Estimation of crowd count is becoming crucial nowadays,as it can help in security surveillance,crowd monitoring,and management for different events.It is challenging to determine the approximate crowd size from an ima...Estimation of crowd count is becoming crucial nowadays,as it can help in security surveillance,crowd monitoring,and management for different events.It is challenging to determine the approximate crowd size from an image of the crowd’s density.Therefore in this research study,we proposed a multi-headed convolutional neural network architecture-based model for crowd counting,where we divided our proposed model into two main components:(i)the convolutional neural network,which extracts the feature across the whole image that is given to it as an input,and(ii)the multi-headed layers,which make it easier to evaluate density maps to estimate the number of people in the input image and determine their number in the crowd.We employed the available public benchmark crowd-counting datasets UCF CC 50 and ShanghaiTech parts A and B for model training and testing to validate the model’s performance.To analyze the results,we used two metrics Mean Absolute Error(MAE)and Mean Square Error(MSE),and compared the results of the proposed systems with the state-of-art models of crowd counting.The results show the superiority of the proposed system.展开更多
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ...When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves.展开更多
Crowd counting is a promising hotspot of computer vision involving crowd intelligence analysis,achieving tremendous success recently with the development of deep learning.However,there have been stillmany challenges i...Crowd counting is a promising hotspot of computer vision involving crowd intelligence analysis,achieving tremendous success recently with the development of deep learning.However,there have been stillmany challenges including crowd multi-scale variations and high network complexity,etc.To tackle these issues,a lightweight Resconnection multi-branch network(LRMBNet)for highly accurate crowd counting and localization is proposed.Specifically,using improved ShuffleNet V2 as the backbone,a lightweight shallow extractor has been designed by employing the channel compression mechanism to reduce enormously the number of network parameters.A light multi-branch structure with different expansion rate convolutions is demonstrated to extract multi-scale features and enlarged receptive fields,where the information transmission and fusion of diverse scale features is enhanced via residual concatenation.In addition,a compound loss function is introduced for training themethod to improve global context information correlation.The proposed method is evaluated on the SHHA,SHHB,UCF-QNRF and UCF_CC_50 public datasets.The accuracy is better than those of many advanced approaches,while the number of parameters is smaller.The experimental results show that the proposed method achieves a good tradeoff between the complexity and accuracy of crowd counting,indicating a lightweight and high-precision method for crowd counting.展开更多
Quantifying the number of individuals in images or videos to estimate crowd density is a challenging yet crucial task with significant implications for fields such as urban planning and public safety.Crowd counting ha...Quantifying the number of individuals in images or videos to estimate crowd density is a challenging yet crucial task with significant implications for fields such as urban planning and public safety.Crowd counting has attracted considerable attention in the field of computer vision,leading to the development of numerous advanced models and methodologies.These approaches vary in terms of supervision techniques,network architectures,and model complexity.Currently,most crowd counting methods rely on fully supervised learning,which has proven to be effective.However,this approach presents challenges in real-world scenarios,where labeled data and ground-truth annotations are often scarce.As a result,there is an increasing need to explore unsupervised and semi-supervised methods to effectively address crowd counting tasks in practical applications.This paper offers a comprehensive review of crowd counting models,with a particular focus on semi-supervised and unsupervised approaches based on their supervision paradigms.We summarize and critically analyze the key methods in these two categories,highlighting their strengths and limitations.Furthermore,we provide a comparative analysis of prominent crowd counting methods using widely adopted benchmark datasets.We believe that this survey will offer valuable insights and guide future advancements in crowd counting technology.展开更多
A signal chain model of single-bit and multi-bit quanta image sensors(QISs)is established.Based on the proposed model,the photoresponse characteristics and signal error rates of QISs are investigated,and the effects o...A signal chain model of single-bit and multi-bit quanta image sensors(QISs)is established.Based on the proposed model,the photoresponse characteristics and signal error rates of QISs are investigated,and the effects of bit depth,quantum efficiency,dark current,and read noise on them are analyzed.When the signal error rates towards photons and photoelectrons counting are lower than 0.01,the high accuracy photon and photoelectron counting exposure ranges are determined.Furthermore,an optimization method of integration time to ensure that the QIS works in these high accuracy exposure ranges is presented.The trade-offs between pixel area,the mean value of incident photons,and integration time under different illuminance level are analyzed.For the 3-bit QIS with 0.16 e-/s dark current and 0.21 e-r.m.s.read noise,when the illuminance level and pixel area are 1 lux and 1.21μm^(2),or 10000 lux and 0.21μm^(2),the recommended integration time is 8.8 to 30 ms,or 10 to21.3μs,respectively.The proposed method can guide the design and operation of single-bit and multi-bit QISs.展开更多
