期刊文献+
共找到889篇文章
< 1 2 45 >
每页显示 20 50 100
Cosmological Constraints on Neutrino Masses in Light of JWST Red and Massive Candidate Galaxies
1
作者 Jian-Qi Liu Zhi-Qi Huang Yan Su 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第4期7-12,共6页
The overabundance of the red and massive candidate galaxies observed by the James Webb Space Telescope(JWST)implies efficient structure formation or large star formation efficiency at high redshift z~10.In the scenari... The overabundance of the red and massive candidate galaxies observed by the James Webb Space Telescope(JWST)implies efficient structure formation or large star formation efficiency at high redshift z~10.In the scenario of a low or moderate star formation efficiency,because massive neutrinos tend to suppress the growth of structure of the universe,the JWST observation tightens the upper bound of the neutrino masses.Assuming A cold dark matter cosmology and a star formation efficiency∈[0.05,0.3](flat prior),we perform joint analyses of Planck+JWST and Planck+BAO+JWST,and obtain improved constraints∑m_(ν)<0.196 eV and ∑m_(ν)+<0.111 eV at 95% confidence level,respectively.Based on the above assumptions,the inverted mass ordering,which implies ∑m_(ν)≥0.1 eV,is excluded by Planck+BAO+JWST at 92.7% confidence level. 展开更多
关键词 (cosmology:)cosmological parameters galaxies:abundances galaxies:formation NEUTRINOS
下载PDF
Quantifying the Tension between Cosmological Models and JWST Red Candidate Massive Galaxies
2
作者 Jun-Chao Wang Zhi-Qi Huang +1 位作者 Lu Huang Jianqi Liu 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第4期1-6,共6页
We develop a Python tool to estimate the tail distribution of the number of dark matter halos beyond a mass threshold and in a given volume in a light-cone.The code is based on the extended Press-Schechter model and i... We develop a Python tool to estimate the tail distribution of the number of dark matter halos beyond a mass threshold and in a given volume in a light-cone.The code is based on the extended Press-Schechter model and is computationally efficient,typically taking a few seconds on a personal laptop for a given set of cosmological parameters.The high efficiency of the code allows a quick estimation of the tension between cosmological models and the red candidate massive galaxies released by the James Webb Space Telescope,as well as scanning the theory space with the Markov Chain Monte Carlo method.As an example application,we use the tool to study the cosmological implication of the candidate galaxies presented in Labbéet al.The standard Λcold dark matter(ΛCDM)model is well consistent with the data if the star formation efficiency can reach~0.3 at high redshift.For a low star formation efficiency ε~0.1,theΛCDM model is disfavored at~2σ-3σconfidence level. 展开更多
关键词 (cosmology:)cosmological parameters Galaxy:abundances Galaxy:formation
下载PDF
Prospects of the Multi-channel Photometric Survey Telescope in the Cosmological Application of Type Ia Supernovae
3
作者 Zhenyu Wang Jujia Zhang +1 位作者 Xinzhong Er Jinming Bai 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第4期183-191,共9页
The Multi-channel Photometric Survey Telescope(Mephisto)is a real-time,three-color photometric system designed to capture the color evolution of stars and transients accurately.This telescope system can be crucial in ... The Multi-channel Photometric Survey Telescope(Mephisto)is a real-time,three-color photometric system designed to capture the color evolution of stars and transients accurately.This telescope system can be crucial in cosmological distance measurements of low-redshift(low-z,z■0.1)Type Ia supernovae(SNe Ia).To optimize the capabilities of this instrument,we perform a comprehensive simulation study before its official operation is scheduled to start.By considering the impact of atmospheric extinction,weather conditions,and the lunar phase at the observing site involving the instrumental features,we simulate light curves of SNe Ia obtained by Mephisto.The best strategy in the case of SN Ia cosmology is to take the image at an exposure time of 130 s with a cadence of 3 days.In this condition,Mephisto can obtain hundreds of high-quality SNe Ia to achieve a distance measurement better than 4.5%.Given the on-time spectral classification and monitoring of the Lijiang 2.4 m Telescope at the same observatory,Mephisto,in the whole operation,can significantly enrich the well-calibrated sample of supernovae at low-z and improve the calibration accuracy of high-z SNe Ia. 展开更多
