期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
丙烷直接脱氢反应中CrO_(x)基催化剂的研究进展
1
作者 侯博礼 《化工技术与开发》 CAS 2024年第8期50-53,85,共5页
丙烯是化工生产中不可缺少的一种大宗商品。随着天然气和页岩气的开发,丙烷作为其中重要的成分,越来越受到人们的关注。丙烯可经由丙烷的脱氢反应制备。本文介绍了丙烷的直接脱氢过程,讨论了在催化过程中,影响CrO_(x)基催化剂的催化活... 丙烯是化工生产中不可缺少的一种大宗商品。随着天然气和页岩气的开发,丙烷作为其中重要的成分,越来越受到人们的关注。丙烯可经由丙烷的脱氢反应制备。本文介绍了丙烷的直接脱氢过程,讨论了在催化过程中,影响CrO_(x)基催化剂的催化活性、稳定性和抗结焦能力的因素,介绍了合成的CrO_(x)基催化剂的表征手段,指出了目前CrO_(x)基催化剂在丙烷直接脱氢反应中的关键问题,并对新型CrO_(x)基催化剂的开发进行了展望。 展开更多
关键词 丙烷脱氢 cro_(x)基催化剂 活性中心 失活
下载PDF
Visible-light deposition of CrO_(x) cocatalyst on TiO_(2):Cr valence regulation for superior photocatalytic CO_(2)reduction to CH_(4) 被引量:2
2
作者 Jingjing Dong Yuan Kong +7 位作者 Heng Cao Zhiyu Wang Zhirong Zhang Lidong Zhang Song Sun Chen Gao Xiaodi Zhu Jun Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期103-112,I0004,共11页
Photodeposition is widely adopted for implanting metal/metal oxide cocatalysts on semiconductors.However,it is prerequisite that the photon energy should be sufficient to excite the host semiconductor.Here,we report a... Photodeposition is widely adopted for implanting metal/metal oxide cocatalysts on semiconductors.However,it is prerequisite that the photon energy should be sufficient to excite the host semiconductor.Here,we report a lower-energy irradiation powered deposition strategy for implanting CrO_(x) cocatalyst on TiO_(2).Excitingly,CrO_(x)-400 implanted under visible-light irradiation significantly promotes the CH4 evolution rate on TiO_(2)to 8.4μmolg·^(-1)h^(-1) with selectivity of98%from photocatalytic CO_(2)reduction,which is 15 times of that on CrO_(x)-200 implanted under UV-visible-light irradiation.Moreover,CrO_(x)-400 is identified to be composed of higher valence Cr species compared to CrO_(x)-200.This valence states regulation of Cr species is indicated to provide more active sites for CO_(2) adsorption/activation and to modulate the reaction mechanism from single Cr site to Cr-Cr dual sites,thus endowing the superior CH_(4)production.This work demonstrates an alternative strategy for constructing efficient metal oxides cocatalysts on wide bandgap semiconductor. 展开更多
关键词 Valence states regulation cro_(x)cocatalyst Lower-energy irradiation Photocatalytic CO_(2)reduction High CH_(4)selectivity
下载PDF
Enhanced visible light photocatalytic H_2 production over Z-scheme g-C_3N_4 nansheets/WO_3 nanorods nanocomposites loaded with Ni(OH)_x cocatalysts 被引量:8
3
作者 何科林 谢君 +5 位作者 罗杏宜 温九青 马松 李鑫 方岳平 张向超 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期240-252,共13页
Novel WO3/g-C3N4/Ni(OH)x hybrids have been successfully synthesized by a two-step strategy of high temperature calcination and in situ photodeposition.Their photocatalytic performance was investigated using TEOA as ... Novel WO3/g-C3N4/Ni(OH)x hybrids have been successfully synthesized by a two-step strategy of high temperature calcination and in situ photodeposition.Their photocatalytic performance was investigated using TEOA as a hole scavenger under visible light irradiation.The loading of WO3 and Ni(OH)x cocatalysts boosted the photocatalytic H2 evolution efficiency of g-C3N4.WO3/g-C3N4/Ni(OH)x with 20 wt%defective WO3 and 4.8 wt%Ni(OH)x showed the highest hydrogen production rate of 576 μmol/(g·h),which was 5.7,10.8 and 230 times higher than those of g-C3N4/4.8 wt%Ni(OH)x,20 wt%WO3/C3N4 and g-C3N4 