A quantitative survey of rice planthoppers in paddy fields is important to assess the population density and make forecasting decisions. Manual rice planthopper survey methods in paddy fields are time-consuming, fatig...A quantitative survey of rice planthoppers in paddy fields is important to assess the population density and make forecasting decisions. Manual rice planthopper survey methods in paddy fields are time-consuming, fatiguing and tedious. This paper describes a handheld device for easily capturing planthopper images on rice stems and an automatic method for counting rice planthoppers based on image processing. The handheld device consists of a digital camera with WiFi, a smartphone and an extrendable pole. The surveyor can use the smartphone to control the camera, which is fixed on the front of the pole by WiFi, and to photograph planthoppers on rice stems. For the counting of planthoppers on rice stems, we adopt three layers of detection that involve the following:(a) the first layer of detection is an AdaBoost classifier based on Haar features;(b) the second layer of detection is a support vector machine(SVM) classifier based on histogram of oriented gradient(HOG) features;(c) the third layer of detection is the threshold judgment of the three features. We use this method to detect and count whiteback planthoppers(Sogatella furcifera) on rice plant images and achieve an 85.2% detection rate and a 9.6% false detection rate. The method is easy, rapid and accurate for the assessment of the population density of rice planthoppers in paddy fields.展开更多
The Gan-Hang Belt in Southeast China is characterized by several igneous and siliciclastic basins associated with crustal extension during Late Mesozoic. The sedimentary evolution of the red basins is still poorly und...The Gan-Hang Belt in Southeast China is characterized by several igneous and siliciclastic basins associated with crustal extension during Late Mesozoic. The sedimentary evolution of the red basins is still poorly understood. In this study, sedimentary fades analysis and pebble counting were performed on outcrop sections of the Late Cretaceous Guifeng Group in the Yongfeng-Chongren Basin in central Jiangxi Province. Thirty-five conglomerate outcrops were chosen to measure pebble lithology, size, roundness, weathering degree and preferred orientation. Results show that gravels are mostly fine to coarse pebbles and comprise dominantly quartzites, metamorphic rocks, granitoids and sandstones. Rose diagrams based on imbricated pebbles indicate variable paleocurrent directions. Combining with typical sedimentary structures and vertical successions, we suggest that the Guifeng Group were deposited in alluvial fan, river and playa lake depositional systems. The proposed depositional model indicates that the Hekou Formation represents the start-up stage of the faulted basin, accompanied by sedimentation in alluvial fan and braided river environments. Then this basin turned into a stable expansion stage during the deposition of the Tangbian Formation. Except for minor coarse sediments at the basin margin, the other area is covered with fine-grained sediments of lake and river environments. The Lianhe Formation, however, is once again featured by conglomerates, suggesting a probable tectonic event. Therefore, the study region possibly suffered two tectonic events represented by the conglomerates of the Hekou and Lianhe formations in the context of the crustal extension in Southeast China.展开更多
4H-SiC single photon counting avalanche photodiodes(SPADs)are prior devices for weak ultraviolet(UV)signal detection with the advantages of small size,low leakage current,high avalanche multiplication gain,and high qu...4H-SiC single photon counting avalanche photodiodes(SPADs)are prior devices for weak ultraviolet(UV)signal detection with the advantages of small size,low leakage current,high avalanche multiplication gain,and high quantum efficiency,which benefit from the large bandgap energy,high carrier drift velocity and excellent physical stability of 4 H-SiC semiconductor material.UV detectors are widely used in many key applications,such as missile plume detection,corona discharge,UV astronomy,and biological and chemical agent detection.In this paper,we will describe basic concepts and review recent results on device design,process development,and basic characterizations of 4 H-SiC avalanche photodiodes.Several promising device structures and uniformity of avalanche multiplication are discussed,which are important for achieving high performance of 4 HSiC UV SPADs.展开更多
A filtering method of aero-engine load spectrum based on the rain flow counting is proposed in this paper.Firstly,the original load spectrum is counted through the rain flow method to get the peak and valley values.Th...A filtering method of aero-engine load spectrum based on the rain flow counting is proposed in this paper.Firstly,the original load spectrum is counted through the rain flow method to get the peak and valley values.Then,some data points in the original load spectrum are added between the peak and valley values.Finally,the filtering spectrum is obtained.The proposed method can reflect the path information of the original load spectrum.In addition,it can also eliminate the noise in the signal and improve the efficiency of signal processing,which is of practical significance for the research of aero-engine.展开更多