关键词 (stars:)supernovae:general (cosmology:)cosmological parameters telescopes
下载PDF
The Extremal Universe Exact Solution from Einstein’s Field Equation Gives the Cosmological Constant Directly
4
作者 Espen Gaarder Haug 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期386-397,共12页
Einstein’s field equation is a highly general equation consisting of sixteen equations. However, the equation itself provides limited information about the universe unless it is solved with different boundary conditi... Einstein’s field equation is a highly general equation consisting of sixteen equations. However, the equation itself provides limited information about the universe unless it is solved with different boundary conditions. Multiple solutions have been utilized to predict cosmic scales, and among them, the Friedmann-Lemaître-Robertson-Walker solution that is the back-bone of the development into today standard model of modern cosmology: The Λ-CDM model. However, this is naturally not the only solution to Einstein’s field equation. We will investigate the extremal solutions of the Reissner-Nordström, Kerr, and Kerr-Newman metrics. Interestingly, in their extremal cases, these solutions yield identical predictions for horizons and escape velocity. These solutions can be employed to formulate a new cosmological model that resembles the Friedmann equation. However, a significant distinction arises in the extremal universe solution, which does not necessitate the ad hoc insertion of the cosmological constant;instead, it emerges naturally from the derivation itself. To the best of our knowledge, all other solutions relying on the cosmological constant do so by initially ad hoc inserting it into Einstein’s field equation. This clarification unveils the true nature of the cosmological constant, suggesting that it serves as a correction factor for strong gravitational fields, accurately predicting real-world cosmological phenomena only within the extremal solutions of the discussed metrics, all derived strictly from Einstein’s field equation. 展开更多
关键词 General Relativity Theory cosmological Constant Extremal Solution Reissner-Nordström KERR Kerr-Newman
下载PDF
Hubble Tension Explanation from This Cosmological Model AΛΩ (Slow Bang Model, SB)
5
作者 Jean Perron 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期106-125,共20页
In this article we present a model of Hubble-Lemaître law using the notions of a transmitter (galaxy) and a receiver (MW) coupled to a model of the universe (Slow Bang Model, SB), based on a quantum approach of t... In this article we present a model of Hubble-Lemaître law using the notions of a transmitter (galaxy) and a receiver (MW) coupled to a model of the universe (Slow Bang Model, SB), based on a quantum approach of the evolution of space-time as well as an equation of state that retains all the infinitesimal terms. We find an explanation of the Hubble tension H<sub>0</sub>. Indeed, we have seen that this constant depends on the transceiver pair which can vary from the lowest observable value, from photons of the CMB (theoretical [km/s/Mpc]) to increasingly higher values depending on the earlier origin of the formation of the observed galaxy or cluster (ETG ~0.3 [Gy], ~74 [km/s/Mpc]). We have produced a theoretical table of the values of the constant according to the possible pairs of transmitter/receiver in the case where these galaxies follow the Hubble flow without large disturbance. The calculated theoretical values of the constant are in the order of magnitude of all values mentioned in past studies. Subsequently, we applied the models to 9 galaxies and COMA cluster and found that the models predict acceptable values of their distances and Hubble constant since these galaxies mainly follow the Hubble flow rather than the effects of a galaxy cluster or a group of clusters. In conclusion, we affirm that this Hubble tension does not really exist and it is rather the understanding of the meaning of this constant that is questioned. 展开更多
关键词 Model of the Universe cosmological Constant Hubble Constant Hubble’s Tension Hubble-Lemaître Law Hubble’s Flow
