Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation en...Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.展开更多
Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the r...Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the relatively low detectivity of the lead-free halide perovskites which seriously restrain its commercialization.Here,we developed a solution inverse temperature crystal growth(ITCG)method to bring-up high quality Cs_(3)Cu_(2)I_(5)crystals with large size of centimeter order,in which the oleic acid(OA)is introduced as an antioxidative ligand to inhibit the oxidation of cuprous ions effieiently,as well as to decelerate the crystallization rate remarkalby.Based on these fine crystals,the vapor deposition technique is empolyed to prepare high quality Cs_(3)Cu_(2)I_(5)films for efficient X-ray imaging.Smooth surface morphology,high light yields and short decay time endow the Cs_(3)Cu_(2)I_(5)films with strong radioluminescence,high resolution(12 lp/mm),low detection limits(53 nGyair/s)and desirable stability.Subsequently,the Cs_(3)Cu_(2)I_(5)films have been applied to the practical radiography which exhibit superior X-ray imaging performance.Our work provides a paradigm to fabricate nonpoisonous and chemically stable inorganic halide perovskite for X-ray imaging.展开更多
The recrystallization kinetics and microstructural evolution of a Ni3Al-based single crystal superalloy were presented, especially the different recrystallization behaviors between the dendrite arm and the interdendri...The recrystallization kinetics and microstructural evolution of a Ni3Al-based single crystal superalloy were presented, especially the different recrystallization behaviors between the dendrite arm and the interdendritic region. The single crystal alloy was deformed by grit blasting. A succeeding annealing under inert atmosphere at 1280 ℃ for different time led to the formation of recrystallized grains close to the grit blasting surface. It was found that the recrystallization depth and velocity in the dendrite arm were respectively deeper and faster than those in the interdendritic region where the Y-NiMo phase existed. The recrystallization process in the interdendritic region was significantly inhibited by the Y-NiMo precipitates. However, the pinning effect gradually weakened with the annealing time due to the dissolution of the Y-NiMo phase, and the recrystallization depth in the dendrite arm was deeper than that in the interdendritic region.展开更多
Downconversion (DC) with emission of two near-infrared photons about 1000 nm for each blue photon absorbed was obtained in thulium (Tm3+) and ytterbium (Yb3+) codoped yt- trium lithium fluoride (LiYF4) singl...Downconversion (DC) with emission of two near-infrared photons about 1000 nm for each blue photon absorbed was obtained in thulium (Tm3+) and ytterbium (Yb3+) codoped yt- trium lithium fluoride (LiYF4) single crystals grown by an improved Bridgman method. The luminescent properties of the crystals were measured through photoluminescence excitation, emission spectra and decay curves. Luminescence between 960 and 1050 nm from yb3+: 2Fs/2--+2FT/2 transition, which was originated from the DC from Tm3+ ions to Yb3+ ions, was observed under the excitation of blue photon at 465 nm. Moreover, the energy transfer processes were studied based on the Inokuti-Hirayama model, and the results indicated that the energy transfer from Tm3+ to Yb3+ was an electric dipole-dipole interaction. The max- imum quantum cutting efficiency approached with 0.49mo1% Tm3+ and 5.99mo1% Yb3+. increasing the energy efficiency of crystalline energy part of the solar spectrum. up to 167.5% in LiYF4 single crystal codoped Application of this crystal has prospects for Si solar cells by photon doubling of the high展开更多
We have investigated the anisotropic magnetocaloric effect and the rotating field magnetic entropy in Dy FeO3 single crystal. A giant rotating field entropy change of -ΔSM^R = 16.62 J/kg·K was achieved from b ax...We have investigated the anisotropic magnetocaloric effect and the rotating field magnetic entropy in Dy FeO3 single crystal. A giant rotating field entropy change of -ΔSM^R = 16.62 J/kg·K was achieved from b axis to c axis in bc plane at 5 K for a low field change of 20 k Oe. The large anisotropic magnetic entropy change is mainly accounted for the 4 f electron of rare-earth Dy^3+ ion. The large value of rotating field entropy change, together with large refrigeration capacity and negligible hysteresis, suggests that the multiferroic ferrite Dy FeO3 singlecrystal could be a potential material for anisotropic magnetic refrigeration at low field, which can be realized in the practical application around liquid helium temperature region.展开更多