The growing trend of network virtualization results in a widespread adoption of virtual switches in virtualized environments. However, virtual switching is confronted with great performance challenges regarding packet...The growing trend of network virtualization results in a widespread adoption of virtual switches in virtualized environments. However, virtual switching is confronted with great performance challenges regarding packet classification especially in Open Flow-based software defined networks. This paper first takes an insight into packet classification in virtual Open Flow switching, and points out that its performance bottleneck is dominated by flow table traversals of multiple failed mask probing for each arrived packet. Then we are motivated to propose an efficient packet classification algorithm based on counting bloom filters. In particular, counting bloom filters are applied to predict the failures of flow table lookups with great possibilities, and bypass flow table traversals for failed mask probing. Finally, our proposed packet classification algorithm is evaluated with real network traffic traces by experiments. The experimental results indicate that our proposed algorithm outperforms the classical one in Open v Switch in terms of average search length, and contributes to promote virtual Open Flow switching performance.展开更多
A novel nano crystalline Ag2O2-PbO2 film chemically modified electrode (CME) was prepared and the CME was characterized by X-ray diffractometer (XRD) and atomic force microscope (AFM). By chronoamperometry, the nano A...A novel nano crystalline Ag2O2-PbO2 film chemically modified electrode (CME) was prepared and the CME was characterized by X-ray diffractometer (XRD) and atomic force microscope (AFM). By chronoamperometry, the nano Ag2O2-PbO2 CME was used as bioelectro- chemical sensor to determine the population of Escherichia coli (E. coli) in water. Compared with conventional methods, it is found that the technique we used is fast and convenient in counting E. coli.展开更多
With the emergence of the COVID19 virus in late 2019 and the declaration that the virus is a worldwide pandemic,health organizations and governments have begun to implement severe health precautions to reduce the spre...With the emergence of the COVID19 virus in late 2019 and the declaration that the virus is a worldwide pandemic,health organizations and governments have begun to implement severe health precautions to reduce the spread of the virus and preserve human lives.The enforcement of social distancing at work environments and public areas is one of these obligatory precautions.Crowd management is one of the effective measures for social distancing.By reducing the social contacts of individuals,the spread of the disease will be immensely reduced.In this paper,a model for crowd counting in public places of high and low densities is proposed.The model works under various scene conditions and with no prior knowledge.A Deep CNN model(DCNN)is built based on convolutional neural network(CNN)structure with small kernel size and two fronts.To increase the efficiency of the model,a convolutional neural network(CNN)as the front-end and a multi-column layer with Dilated Convolution as the back-end were chosen.Also,the proposed method accepts images of arbitrary sizes/scales as inputs from different cameras.To evaluate the proposed model,a dataset was created from images of Saudi people with traditional and non-traditional Saudi outfits.The model was also trained and tested on some existing datasets.Compared to current counting methods,the results show that the proposed model has significantly improved efficiency and reduced the error rate.We achieve the lowest MAE by 67%,32%.and 15.63%and lowest MSE by around 47%,15%and 8.1%than M-CNN,Cascaded-MTL,and CSRNet respectively.展开更多
Red blood cell(RBC)counting is a standard medical test that can help diagnose various conditions and diseases.Manual counting of blood cells is highly tedious and time consuming.However,new methods for counting blood ...Red blood cell(RBC)counting is a standard medical test that can help diagnose various conditions and diseases.Manual counting of blood cells is highly tedious and time consuming.However,new methods for counting blood cells are customary employing both electronic and computer-assisted techniques.Image segmentation is a classical task in most image processing applications which can be used to count blood cells in a microscopic image.In this research work,an approach for erythrocytes counting is proposed.We employed a classification before counting and a new segmentation idea was implemented on the complex overlapping clusters in a microscopic smear image.Experimental results show that the proposed method is of higher counting accuracy and it performs much better than most counting algorithms existed in the situation of three or more RBCs overlapping complexly into a group.The average total erythrocytes counting accuracy of the proposed method reaches 92.9%.展开更多