下载PDF
A Solution to the Cosmological Constant Problem Using the Holographic Principle (A Brief Note)
6
作者 Eugene Terry Tatum 《Journal of Modern Physics》 2024年第2期159-166,共8页
This paper integrates a quantum conception of the Planck epoch early universe with FSC model formulae and the holographic principle, to offer a reasonable explanation and solution of the cosmological constant problem.... This paper integrates a quantum conception of the Planck epoch early universe with FSC model formulae and the holographic principle, to offer a reasonable explanation and solution of the cosmological constant problem. Such a solution does not appear to be achievable in cosmological models which do not integrate black hole formulae with quantum formulae such as the Stephan-Boltzmann law. As demonstrated herein, assuming a constant value of Lambda over the great span of cosmic time appears to have been a mistake. It appears that Einstein’s assumption of a constant, in terms of vacuum energy density, was not only a mistake for a statically-balanced universe, but also a mistake for a dynamically-expanding universe. 展开更多
关键词 Quantum Cosmology Planck Scale cosmological Constant Black Holes Holographic Principle Flat Space Cosmology AdS-CFT ER = EPR Cosmology Model
下载PDF
Cosmological Model in Four Time and Four Space Dimensions
7
作者 Juan Antonio Nieto 《Journal of Applied Mathematics and Physics》 2024年第3期829-840,共12页
We develop a cosmological model in a physical background scenario of four time and four space dimensions ((4+4)-dimensions or (4+4)-universe). We show that in this framework the (1+3)-universe is deeply connected with... We develop a cosmological model in a physical background scenario of four time and four space dimensions ((4+4)-dimensions or (4+4)-universe). We show that in this framework the (1+3)-universe is deeply connected with the (3+1)-universe. We argue that this means that in the (4+4)-universe there exists a duality relation between the (1+3)-universe and the (3+1)-universe. 展开更多
关键词 cosmological Model (4+4)-Dimensions Duality Symmetry
下载PDF
Cosmological Redshift Caused by Head-On Collisions with CMB Photons, Not by Expansion of Space
8
作者 Gurcharn S. Sandhu Ishaan S. Dhindsa 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第4期1675-1698,共24页
The Big Bang model was first proposed in 1931 by Georges Lemaitre. Lemaitre and Hubble discovered a linear correlation between distances to galaxies and their redshifts. The correlation between redshifts and distances... The Big Bang model was first proposed in 1931 by Georges Lemaitre. Lemaitre and Hubble discovered a linear correlation between distances to galaxies and their redshifts. The correlation between redshifts and distances arises in all expanding models of universe as the cosmological redshift is commonly attributed to stretching of wavelengths of photons propagating through the expanding space. Fritz Zwicky suggested that the cosmological redshift could be caused by the interaction of propagating light photons with certain inherent features of the cosmos to lose a fraction of their energy. However, Zwicky did not provide any physical mechanism to support his tired light hypothesis. In this paper, we have developed the mechanism of producing cosmological redshift through head-on collision between light and CMB photons. The process of repeated energy loss of visual photons through n head-on collisions with CMB photons, constitutes a primary mechanism for producing the Cosmological redshift z. While this process results in steady reduction in the energy of visual photons, it also results in continuous increase in the number of photons in the CMB. After a head-on collision with a CMB photon, the incoming light photon, with reduced energy, keeps moving on its original path without any deflection or scattering in any way. After propagation through very large distances in the intergalactic space, all light photons will tend to lose bulk of their energy and fall into the invisible region of the spectrum. Thus, this mechanism of producing cosmological redshift through gradual energy depletion, also explains the Olbers’s paradox. 展开更多
关键词 REDSHIFT CMBR Big Bang COSMOLOGY Elastic Collisions Tired Light
下载PDF
On a Cosmological Model with Variable Time Flow
9