Results on fracture mechanics and crack propagation have been obtained, making use of Vickers microhardness studies on two different crystallographic planes [(110) and (001)] of flux grown erbium aluminate crystals in...Results on fracture mechanics and crack propagation have been obtained, making use of Vickers microhardness studies on two different crystallographic planes [(110) and (001)] of flux grown erbium aluminate crystals in the load ranging from 10-100 g. The variation of microhardness with load which is best explained by Hays and Kendall's law leads to the load independent values of hardness. Classification of cracks is dealt with and it is reported that the transition from Palmqvist to median types of cracks occurs at higher loads. The values of fracture toughness (K_C), and brittleness index (B_i) are calculated using median types of cracks.展开更多
A solar-blind photodetector is fabricated on single crystal Ga_2O_3 based on vertical structure Schottky barrier diode. A Cu Schottky contact electrode is prepared in a honeycomb porous structure to increase the ultra...A solar-blind photodetector is fabricated on single crystal Ga_2O_3 based on vertical structure Schottky barrier diode. A Cu Schottky contact electrode is prepared in a honeycomb porous structure to increase the ultraviolet(UV) transmittance.The quantum efficiency is about 400% at 42 V. The Ga_2O_3 photodetector shows a sharp cutoff wavelength at 259 nm with high solar-blind/visible(= 3213) and solar-blind/UV(= 834) rejection ratio. Time-resolved photoresponse of the photodetector is investigated at 253-nm illumination from room temperature(RT) to 85.8℃. The photodetector maintains a high reversibility and response speed, even at high temperatures.展开更多
The effects of annealing temperature and grit blasting pressure on the recrystallization behavior of a Ni3Al based single crystal superalloy were studied in this work. The results show that the precipitation of the Y-...The effects of annealing temperature and grit blasting pressure on the recrystallization behavior of a Ni3Al based single crystal superalloy were studied in this work. The results show that the precipitation of the Y-NiMo phase occurs at 900 and 1000 °C, which precedes recrystallization. The initial recrystallization temperature was between 1000 and 1100 °C. Cellular recrystallization was formed at 1100 and 1200 °C, which consisted of large columnar γ′ and fine γ + γ′. The dendrite arm closed to the interdendritic region may act as nucleation sites during initial recrystallization by a particle simulated nucleation mechanism at 1280 °C. The size of the grains first turned large and then became small upon the pressure while the recrystallization depth increased all the time.展开更多
The maximum velocity of a mobile vortex in movement is generally limited by the phenomenon of flux-flow instability(FFI),which necessitates weak vortex pinning and fast heat removal from non-equilibrium electrons.We h...The maximum velocity of a mobile vortex in movement is generally limited by the phenomenon of flux-flow instability(FFI),which necessitates weak vortex pinning and fast heat removal from non-equilibrium electrons.We here demonstrate exfoliations and nano-fabrications of Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ) crystalline nanostrips,which possess a rather weak pinning volume of vortices,relatively low resistivity,and large normal electron diffusion coefficient.The deduced vortex velocity in Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ) crystalline nanostrips can be up to 300 km/s near the superconducting transition temperature,well above the speed of sound.The observed vortex velocity is an order of magnitude faster than that of conventional superconducting systems,representing a perfect platform for exploration of ultra-fast vortex matter and a good candidate for fabrications of superconducting nanowire single photon detectors or superconducting THz modulator.展开更多
High quality LiLuF4 single crystals doped with various Pr3+ ions were synthesized by a vertical Bridgman method in completely sealed platinum crucibles. The excitation spectra spans from 420 nm to 500 nm. The prepared...High quality LiLuF4 single crystals doped with various Pr3+ ions were synthesized by a vertical Bridgman method in completely sealed platinum crucibles. The excitation spectra spans from 420 nm to 500 nm. The prepared single crystals exhibit a blue band at 480 nm(3P0→3H4), a green band at 522 nm (3P1→3H5), and a red band at 605 nm (1D2→3H4)when excited at 446 nm;their corresponding average lifetimes are 38.5μs, 37.3μs, and 36.8μs, respectively, which are much longer than those in oxide single crystals. The effects of excitation wavelength and doping concentration on emission intensities and chromaticity coordinates are investigated. The optimal Pr3+ concentration is confirmed to be 0.5%.The temperature dependent emission shows that the emission intensity constantly decreases with the increase of temperature from 298 K to 443 K due to the enhancement of nonradiative quenching at high temperature. The 3P0→3H4 transition is the most vulnerable to temperature, followed by the 3P1→3H5 transition and 1D2→3H4 transition.展开更多