Anxiety is one of the psychological problems in pregnant women that sometimes takes the form of pathological and affects the mental health of mother. The aim of this study was to determine the effects of fetal movemen...Anxiety is one of the psychological problems in pregnant women that sometimes takes the form of pathological and affects the mental health of mother. The aim of this study was to determine the effects of fetal movement counting on mental health of mother. In a randomized-controlled trial, 208 nulliparous women were randomly divided into two groups. At 28th weeks, both groups completed the GHQ-28. Then the intervention group started to count fetal movements from 28th to 37th weeks of gestation and the control group received routine prenatal care. Again, both groups completed the questionnaire at 37 weeks' gestation and the results were compared. Analysis was performed by SPSS and a P value 〈 0.05 was considered significant. The mean scores of mental health of mothers in 28th and 37th of pregnancy was respectively 23.52 ± 10.23 and 21.09 ± 10.12 in the intervention group and the difference was significant (P = 0.025). The mean in the control group was 23.69 ± 9.43 and 23.88± 8.60 respectively, and the difference was not significant (P = 0.52). In comparing the mean scores between the two groups, it was found that the difference was not significant at 28th weeks of gestation (P = 0.37), but it was significant in 37th week (P = 0.002) and the counting of fetal movements could improve the mental health of mothers compared to control group. The women who had fetal movements counting at weeks 28 to 37 Of gestation reported better mental health than the control group. The mother renorted concerns about decreased fetal movement was similar in the two grouns.展开更多
Blood cell counting is an important medical test to help medical staffs diagnose various symptoms and diseascs.An automatic segmentation of complex overlapping erythrocytes based on seed prediction in microscopic imag...Blood cell counting is an important medical test to help medical staffs diagnose various symptoms and diseascs.An automatic segmentation of complex overlapping erythrocytes based on seed prediction in microscopic imaging is proposed.The four main innovations of this ressearch are as.follows:(1)Regions of erythrocytes extracted rapidly and accurately based on the G component.(2)K-means algorithm is applied on edge detection of overlapping erythrocytes.(3)Traces of erythrocytes'biconcave shape are utilized to predict erythrocyte's position in overlapping clus-ters.(4)A new automatic counting method which aims at complex overlapping erythrocytes is presented.The experimental results show that the proposed method is efficient and accurate with very little running time.The average accuracy of the proposed method reaches 97.0%.展开更多
Photon-counting LiDAR using a two-dimensional(2D)array detector has the advantages of high lateral resolution and fast acquisition speed.The non-uniform intensity profile of the illumination beam and non-uniform quant...Photon-counting LiDAR using a two-dimensional(2D)array detector has the advantages of high lateral resolution and fast acquisition speed.The non-uniform intensity profile of the illumination beam and non-uniform quantum efficiency of the detectors in the 2D array deteriorate the imaging quality.Herein,we propose a photon-counting LiDAR system that uses a spatial light modulator to control the spatial intensity to compensate for both the non-uniform intensity profile of the illumination beam,and the variation in the quantum efficiency of the detectors in the 2D array.By using a 635 nm peak wavelength and 4 mW average power semiconductor laser,lab-based experiments at a 4.27 m stand-off distance are performed to verify the effectiveness of the proposed method.Compared with the unmodulated method,the standard deviation of the intensity image of the proposed method is reduced from 0.109 to 0.089 for a whiteboard target,with an average signal photon number of 0.006 per pixel.展开更多
Purpose: In this contribution we provide two new co-authorship indicators based on fractional counting. Design/methodology/approach: Based on the idea of fractional counting we reflect on what should be an acceptable ...Purpose: In this contribution we provide two new co-authorship indicators based on fractional counting. Design/methodology/approach: Based on the idea of fractional counting we reflect on what should be an acceptable indicator for co-authorship between two entities. From this reflection we propose an indicator, the co-authorship score, denoted as cs, using the harmonic mean. Dividing this new indicator by the classical co-authorship indicator based on full counting, leads to a co-authorship intensity indicator.Findings: We show that the indicators we propose have many necessary or at least highly desirable properties for a proper cs-score. It is pointed out that the two new indicators can be used for countries, but also for institutions and other pairs of entities. A small example shows the feasibility of the co-authorship score and the co-authorship intensity indicator.Research limitations: The indicators are not yet tested in real cases.Practical implications: As the notions of co-authorship and collaboration have many aspects, we think that our contribution may help policy management to take yet another aspect into account as part of a multi-faceted description of research outcomes.Originality/value: The indicators we propose cover yet another aspect of co-authorship.展开更多
We demonstrate a photon-counting chirped amplitude modulation (CAM) light detection and ranging (lidar) system incorporating a superconducting nanowire single-photon detector (SNSPD) and operated at a wavelength...We demonstrate a photon-counting chirped amplitude modulation (CAM) light detection and ranging (lidar) system incorporating a superconducting nanowire single-photon detector (SNSPD) and operated at a wavelength of 1550 nm. The distance accuracy of the lidar system was determined by the CAM bandwidth and signal-to-noise ratio (SNR) of an intermediate frequency (IF) signal. Owing to a short dead time (10 ns) and negligible dark count rate (70 Hz) of the SNSPD, the obtained IF signal attained an SNR of 42 dB and the direct distance accuracy was improved to 3 mm when the modulation bandwidth of the CAM signal was 240 MHz and the modulation period was 1 ms.展开更多
基金funded by Naif Arab University for Security Sciences under grant No.NAUSS-23-R10.