作者 Ralph Gramigna 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第4期1514-1530,共17页
The Friedmann-Lemaître-Robertson-Walker (FLRW) metric is an exact solution of the Einstein field equations and it describes a homogeneous, isotropic and expanding universe. The FLRW metric and the Friedmann equat... The Friedmann-Lemaître-Robertson-Walker (FLRW) metric is an exact solution of the Einstein field equations and it describes a homogeneous, isotropic and expanding universe. The FLRW metric and the Friedmann equations form the basis of the ΛCDM model. In this article, a metric which is based on the FLRW metric and that includes a space scale factor and a newly introduced time scale factor T(t)is elaborated. The assumption is that the expansion or contraction of the dimensions of space and time in a homogeneous and isotropic universe depend on the energy density. The Christoffel symbols, Ricci tensor and Ricci scalar are derived. By evaluating the results using Einstein’s field equations and the energy momentum tensor, a hypothetical modified cosmological model is obtained. This theoretical model provides for a cosmic inflation, the accelerated expansion of spacetime as well avoids the flatness and fine-tuning problems. 展开更多
关键词 COSMOLOGY Dark Energy Cosmic Inflation Flatness Problem Hubble Tension
下载PDF
Applying the Stefan-Boltzmann Law to a Cosmological Model (a Brief Note)
10
作者 Eugene Terry Tatum 《Journal of Modern Physics》 2024年第11期1717-1722,共6页
This brief note brings the reader up-to-date with the recent successes of the new Haug-Tatum cosmology model. In particular, the significance of recent proof that the Stefan-Boltzmann law applies to such a model is em... This brief note brings the reader up-to-date with the recent successes of the new Haug-Tatum cosmology model. In particular, the significance of recent proof that the Stefan-Boltzmann law applies to such a model is emphasized and a rationale for this is given. Remarkably, the proposed solutions of this model have incorporated all 580 supernova redshifts in the Union2 database. Therefore, one can usefully apply this thermodynamic law in the form of a continually expanding black-body universe model. To our knowledge, no other cosmological model has achieved such high-precision observational correlation. 展开更多
关键词 Haug-Tatum Cosmology Stefan-Boltzmann Law Flat Space Cosmology CMB Cosmic Thermodynamics Rh = ct Cosmology Model Black Body
下载PDF
Cosmology without the Cosmological Principle and without Violating the Copernican Principle: Taub-NUT Universe
11
作者 Charles H. McGruder III 《Journal of Modern Physics》 2024年第8期1069-1096,共28页
We develop a theory of cosmology, which is not based on the cosmological principle. We achieve this without violating the Copernican principle. It is well known that the gravitational redshift associated with the Schw... We develop a theory of cosmology, which is not based on the cosmological principle. We achieve this without violating the Copernican principle. It is well known that the gravitational redshift associated with the Schwarzschild solution applied to the distant supernova does not lead to the observed redsift-distance relationship. We show, however, that generalizations of the Schwarzschild metric, the Taub-NUT metrics, do indeed lead to the observed redshift-distance relationship and to the observed time dilation. These universes are not expanding rather the observed cosmological redshift is due to the gravitational redshift associated with these solutions. Time dilation in these stationary universes has the same dependency on redshift that generally has been seen as proof that space is expanding. Our theory resolves the Hubble tension. 展开更多
关键词 COSMOLOGY General Relativity
下载PDF
Cosmological Gravitational Redshift, Spectral Shift and Time in the Taub-NUT Universe
12
作者 Charles H. McGruder III 《Journal of Modern Physics》 2024年第9期1448-1459,共12页
We demonstrate that: 1) The Taub-NUT universe is finite. 2) The Taub-NUT universe is much larger than the maximum observable distance according to the standard theory of cosmology. 3) At large distances the spectral s... We demonstrate that: 1) The Taub-NUT universe is finite. 2) The Taub-NUT universe is much larger than the maximum observable distance according to the standard theory of cosmology. 3) At large distances the spectral shift turns into a blueshift. 4) At large distances time dilation turns into time contraction. 展开更多
