creative Fund for Scientific and Tech-nical Small and Medium-size Enterprise
文摘Using methyl methacrylate (MMA), butyl acrylate(BA) and hexafluorobutyl acrylate(HFBA) as main raw materials, we prepared self-crosslinked fluorocarbon polymer emulsion with core-shell structure via soap-free emulsion polymerization when the conception of particle design and polymer morphology was adopted. Moreover, the influence of mole ratio of BA to MAA, pH value on the oligomer was studied. And the effects of the added amount of oligomer, self-crosslinked monomer and HFBA, mass ratio of BA to MMA, reaction temperature and the initiator on the polymerization technology and the performance of the product, were investigated and optimized. The structure and performance of the fluorocarbon polymer emulsion were characterized and tested with FTIR, TEM, MFT and contact angle and water absorption of the latex film. The experimental results show that the optimal conditions for preparing fluorocarbon polymer emulsion are as follows: for preparing the oligomer, tool ratio of BA to MAA is equal to 1.0 : 1.60, and pH value is controlled within the range of 8.0 and 9.0; for preparing fluorocarbon polymer emulsion, the added amount of oligmer[P(BA/MANa)] is 6%; mass ratio of BA to MMA is 40 " 60; the added amount of self-crosslinked monomer is 2%, the added amount of HFBA is 15 %; reaction temperature is 80 ℃; the mixture of potassium persulfate and sodium bisulfite is used as the initiator. The film-forming stability of the fluorocarbon polymer emul- sion and the performance of the latex film, which is prepared with the soap-free emulsion polymerization, are better than that prepared with the conventional emulsion polymerization.
基金Funded by the Natural Science Foundation of Shaanxi Province(No.2018JQ2057)the Ph D Research Foundation Project of Shaanxi University of Technology(No.209020195)the Scientific Research Program of Shaanxi Provincial Education Department(No.17JK0151)
文摘A facile method for preparing monodisperse NaYF4@SiO2@Au core-shell nanocomposite was developed. Transmission electron microscopy(TEM) as well as EDX(energy dispersive X-ray) was used to characterize the samples. The TEM showed the composite was a core-shell structure, spherical,with the uniform size of about 100 nm. TEM and EDX revealed that the NPs were coated with a layer of SiO2 and Au shell. The core shell structure of NaYF4@SiO2@Au nanocomposite could dispersed in water easily. More importantly,after being coated with SiO2 and Au, it was feasible for function by-SH and-NH2 groups, respectively. The forming process of the Au shell was monitored with TEM. The mechanism of coating Au shell was discussed in detail. It is expected that the core shell nanoparticle will act as multifunctional molecular imaging probes, such as positron emission tomography(PET), magnetic resonance imaging(MRI), optical imaging(OI), or contrast agent for sensing and detection.