文摘Estimation of crowd count is becoming crucial nowadays,as it can help in security surveillance,crowd monitoring,and management for different events.It is challenging to determine the approximate crowd size from an image of the crowd’s density.Therefore in this research study,we proposed a multi-headed convolutional neural network architecture-based model for crowd counting,where we divided our proposed model into two main components:(i)the convolutional neural network,which extracts the feature across the whole image that is given to it as an input,and(ii)the multi-headed layers,which make it easier to evaluate density maps to estimate the number of people in the input image and determine their number in the crowd.We employed the available public benchmark crowd-counting datasets UCF CC 50 and ShanghaiTech parts A and B for model training and testing to validate the model’s performance.To analyze the results,we used two metrics Mean Absolute Error(MAE)and Mean Square Error(MSE),and compared the results of the proposed systems with the state-of-art models of crowd counting.The results show the superiority of the proposed system.
文摘When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves.
基金Double First-Class Innovation Research Project for People’s Public Security University of China(2023SYL08).
文摘Crowd counting is a promising hotspot of computer vision involving crowd intelligence analysis,achieving tremendous success recently with the development of deep learning.However,there have been stillmany challenges including crowd multi-scale variations and high network complexity,etc.To tackle these issues,a lightweight Resconnection multi-branch network(LRMBNet)for highly accurate crowd counting and localization is proposed.Specifically,using improved ShuffleNet V2 as the backbone,a lightweight shallow extractor has been designed by employing the channel compression mechanism to reduce enormously the number of network parameters.A light multi-branch structure with different expansion rate convolutions is demonstrated to extract multi-scale features and enlarged receptive fields,where the information transmission and fusion of diverse scale features is enhanced via residual concatenation.In addition,a compound loss function is introduced for training themethod to improve global context information correlation.The proposed method is evaluated on the SHHA,SHHB,UCF-QNRF and UCF_CC_50 public datasets.The accuracy is better than those of many advanced approaches,while the number of parameters is smaller.The experimental results show that the proposed method achieves a good tradeoff between the complexity and accuracy of crowd counting,indicating a lightweight and high-precision method for crowd counting.
基金supported by Research Project Support Program for Excellence Institute(2022,ESL)in Incheon National University.
文摘Quantifying the number of individuals in images or videos to estimate crowd density is a challenging yet crucial task with significant implications for fields such as urban planning and public safety.Crowd counting has attracted considerable attention in the field of computer vision,leading to the development of numerous advanced models and methodologies.These approaches vary in terms of supervision techniques,network architectures,and model complexity.Currently,most crowd counting methods rely on fully supervised learning,which has proven to be effective.However,this approach presents challenges in real-world scenarios,where labeled data and ground-truth annotations are often scarce.As a result,there is an increasing need to explore unsupervised and semi-supervised methods to effectively address crowd counting tasks in practical applications.This paper offers a comprehensive review of crowd counting models,with a particular focus on semi-supervised and unsupervised approaches based on their supervision paradigms.We summarize and critically analyze the key methods in these two categories,highlighting their strengths and limitations.Furthermore,we provide a comparative analysis of prominent crowd counting methods using widely adopted benchmark datasets.We believe that this survey will offer valuable insights and guide future advancements in crowd counting technology.
基金supported by the Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology。
文摘A signal chain model of single-bit and multi-bit quanta image sensors(QISs)is established.Based on the proposed model,the photoresponse characteristics and signal error rates of QISs are investigated,and the effects of bit depth,quantum efficiency,dark current,and read noise on them are analyzed.When the signal error rates towards photons and photoelectrons counting are lower than 0.01,the high accuracy photon and photoelectron counting exposure ranges are determined.Furthermore,an optimization method of integration time to ensure that the QIS works in these high accuracy exposure ranges is presented.The trade-offs between pixel area,the mean value of incident photons,and integration time under different illuminance level are analyzed.For the 3-bit QIS with 0.16 e-/s dark current and 0.21 e-r.m.s.read noise,when the illuminance level and pixel area are 1 lux and 1.21μm^(2),or 10000 lux and 0.21μm^(2),the recommended integration time is 8.8 to 30 ms,or 10 to21.3μs,respectively.The proposed method can guide the design and operation of single-bit and multi-bit QISs.