关键词 COSMOLOGY General Relativity
下载PDF
Entropy and Cosmological Constant of a Universe Calculated by Means of Dimensional Analysis, Margolus-Levitin Theorem and Landauer’s Principle
13
作者 Mario Leo 《Journal of Modern Physics》 2023年第10期1310-1322,共13页
By means of the dimensional analysis a spherically simmetric universe with a mass M = c<sup>3</sup>/(2HG) and radius equal to c/H is considered, where H is the Hubble constant, c the speed of light and G t... By means of the dimensional analysis a spherically simmetric universe with a mass M = c<sup>3</sup>/(2HG) and radius equal to c/H is considered, where H is the Hubble constant, c the speed of light and G the Newton gravitational constant. The density corresponding to this mass is equal to the critical density ρ<sub>cr </sub>= 3H<sup>2</sup>/(8πG). This universe evolves according to a Bondi-Gold-Hoyle scenario, with continuous creation of matter at a rate such to maintain, during the expansion, the density always critical density. Using the Margolus-Levitin theorem and the Landauer’s principle, an entropy is associated with this universe, obtaining a formula having the same structure as the Bekenstein-Hawking formula of the entropy of a black hole. Furthermore, a time-dependent cosmological constant Λ, function of the Hubble constant and the speed of light, is proposed. 展开更多
关键词 cosmological Models cosmological Constant ENTROPY
下载PDF
Cosmological Inconstant, Supernovae 1a and Decelerating Expansion
14
作者 Russell Bagdoo 《Journal of Modern Physics》 CAS 2023年第5期692-721,共30页
In 1998, two groups of astronomers, one led by Saul Perlmutter and the other by Brian Schmidt, set out to determine the deceleration—and hence the total mass/energy—of the universe by measuring the recession speeds ... In 1998, two groups of astronomers, one led by Saul Perlmutter and the other by Brian Schmidt, set out to determine the deceleration—and hence the total mass/energy—of the universe by measuring the recession speeds of type la supernovae (SN1a), came to an unexpected conclusion: ever since the universe was about 7 billion years old, its expansion rate has not been decelerating. Instead, the expansion rate has been speeding up. To justify this acceleration, they suggested that the universe does have a mysterious dark energy and they have emerged from oblivion the cosmological constant, positive this time, which is consistent with the image of an inflationary universe. To explain the observed dimming of high-redshift SN1a they have bet essentially on their distance revised upwards. We consider that an accelerated expansion leads right to a “dark energy catastrophe” (i.e., the chasm between the current cosmological vacuum density value of 10 GeV/m<sup>3</sup> and the vacuum energy density proposed by quantum field theory of ~10<sup>122</sup> GeV/m<sup>3</sup>). We suppose rather that the universe knows a slowdown expansion under the positive pressure of a dark energy, otherwise called a variable cosmological constant. The dark luminosity of the latter would be that of a “tired light” which has lost energy with distance. As for the low brilliance of SN1a, it is explained by two physical processes: The first relates to their intrinsic brightness—supposedly do not vary over time—which would depend on the chemical conditions which change with the temporal evolution;the second would concern their apparent luminosity. Besides the serious arguments already known, we strongly propose that their luminosity continually fades by interactions with cosmic magnetic fields, like the earthly PVLAS experiment which loses much more laser photons than expected by crossing a magnetic field. It goes in the sense of a “tired light” which has lost energy with distance, and therefore, a decelerated expansion of the universe. Moreover, we propose the “centrist” principle to complete the hypothesis of the cosmological principle of homogeneity and isotropy considered verified. Without denying the Copernican principle, he is opposed to a “spatial” theoretical construction which accelerates the world towards infinity. The centrist principle gives a “temporal” and privileged vision which tends to demonstrate the deceleration of expansion. 展开更多