photocatalysts,respectively.The remarkably enhanced H2 evolution performance was ascribed to the combination effects of the Z-scheme heterojunction(WO3/g-C3N4) and loaded cocatalysts(Ni(OH)x),which effectively inhibited the recombination of the photoexcited electron-hole pairs of g-C3N4 and improved both H2 evolution and TEOA oxidation kinetics.The electron spin resonance spectra of ·O2^- and ·OH radicals provided evidence for the Z-scheme charge separation mechanism.The loading of easily available Ni(OH)x cocatalysts on the Z-scheme WO3/g-C3N4 nanocomposites provided insights into constructing a robust multiple-heterojunction material for photocatalytic applications. 展开更多
关键词 Photocatalytic hydrogen evolution Robust Ni(OH)x cocatalyst g-C3N4 Z-Scheme systems Heterojunction
下载PDF
Position-selected cocatalyst modification on a Z-scheme Cd_(0.5)Zn_(0.5)S/NiTiO_(3) photocatalyst for boosted H_(2) evolution
4
作者 Bifang Li Wenyu Guo +3 位作者 Xue Feng Lu Yidong Hou Zhengxin Ding Sibo Wang 《Materials Reports(Energy)》 EI 2023年第4期52-59,共8页
Photocatalytic water splitting by semiconductors is a promising technology to produce clean H_(2) fuel,but the efficiency is restrained seriously by the high overpotential of the H_(2)-evolution reaction together with... Photocatalytic water splitting by semiconductors is a promising technology to produce clean H_(2) fuel,but the efficiency is restrained seriously by the high overpotential of the H_(2)-evolution reaction together with the high recombination rate of photoinduced charges.To enhance H_(2) production,it is highly desirable yet challenging to explore an efficient reductive cocatalyst and place it precisely on the right sites of the photocatalyst surface to work the proton reduction reaction exclusively.Herein,the metalloid NixP cocatalyst is exactly positioned on the Z-scheme Cd_(0.5)Zn_(0.5)S/NiTiO_(3)(CZS/NTO)heterostructure through a facile photodeposition strategy,which renders the cocatalyst form solely at the electron-collecting locations.It is revealed that the directional transfer of photoexcited electrons from Cd_(0.5)Zn_(0.5)S to Ni_(x)P suppresses the quenching of charge carriers.Under visible light,the CZS/NTO hybrid loaded with the Ni_(x)P cocatalyst exhibits an optimal H_(2) yield rate of 1103μmol h^(-1)(i.e.,27.57 mmol h^(-1)g^(-1)),which is about twofold of pristine CZS/NTO and comparable to the counterpart deposited with the Pt cocatalyst.Besides,the high apparent quantum yield(AQY)of 56%is reached at 400 nm.Further,the mechanisms of the cocatalyst formation and the H2 generation reaction are discussed in detail. 展开更多
关键词 Photocatalysis Ni_(x)P cocatalystS Z-scheme H_(2)evolution
下载PDF
一维g-C_(3)N_(4)/二维Ti_(3)C_(2)Tx界面调制促进光催化CO_(2)还原活性与选择性
5
作者 钟蕤羽 梁玉洁 +2 位作者 黄菲 梁诗诺 刘升卫 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2023年第10期109-122,共14页