基金the National Natural Science Foundation of China (31071678)the National High Technology Research and Development Program of China (863 Program, 2013AA102402)Zhejiang Provincial Natural Science Foundation of China (LY13C140009)
文摘A quantitative survey of rice planthoppers in paddy fields is important to assess the population density and make forecasting decisions. Manual rice planthopper survey methods in paddy fields are time-consuming, fatiguing and tedious. This paper describes a handheld device for easily capturing planthopper images on rice stems and an automatic method for counting rice planthoppers based on image processing. The handheld device consists of a digital camera with WiFi, a smartphone and an extrendable pole. The surveyor can use the smartphone to control the camera, which is fixed on the front of the pole by WiFi, and to photograph planthoppers on rice stems. For the counting of planthoppers on rice stems, we adopt three layers of detection that involve the following:(a) the first layer of detection is an AdaBoost classifier based on Haar features;(b) the second layer of detection is a support vector machine(SVM) classifier based on histogram of oriented gradient(HOG) features;(c) the third layer of detection is the threshold judgment of the three features. We use this method to detect and count whiteback planthoppers(Sogatella furcifera) on rice plant images and achieve an 85.2% detection rate and a 9.6% false detection rate. The method is easy, rapid and accurate for the assessment of the population density of rice planthoppers in paddy fields.
基金supported by China Geological Survey projects (Grant Nos.1212011120836,1212011220248)China Scholarship Council (Grant No.201308360142)+2 种基金Gan-Po Excellent Talents 555 Project of Jiangxi Province (GCZ 2012-1)Research Foundation of Jiangxi Education Department (Grant No.GJJ13438)the open fund of Fundamental Science on Radioactive Geology and Exploration Technology Laboratory (Grant No.RGET1304)
文摘The Gan-Hang Belt in Southeast China is characterized by several igneous and siliciclastic basins associated with crustal extension during Late Mesozoic. The sedimentary evolution of the red basins is still poorly understood. In this study, sedimentary fades analysis and pebble counting were performed on outcrop sections of the Late Cretaceous Guifeng Group in the Yongfeng-Chongren Basin in central Jiangxi Province. Thirty-five conglomerate outcrops were chosen to measure pebble lithology, size, roundness, weathering degree and preferred orientation. Results show that gravels are mostly fine to coarse pebbles and comprise dominantly quartzites, metamorphic rocks, granitoids and sandstones. Rose diagrams based on imbricated pebbles indicate variable paleocurrent directions. Combining with typical sedimentary structures and vertical successions, we suggest that the Guifeng Group were deposited in alluvial fan, river and playa lake depositional systems. The proposed depositional model indicates that the Hekou Formation represents the start-up stage of the faulted basin, accompanied by sedimentation in alluvial fan and braided river environments. Then this basin turned into a stable expansion stage during the deposition of the Tangbian Formation. Except for minor coarse sediments at the basin margin, the other area is covered with fine-grained sediments of lake and river environments. The Lianhe Formation, however, is once again featured by conglomerates, suggesting a probable tectonic event. Therefore, the study region possibly suffered two tectonic events represented by the conglomerates of the Hekou and Lianhe formations in the context of the crustal extension in Southeast China.
基金supported in part by National Key R&D Program of China under Grant No. 2016YFB0400902in part by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘4H-SiC single photon counting avalanche photodiodes(SPADs)are prior devices for weak ultraviolet(UV)signal detection with the advantages of small size,low leakage current,high avalanche multiplication gain,and high quantum efficiency,which benefit from the large bandgap energy,high carrier drift velocity and excellent physical stability of 4 H-SiC semiconductor material.UV detectors are widely used in many key applications,such as missile plume detection,corona discharge,UV astronomy,and biological and chemical agent detection.In this paper,we will describe basic concepts and review recent results on device design,process development,and basic characterizations of 4 H-SiC avalanche photodiodes.Several promising device structures and uniformity of avalanche multiplication are discussed,which are important for achieving high performance of 4 HSiC UV SPADs.
基金This work was supported by the National Basic Research Program of China,National Nature Science Foundation of China(No.51675266)the Foundation Research Funds for the Center in NUAA(Nos.NJ20160038,NS2017011)Foundation of Graduate Innovation Center in NUAA(No.kfjj20170220)。
文摘A filtering method of aero-engine load spectrum based on the rain flow counting is proposed in this paper.Firstly,the original load spectrum is counted through the rain flow method to get the peak and valley values.Then,some data points in the original load spectrum are added between the peak and valley values.Finally,the filtering spectrum is obtained.The proposed method can reflect the path information of the original load spectrum.In addition,it can also eliminate the noise in the signal and improve the efficiency of signal processing,which is of practical significance for the research of aero-engine.