关键词 Variable cosmological Constant SN1a Dark Energy Catastrophe Theory of Relation Deceleration of the Expansion PVLAS Experiment Tired Light Centrist Principle
下载PDF
Adiabaticity Violated Not Enough: Presume Primordial Black Holes to Generate Gravitons for Cosmological Constant, as Candidate for DE Initially
15
作者 Andrew Walcott Beckwith 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2023年第1期100-107,共8页
Instant preheating as given in terms of window where adiabaticity is violated is a completely inefficient form of particle production if we use Padmandabhan scalar potentials. This necessitates using a very different ... Instant preheating as given in terms of window where adiabaticity is violated is a completely inefficient form of particle production if we use Padmandabhan scalar potentials. This necessitates using a very different mechanism for early universe gravition production as an example which is to break up the initial “mass” formed about 10<sup>60</sup> times Planck mass into graviton emitting 10<sup>5</sup> gram sized micro black holes. The mechanism is to assume that we have a different condition than the usual adiabaticity idea which is connected with reheating of the universe. Hence, we will be looking at an earlier primordial black hole generation for generation of gravitons. 展开更多
关键词 Black Holes cosmological Constant Universe Gravition
下载PDF
ETG Galaxies (<400 [My]) from JWST Already Predicted in 2019 from This Cosmological Model AΛΩ (Slow Bang Model, SB)
16
作者 Jean Perron 《Journal of High Energy Physics, Gravitation and Cosmology》 2023年第3期800-834,共35页
A model of the universe (preprint 2019), based on a quantum approach to the evolution of space-time as well as on an equation of state that retains all the infinitesimal terms, has made it possible to estimate a large... A model of the universe (preprint 2019), based on a quantum approach to the evolution of space-time as well as on an equation of state that retains all the infinitesimal terms, has made it possible to estimate a large number of parameters relating to the universe and in particular the estimation of a colossal phantom energy E<sub>Λ</sub> represented by the existence of a hidden photon &ycirc;present everywhere. This energy undergoes dilution in H<sup>4</sup> due to expansion of the universe. In order to introduce the effects of this energy on the curvature of space-time, we chose to express it by the cosmological constant Λ in the equation of the GR via the element tensor T<sup>00</sup>. This positive energy E<sub>Λ</sub> which acts as additional effect to gravity and we have expressed this energy in the form of an equation which expresses a so-called cosmological force F<sub>Λ</sub>. We estimated that this photon or hidden particle of spin 1 has an energy ~1 [meV] at our cosmic position t<sub>0</sub> which makes it an ultra-light axion ULA. Subsequently, with the action of this augmented force, especially in the first 400 [My] we were able to explain, in part, the rapid development of galaxy formation as seen by JWST as well as several observed dynamic behaviors of the barionic mass of some galaxies as MW, M33, UGC12591, NGC3198, UGC2885 and NGC253 whose observations raise questions and require additional explanations that led to the likely existence of unobserved matter called DM. However, it appears that this cosmological force makes it possible to explain several observations without the use of this DM. A first conclusion was drawn, namely the much earlier formation of galaxies by the action of this cosmological force coupled with gravity (GLASS z12). In addition, the model made it possible to explain the need or not to use the concept of DM for ETGs and LTGs by the more or less early and long period of the beginning of galaxy formation over a period ranging from ~170 to 1200 [My]. Thus, the model makes it possible to explain to a large extent the observations of the dynamics of the galaxies studied. However, several questions remain. 展开更多
关键词 Model of Universe ETG LTG UDG cosmological Constant Hidden Photon Hidden Boson GLASS z12
下载PDF
Mass of the Universe from Quarks: A Plausible Solution to the Cosmological Constant Problem
17
作者 Kevin Oramah 《Journal of Modern Physics》 2023年第12期1672-1692,共21页