碳中和是实现绿色可持续发展重要途径之一,以半导体光催化CO_(2)还原.反应(CO_(2)RR)为核心的人工光合成技术极具发展前景.石墨相氮化碳(g-C_(3)N_(4))作为一种二维层状光催化剂,化学性质稳定,且满足CO_(2)RR的热力学要求,但传统的g-C_(... 碳中和是实现绿色可持续发展重要途径之一,以半导体光催化CO_(2)还原.反应(CO_(2)RR)为核心的人工光合成技术极具发展前景.石墨相氮化碳(g-C_(3)N_(4))作为一种二维层状光催化剂,化学性质稳定,且满足CO_(2)RR的热力学要求,但传统的g-C_(3)N_(4)光催化活性和选择性较低,这主要归因于高的电荷复合几率和低的光电子利用效率.采用二维碳化钛(Ti_(3)C_(2)Tx)等碳基助催化剂作为电子受体,促进光生载流子的快速分离与转移,成为提高g-C_(3)N_(4)光催化CO_(2)RR效率的有效手段.然而,g-C_(3)N_(4)光催化剂与Ti_(3)C_(2)Tx助催化剂多数以2D/2D构型界面耦合,受限于二者界面弱的范德华相互作用、高的界面静电势垒和缓慢的界面电荷转移速率,2D/2D g-C_(3)N_(4)/Ti_(3)C_(2)Tx肖特基结光催化CO_(2)RR活性与选择性仍普遍欠佳.针对该问题,本文采用熔盐法制备了沿c轴方向生长的1D高结晶g-C_(3)N_(4)纳米棒(CCN),并通过冷冻干燥辅助界面耦合的方法将其组装到2D Ti_(3)C_(2)Tx基底上,在冷冻干燥条件下,CCN边缘的NHx与MXene表面-O/-OH基团会形成更强的界面氢键耦合作用,最终构筑具有独特界面氢键作用的1D/2D肖特基结光催化剂(记作1D/2D TC/CCN-FD).扫描电镜和透射电镜结果证明了复合材料的成功制备.X射线光电子能谱和密度泛函理论(DFT)计算结果证明了界面电荷的定向转移.瞬态光电流、Nyquist曲线、荧光光谱和DFT计算结果表明,由于g-C_(3)N_(4)纳米棒光催化剂沿π共轭平面的电荷传输势垒远低于以范德华相互连接的g-C_(3)N_(4)层间的电荷传输势垒,1D/2D构型界面耦合可以降低界面电荷转移能垒,加快界面电荷转移速率.气相色谱结果表明,优化组成结构得到的1D/2D TC/CCN-FD复合光催化剂表现出较好的光催化CO_(2)还原效率(2.13μmol^(-1)h^(-1)),分别是1D CCN和2D传统氮化碳的5.6和8.9倍.同时,2D Ti_(3)C_(2)Tx助催化剂上富集的更高密度的光电子,促使多电子还原产物(CH_(4))的选择性显著提高到60%以上(产率为1.4μmol g-1h^(-1)).原位漫反射红外傅里叶变换光谱和同位素标定结果进一步明确了CO_(2)RR反应路径和反应机理.综上所述,本文揭示了界面晶体取向匹配与界面强耦合作用对促进高效界面光电子定向迁移具有重要协同作用,为未来开发高性能异质结光催化剂提供新思路. 展开更多
关键词 碳化钛 高结晶氮化碳 一维/二维 光催化二氧化碳还原 助催化剂
下载PDF
Oxygen-contained amorphous MoS_(x) cocatalyst by one-step photodeposition to enhance H-adsorption affinity for efficient photocatalytic H_(2)generation 被引量:2
6
作者 Pinsi Deng Ping Wang +2 位作者 Xuefei Wang Feng Chen Huogen Yu 《Nano Research》 SCIE EI CSCD 2023年第7期8977-8986,共10页
Traditional bulk MoS_(2) as an effective H_(2)-evolution cocatalyst is mainly subjected to the weak hydrogen-adsorption ability of highporpotion saturated S,resulting in a slow interfacial H_(2)-evolution reaction.In ... Traditional bulk MoS_(2) as an effective H_(2)-evolution cocatalyst is mainly subjected to the weak hydrogen-adsorption ability of highporpotion saturated S,resulting in a slow interfacial H_(2)-evolution reaction.In this paper,an efficient strategy for enhancing hydrogen adsorption of saturated S by manipulating electron density through O atoms is proposed to boost photocatalytic performance of CdS.Simultaneously,amorphization of MoS_(2) can further increase the unsaturated active S sites.Herein,oxygencontained amorphous MoS_(x)(a-MoOS_(x))nanoparticles(10-30 nm)were tightly loaded on the CdS surface through a mild photoinduced deposition method by using(NH_(4))_(2)[MoO(S_(4))_(2)]solution as the precursor at room temperature.The photocatalytic H_(2)-evolution result showed that the a-MoOS_(x)/CdS performed the superior H_(2)-production activity(382μmol·h^(-1),apparent quantum efficiencies(AQE)=11.83%)with a lot of visual H_(2)bubbles,which was 54.6,2.5,and 5.1 times as high as that of CdS,MoS_(x)/CdS,and annealed a-MoOS_(x)/CdS,respectively.Characterizations and density functional theory(DFT)calculations revealed the mechanism of improved H_(2)-evolution activity is that the O heteroatom in amorphous MoOS_(x) can enhance the atomic H-adsorption ability by manipulating the electron density to form electron-deficient S^((2-δ)-)sites.This study provides a new idea to improve the efficiency and number of H_(2)-evolution active sites for developing efficient cocatalysts in the field of photocatalytic hydrogen evolution. 展开更多
关键词 CdS photocatalytic hydrogen evolution cocatalyst oxygen-contained amorphous MoS_(x)(a-MoOS_(x)) atomic hydrogen adsorption
原文传递
用射线荧光光谱法测定助催化剂中磷和铁的含量 被引量:4
7
作者 杨一青 王亚红 +2 位作者 张忠东 潘志爽 陈慧 《炼油与化工》 2008年第4期47-49,共3页
使用X射线荧光光谱仪,采用人工合成标样,粉末直接压片和经验系数校正基体效应的方法,建立了助催化剂中磷和铁含量的测定方法。测定范围磷为0.01%~2.50%,铁为0.01%~2.50%。该方法不仅快速、简便,而且准确度和精密度较好,测定磷和铁的... 使用X射线荧光光谱仪,采用人工合成标样,粉末直接压片和经验系数校正基体效应的方法,建立了助催化剂中磷和铁含量的测定方法。测定范围磷为0.01%~2.50%,铁为0.01%~2.50%。该方法不仅快速、简便,而且准确度和精密度较好,测定磷和铁的相对标准偏差依次为:0.34%、0.59%;满足了科研和工业生产的需要。 展开更多