基金supported in part by National Natural Science Foundation of China(61272148,61572525,61502056,and 61602525)Hunan Provincial Natural Science Foundation of China(2015JJ3010)Scientific Research Fund of Hunan Provincial Education Department(15B009,14C0285)
文摘The growing trend of network virtualization results in a widespread adoption of virtual switches in virtualized environments. However, virtual switching is confronted with great performance challenges regarding packet classification especially in Open Flow-based software defined networks. This paper first takes an insight into packet classification in virtual Open Flow switching, and points out that its performance bottleneck is dominated by flow table traversals of multiple failed mask probing for each arrived packet. Then we are motivated to propose an efficient packet classification algorithm based on counting bloom filters. In particular, counting bloom filters are applied to predict the failures of flow table lookups with great possibilities, and bypass flow table traversals for failed mask probing. Finally, our proposed packet classification algorithm is evaluated with real network traffic traces by experiments. The experimental results indicate that our proposed algorithm outperforms the classical one in Open v Switch in terms of average search length, and contributes to promote virtual Open Flow switching performance.
基金We are greateful to the National Narural Science Foundation of China(No.20455017)Science and Technology Committee of Shanghai Municipal(No.0452nm084).
文摘A novel nano crystalline Ag2O2-PbO2 film chemically modified electrode (CME) was prepared and the CME was characterized by X-ray diffractometer (XRD) and atomic force microscope (AFM). By chronoamperometry, the nano Ag2O2-PbO2 CME was used as bioelectro- chemical sensor to determine the population of Escherichia coli (E. coli) in water. Compared with conventional methods, it is found that the technique we used is fast and convenient in counting E. coli.
基金the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Saudi Arabia,under grant No.(DF-352-165-1441).The authors,therefore,gratefully acknowledge DSR for their technical and financial support.
文摘With the emergence of the COVID19 virus in late 2019 and the declaration that the virus is a worldwide pandemic,health organizations and governments have begun to implement severe health precautions to reduce the spread of the virus and preserve human lives.The enforcement of social distancing at work environments and public areas is one of these obligatory precautions.Crowd management is one of the effective measures for social distancing.By reducing the social contacts of individuals,the spread of the disease will be immensely reduced.In this paper,a model for crowd counting in public places of high and low densities is proposed.The model works under various scene conditions and with no prior knowledge.A Deep CNN model(DCNN)is built based on convolutional neural network(CNN)structure with small kernel size and two fronts.To increase the efficiency of the model,a convolutional neural network(CNN)as the front-end and a multi-column layer with Dilated Convolution as the back-end were chosen.Also,the proposed method accepts images of arbitrary sizes/scales as inputs from different cameras.To evaluate the proposed model,a dataset was created from images of Saudi people with traditional and non-traditional Saudi outfits.The model was also trained and tested on some existing datasets.Compared to current counting methods,the results show that the proposed model has significantly improved efficiency and reduced the error rate.We achieve the lowest MAE by 67%,32%.and 15.63%and lowest MSE by around 47%,15%and 8.1%than M-CNN,Cascaded-MTL,and CSRNet respectively.
基金This work was supported by the 863 National Plan Foundation of China under Grant No.2007AA01Z333Special Grand National Project of China under Grant No.2009ZX02204-008.
文摘Red blood cell(RBC)counting is a standard medical test that can help diagnose various conditions and diseases.Manual counting of blood cells is highly tedious and time consuming.However,new methods for counting blood cells are customary employing both electronic and computer-assisted techniques.Image segmentation is a classical task in most image processing applications which can be used to count blood cells in a microscopic image.In this research work,an approach for erythrocytes counting is proposed.We employed a classification before counting and a new segmentation idea was implemented on the complex overlapping clusters in a microscopic smear image.Experimental results show that the proposed method is of higher counting accuracy and it performs much better than most counting algorithms existed in the situation of three or more RBCs overlapping complexly into a group.The average total erythrocytes counting accuracy of the proposed method reaches 92.9%.