A framework to estimate the mass of the universe from quarks is presented, taking spacetime into account. This is a link currently missing in our understanding of physics/science. The focus on mass-energy balance is a... A framework to estimate the mass of the universe from quarks is presented, taking spacetime into account. This is a link currently missing in our understanding of physics/science. The focus on mass-energy balance is aimed at finding a solution to the Cosmological Constant (CC) problem by attempting to quantize space-time and linking the vacuum energy density at the beginning of the universe and the current energy density. The CC problem is the famous disagreement of approximately 120 orders of magnitude between the theoretical energy density at the Planck scale and the indirectly measured cosmological energy density. Same framework is also used to determine the mass of the proton and neutron from first principles. The only input is the up quark (u-quark) mass, or precisely, the 1st generation quarks. The method assumes that the u-quark is twice as massive as the down-quark (d-quark). The gap equation is the starting point, introduced in its simplest form. The main idea is to assume that all the particles and fields in the unit universe are divided into quarks and everything else. Everything else means all fields and forces present in the universe. It is assumed that everything else can be “quark-quantized”;that is, assume that they can be quantized into similar sizeable u-quarks and/or it’s associated interactions and relations. The result is surprisingly almost as measured and known values. The proton structure and mass composition are also analysed, showing that it likely has more than 3 quarks and more than 3 valence quarks. It is also possible to estimate the percentage of dark matter, dark energy, ordinary matter, and anti-matter. Finally, the cosmological constant problem or puzzle is resolved by connecting the vacuum energy density of Quantum Field Theory (5.1E+96 kg/m<sup>3</sup>) and the energy density of General Relativity (1.04E−26 kg/m<sup>3</sup>). Upon maturation, this framework can serve as a bridging platform between Quantum Field Theory and General Relativity. Other aspects of natures’ field theories can be successfully ported to the platform. It also increases the chances of solving some of the unanswered questions in physics. 展开更多
关键词 cosmological Constant Proton Mass-Structure Quark-Quantization Dark Matter Dark Energy Age of the Universe Energy Density Spacetime Quantization
下载PDF
The Evolving Absolute Magnitude of Type 1a Supernovae and Its Critical Impact on the Cosmological Parameters
18
作者 Abraham P. Mahtessian Garen S. Karapetian +1 位作者 Martik A. Hovhannisyan Lazar A. Mahtessian 《International Journal of Astronomy and Astrophysics》 2023年第2期39-60,共22页
In this work, a computer optimization model has been developed that allows one to load the initial data of observations of supernovae 1a into a table and, in simple steps, by searching for the best fit between observa... In this work, a computer optimization model has been developed that allows one to load the initial data of observations of supernovae 1a into a table and, in simple steps, by searching for the best fit between observations and theory, obtain the values of the parameters of cosmological models. The optimization is carried out assuming that the absolute magnitude of supernovae is not constant, but evolves with time. It is assumed that the dependence of the absolute magnitude on the redshift is linear: M = M( z = 0) + ε<sub>c </sub>z, where ε<sub>c</sub> is the evolution coefficient of the absolute magnitude of type 1a supernovae. In the case of a flat universe ( Ω<sub>M</sub> + Ω<sub>Λ</sub> = 1 ), the best fit between theory and observation is εc </sub>= 0.304. In this case, for the cosmological parameters we obtain Ω<sub>Λ</sub> = 0.000, Ω<sub>M</sub><sub></sub> =1.000. Naturally, this result exactly coincides with the simulation result for the model with zero cosmological constant ( εc</sub> = 0.304, q<sub>0</sub> = 0.500 ). Within the framework of the ΛCDM model, without restriction on space curvature ( Ω<sub>M</sub> + Ω<sub>Λ</sub>+ Ω<sub>K</sub><sub></sub> = 1 ), we obtain the following values: εc</sub> </sub>= 0.304, ΩΛ</sub> = 0.000, ΩM </sub>= 1.000, Ω<sub>K</sub></sub></sub></sub> =0.000. Those, this case also leads to a flat model of the Universe ( Ω<sub>K</sub><sub></sub></sub></sub> =0.000 ). In this work, the critical influence of the absolute magnitude M of type 1a supernovae on the cosmological parameters is also shown. In particular, it was found that a change in this value by only 0.4<sup>m </sup>(from -19.11 to -18.71) leads to a change in the parameters from ΩΛ</sub> = 0.7 and ΩM</sub></sub> = 0.3 to ΩΛ</sub> = 0 and ΩM</sub> =1. 展开更多