关键词 x-射线荧光光谱法 助催化剂
下载PDF
Ni_(x)Co_(1-x)S as an effective noble metal-free cocatalyst for enhanced photocatalytic activity of g-C_(3)N_(4) 被引量:1
8
作者 Yuting Gao Feng Chen +1 位作者 Zhe Chen Hongfei Shi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第21期227-235,共9页
Solar photocatalysis,as a method of green energy production and sustainable technology,has been regarded as one of the most effective strategies to resolve environmental issues and the current energy crisis.In this wo... Solar photocatalysis,as a method of green energy production and sustainable technology,has been regarded as one of the most effective strategies to resolve environmental issues and the current energy crisis.In this work,intimate contact hollow Ni_(x)Co_(1-x)S polyhedron/g-C3N4 nanosheet composites were prepared in-situ through a facile one-step hydrothermal method.The as-prepared Ni_(x)Co_(1-x)S/g-C_(3)N_(4) composites showed superior photocatalytic activity and high stability for H2 generation and methyl orange(MO)degradation under visible light irradiation.The optimized 4 wt.%Ni_(x)Co_(1-x)S/g-C_(3)N_(4) composite attained a maximum H2 evolution rate of 1420μmol g^–1 h^–1,which was about 157 times higher than that of pure g-C3N4.In addition,the Ni_(x)Co_(1-x)S/g-C_(3)N_(4) composite also exhibited greatly improved photocatalytic activity for dye degradation,which for MO was at 98.14%in 9 min.The outstanding photocatalytic performance was predominantly attributed to the unique architecture of hollow Ni_(x)Co_(1-x)S polyhedrons,which not only provided more active sites at the edges and surface as convenient charge transfer channels,but also promoted the separation and transport of electron-hole pairs.This work provides some novel ideas for the design and development of highly efficient noble metal-free cocatalyst/semiconductor systems for photocatalytic H2 generation and dye degradation. 展开更多
关键词 Non-noble metal cocatalyst Ni_(x)Co_(1-x)S g-C_(3)N_(4) Photocatalytic hydrogen production Dye degradation
原文传递
Unique hollow heterostructured CdS/Cd_(0.5)Zn_(0.5)S-Mo_(1-x)W_(x)S_(2):Highly-improved visible-light-driven H_(2) generation via synergy of Cd_(0.5)Zn_(0.5)S protective shell and defect-rich Mo_(1-x)W_(x)S_(2) cocatalyst
9
作者 Wenjing Wang Hanchu Chen +6 位作者 Jiakun Wu Hui Wang Shaoxiang Li Bo Wang Yanyan Li Haifeng Lin Lei Wang 《Nano Research》 SCIE EI CSCD 2022年第2期985-995,共11页
Photocatalytic water splitting for hydrogen(H_(2))production is a green sustainable technology,in which highly-efficient steady photocatalysts are fundamentally required.In this work,unique CdS/Cd_(0.5)Zn_(0.5)S-M0_(1... Photocatalytic water splitting for hydrogen(H_(2))production is a green sustainable technology,in which highly-efficient steady photocatalysts are fundamentally required.In this work,unique CdS/Cd_(0.5)Zn_(0.5)S-M0_(1-x)W_(x)S_(2) photocatalyst constructed by CdS hollow nano-spheres with successively surface-modified Cd_(0.5)Zn_(0.5)S shell and defect-rich MO_(1-x)W_(x)S_(2) ultrathin nanosheets was reported for the first time.Interestingly,the Cd_(0.5)Zn_(0.5)S shell could greatly enhance the photo-stability and reduce the carrier recombination of CdS.Meanwhile,enriching active sites and accelerating charge transfer could be achieved via anchoring defect-rich Mo_(1-x)W_(x)S_(2) onto CdS/Cd_(0.5)Zn_(0.5)S hollow heterostructures.Specifically,the optimized CdS/Cd_(0.5)Zn_(0.5)S-Mo_(1-x)W_(x)Sa(6 h Cd_(0.5)Zn_(0.5)S-coating,7 wt.