文摘Anxiety is one of the psychological problems in pregnant women that sometimes takes the form of pathological and affects the mental health of mother. The aim of this study was to determine the effects of fetal movement counting on mental health of mother. In a randomized-controlled trial, 208 nulliparous women were randomly divided into two groups. At 28th weeks, both groups completed the GHQ-28. Then the intervention group started to count fetal movements from 28th to 37th weeks of gestation and the control group received routine prenatal care. Again, both groups completed the questionnaire at 37 weeks' gestation and the results were compared. Analysis was performed by SPSS and a P value 〈 0.05 was considered significant. The mean scores of mental health of mothers in 28th and 37th of pregnancy was respectively 23.52 ± 10.23 and 21.09 ± 10.12 in the intervention group and the difference was significant (P = 0.025). The mean in the control group was 23.69 ± 9.43 and 23.88± 8.60 respectively, and the difference was not significant (P = 0.52). In comparing the mean scores between the two groups, it was found that the difference was not significant at 28th weeks of gestation (P = 0.37), but it was significant in 37th week (P = 0.002) and the counting of fetal movements could improve the mental health of mothers compared to control group. The women who had fetal movements counting at weeks 28 to 37 Of gestation reported better mental health than the control group. The mother renorted concerns about decreased fetal movement was similar in the two grouns.
基金supported by the 863 National Plan Foundation of China under Grant No.2007AA01Z333 and Special Grand National Project of China under Grant No.2009ZX02204-008.
文摘Blood cell counting is an important medical test to help medical staffs diagnose various symptoms and diseascs.An automatic segmentation of complex overlapping erythrocytes based on seed prediction in microscopic imaging is proposed.The four main innovations of this ressearch are as.follows:(1)Regions of erythrocytes extracted rapidly and accurately based on the G component.(2)K-means algorithm is applied on edge detection of overlapping erythrocytes.(3)Traces of erythrocytes'biconcave shape are utilized to predict erythrocyte's position in overlapping clus-ters.(4)A new automatic counting method which aims at complex overlapping erythrocytes is presented.The experimental results show that the proposed method is efficient and accurate with very little running time.The average accuracy of the proposed method reaches 97.0%.
文摘Photon-counting LiDAR using a two-dimensional(2D)array detector has the advantages of high lateral resolution and fast acquisition speed.The non-uniform intensity profile of the illumination beam and non-uniform quantum efficiency of the detectors in the 2D array deteriorate the imaging quality.Herein,we propose a photon-counting LiDAR system that uses a spatial light modulator to control the spatial intensity to compensate for both the non-uniform intensity profile of the illumination beam,and the variation in the quantum efficiency of the detectors in the 2D array.By using a 635 nm peak wavelength and 4 mW average power semiconductor laser,lab-based experiments at a 4.27 m stand-off distance are performed to verify the effectiveness of the proposed method.Compared with the unmodulated method,the standard deviation of the intensity image of the proposed method is reduced from 0.109 to 0.089 for a whiteboard target,with an average signal photon number of 0.006 per pixel.
基金supported by the National Natural Science Foundation of China (Grant No. 7197415071573085)+1 种基金the National Social Science Foundation of China (18VSJ087)the National Laboratory Center for Library and Information Science in Wuhan University。
文摘Purpose: In this contribution we provide two new co-authorship indicators based on fractional counting. Design/methodology/approach: Based on the idea of fractional counting we reflect on what should be an acceptable indicator for co-authorship between two entities. From this reflection we propose an indicator, the co-authorship score, denoted as cs, using the harmonic mean. Dividing this new indicator by the classical co-authorship indicator based on full counting, leads to a co-authorship intensity indicator.Findings: We show that the indicators we propose have many necessary or at least highly desirable properties for a proper cs-score. It is pointed out that the two new indicators can be used for countries, but also for institutions and other pairs of entities. A small example shows the feasibility of the co-authorship score and the co-authorship intensity indicator.Research limitations: The indicators are not yet tested in real cases.Practical implications: As the notions of co-authorship and collaboration have many aspects, we think that our contribution may help policy management to take yet another aspect into account as part of a multi-faceted description of research outcomes.Originality/value: The indicators we propose cover yet another aspect of co-authorship.
基金Project supported by National Key R&D Program of China(Grant No.2017YFA0304000)the National Natural Science Foundation of China(NSFC)(Grant Nos.61501442 and 61671438)the Joint Research Fund in Astronomy(U1631240)under Cooperative Agreement between the NSFC and Chinese Academy of Sciences(CAS)
文摘We demonstrate a photon-counting chirped amplitude modulation (CAM) light detection and ranging (lidar) system incorporating a superconducting nanowire single-photon detector (SNSPD) and operated at a wavelength of 1550 nm. The distance accuracy of the lidar system was determined by the CAM bandwidth and signal-to-noise ratio (SNR) of an intermediate frequency (IF) signal. Owing to a short dead time (10 ns) and negligible dark count rate (70 Hz) of the SNSPD, the obtained IF signal attained an SNR of 42 dB and the direct distance accuracy was improved to 3 mm when the modulation bandwidth of the CAM signal was 240 MHz and the modulation period was 1 ms.