关键词 Supernovae SNe1a cosmological Parameters COSMOLOGY ACCELERATION
下载PDF
Cosmological application on five-dimensional teleparallel theory equivalent to general relativity
19
作者 Gamal G.L.Nashed 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期122-129,共8页
A theory of(4+1)-dimensional gravity has been developed on the basis of which equivalent to the theory of general relativity by teleparallel.The fundamental gravitational field variables are the 5-dimensional(5D)... A theory of(4+1)-dimensional gravity has been developed on the basis of which equivalent to the theory of general relativity by teleparallel.The fundamental gravitational field variables are the 5-dimensional(5D) vector fields(pentad),defined globally on a manifold M,and gravity is attributed to the torsion.The Lagrangian density is quadratic in the torsion tensor.We then apply the field equations to two different homogenous and isotropic geometric structures which give the same line element,i.e.,FRW in five dimensions.The cosmological parameters are calculated and some cosmological problems are discussed. 展开更多
关键词 5D teleparallel equivalent of general relativity 5D solutions cosmological parameters cosmological problems
下载PDF
From Poincaré’s Electro-Gravific Ether (1905) to Cosmological Background Radiation (3°K, 1965)
20
作者 Yves Pierseaux 《Journal of Modern Physics》 2020年第9期1410-1427,共18页
<p align="justify"> <span style="font-family:Verdana;"></span><span style="font-family:Verdana;"></span>It is well known that Einstein published in June 1905... <p align="justify"> <span style="font-family:Verdana;"></span><span style="font-family:Verdana;"></span>It is well known that Einstein published in June 1905 his theory of Special Relativity (SR) without entirely based on space-time Lorentz Transformation (LT) with invariance of Light Velocity. It is much less known that Poincaré published, practically at the same time, a SR also based entirely on LT with also an invariant velocity. However, according to Poincaré, the invariant is not only that of light wave but also that of Gravific Wave in Ether. Poincaré’s Gravific ether exerts also a Gravific pressure, in the same paper, on <i>charged </i>(e) Electron (a “Hole in Ether” according to Poincaré). There are thus two SR: That of Einstein (ESR), without ether and without gravitation, and that of Poincaré (PSR), with Electro-Gravific-Ether. The crucial question arises then: Does “SPECIAL” Poincaré’s (e)-G field fall in the framework of Einstein’s GENERAL Relativity? Our answer is positive. On the basis of Einstein’s equation of gravitation (1917) with Minkowskian Metric (MM) and Zero Constant Cosmological (CC) we rediscover usual Static Vacuum (without <i>charge e </i>of electron). On the other hand with MM and <i>Non-Zero </i>CC, we discover the gravific field of a Cosmological Black Hole (CBH) with density of dark energy compatible with expanding vacuum. Hawking’s Stellar Black Hole (SBH) emits outgoing Black Radiation, whilst Poincaré’s CBH emits (at time zero) incoming Black Radiation. We show that Poincaré’s G-electron involves a (quantum) GRAVITON (on the model of Einstein’s quantum photon) underlying a de Broglie’s G-Wave. There is therefore a Gackground Cosmological model in Poincaré’s basic paper which predicts a density and a temperature of CBR very close to the observed (COBE) values. </p> 展开更多
关键词 Poincaré’s Special Relativity (PSR) with Gravitation PSR in Einstein’s GR with CC Poincaré’s cosmological Black Hole Poincaré’s Incoming cosmological Black Radiation versus Hawking’ s Outgoing Stellar Black Radiation Poincaré’s Gravitational Pressure on Electron (“Ge”) Vacuum without Charge e (ESR) Vacuum with Charge e (PSR) Lightlike Quantum Graviton
下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部