%Mo_(1-x)W_(x)S_(2),x=0.5)hybrid delivered an exceptional H_(2) generation rate of 215.99 mmol·g^(-1)·h^(-1),which is approximately 502,134,and 23 times that of pure CdS,CdS/Cd_(0.5)Zn_(0.5)S,and 3 wt.%Pt-loaded CdS/Cd_(0.5)Zn_(0.5)S,respectively.Remarkably,a high H_(2) evolution reaction(HER)apparent quantum yield(AQY)of 64.81%was obtained under 420-nm irradiation.In addition,the CdS/Cd_(0.5)Zn_(0.5)S-Mo_(1-x)W_(x)S_(2) was also durable for H2 production under long-term irradiation.This work provides valuable inspirations to rational design and synthesis of efficient and stable hybrid photocatalysts for solar energy conversion. 展开更多
关键词 CdS hollow nano-spheres Cd_(0.5)Zn_(0.5)S protective shells defect-rich Mo_(1-x)W_(x)S_(2)nanosheets cocatalysts photocatalytic H_(2)evolution
原文传递
Unique Cd1-xZnxS@WO3-x and Cd1-xZnxS@WO3-x/CoOx/NiOx Z-scheme photocatalysts for efficient visible-light-induced H2 evolution 被引量:1
10
作者 Yanyan Li Qinqin Ruan +5 位作者 Haifeng Lin Yanling Geng Jiefei Wang Hui Wang Yu Yang Lei Wang 《Science China Materials》 SCIE EI CSCD 2020年第1期75-90,共16页
Artificial Z-scheme photocatalytic systems have received considerable attention in recent years because they can achieve wide light-absorption, high charge-separation efficiency, and strong redox ability simultaneousl... Artificial Z-scheme photocatalytic systems have received considerable attention in recent years because they can achieve wide light-absorption, high charge-separation efficiency, and strong redox ability simultaneously. Nevertheless, it is still challenging to exploit low-cost and stable Zscheme photocatalysts with highly-efficient H2 evolution from solar water-splitting so far. Herein, we report a novel all-solidstate Z-scheme photocatalyst Cd1-xZnxS@WO3-x consisting of Cd1-xZnxS nanorods coated with oxygen-deficient WO3-x amorphous layers. The Cd1-xZnxS@WO3-x exhibits an outstanding H2 evolution reaction(HER) activity as compared with Pt-loaded Cd1-xZnxS and most WO3- and Cd S-based photocatalysts, due to the generation of stronger reducing electrons through the appropriate Zn-doping in Cd1-xZnxS and the enhanced charge transfer by introducing oxygen vacancies(W^5+/OVs) into the ultrathin WO3-x amorphous coatings. The optimal HER rate of Cd1-xZnxS@WO3- xis determined to be 21.68 mmol h^-1 g^-1, which is further raised up to 28.25 mmol h^-1 g^-1(about 12 times more than that of Pt/Cd1-xZnxS) when Cd1-xZnxS@WO3-x is hybridized by Co Ox and Ni Oxdual cocatalysts(Cd1-xZnxS@WO3-x/CoOx/NiOx)through in-situ photo-deposition. Moreover, the corresponding apparent quantum yield(AQY) at 420 nm is significantly increased from 34.6% for Cd1-xZnxS@WO3-x to 60.8% for Cd1-xZnxS@WO3-x/CoOx/NiOx. In addition, both Cd1-xZnxS@WO3-x and Cd1-xZnxS@WO3-x/CoOx/NiOx demonstrate good stability towards HER. The results displayed in this work will inspire the rational design and synthesis of high-performance nanostructures for photocatalytic applications. 展开更多
关键词 Z-scheme charge transfer photocatalytic H2 evolution Cd1−xZnxS solid solutions oxygen-deficient WO3−x amor-phous layers CoOx and NiOx dual cocatalysts
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部