The results of experimental investigation of n-type semiconductor based on Bi2Te3 alloy were presented. This material is used in manufacture of thermoelectric coolers and electrical power generation devices. BizTe2.88...The results of experimental investigation of n-type semiconductor based on Bi2Te3 alloy were presented. This material is used in manufacture of thermoelectric coolers and electrical power generation devices. BizTe2.88Se0.12 solid solution single crystal has been grown using the Czochralski method. Monitoring of structure changes of the sample was carried out by electron microscope. The elemental composition of the studied alloy was obtained by energy dispersive spectrometry (EDS) analysis and empirical formula of the compound was established. X-ray diffraction analysis confirmed that the Bi2Te2.88Se0.12 sample was a single phase with rhombohedral structure. The behavior upon heating was studied using differential thermal analysis (DTA) technique. Changes in physical and chemical properties of materials were measured as a function of increasing temperature by thermogravimetric analysis (TGA). The lattice parameters values obtained by X-ray powder diffraction analyses of Bi2Te2.88Se0.12 are very similar to BizTe3 lattice constants, indicating that a small portion of tellurium is replaced with selenium. The obtained values for specific electrical and thermal conductivities are in correlation with available literature data. The Vickers microhardness values are in range between HV 187 and HV 39.02 and decrease with load increasing. It is shown that very complex process of infrared thermography can be applied for characterization of thermoelectric elements and modules.展开更多
基金the financial support from the National Key R&D program of China(2021YFF0500501 and 2021YFF0500504)the Fundamental Research Funds for the Central Universities(YJS2213 and JB211408)+1 种基金the National Natural Science Foundation of China(61874083)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-014)
文摘Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.
基金the financially support of the National Natural Science Foundation of China(12164051)the Joint Foundation of Provincial Science and Technology Department-Double First-class Construction of Yunnan University(2019FY003016)+4 种基金the Young Top Talent Project of Yunnan Province(YNWR-QNBJ-2018-229)the financially support by Yunnan Major Scientific and Technological Projects(202202AG050016)Advanced Analysis and Measurement Center of Yunnan University for the sample characterization service and the Postgraduate Research and Innovation Foundation of Yunnan University(2021Y036)the financially support of the National Natural Science Foundation of China(62064013)the Application Basic Research Project of Yunnan Province[2019FB130]。
文摘Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the relatively low detectivity of the lead-free halide perovskites which seriously restrain its commercialization.Here,we developed a solution inverse temperature crystal growth(ITCG)method to bring-up high quality Cs_(3)Cu_(2)I_(5)crystals with large size of centimeter order,in which the oleic acid(OA)is introduced as an antioxidative ligand to inhibit the oxidation of cuprous ions effieiently,as well as to decelerate the crystallization rate remarkalby.Based on these fine crystals,the vapor deposition technique is empolyed to prepare high quality Cs_(3)Cu_(2)I_(5)films for efficient X-ray imaging.Smooth surface morphology,high light yields and short decay time endow the Cs_(3)Cu_(2)I_(5)films with strong radioluminescence,high resolution(12 lp/mm),low detection limits(53 nGyair/s)and desirable stability.Subsequently,the Cs_(3)Cu_(2)I_(5)films have been applied to the practical radiography which exhibit superior X-ray imaging performance.Our work provides a paradigm to fabricate nonpoisonous and chemically stable inorganic halide perovskite for X-ray imaging.
基金Project (50971005) supported by the National Natural Science Foundation of China
文摘The recrystallization kinetics and microstructural evolution of a Ni3Al-based single crystal superalloy were presented, especially the different recrystallization behaviors between the dendrite arm and the interdendritic region. The single crystal alloy was deformed by grit blasting. A succeeding annealing under inert atmosphere at 1280 ℃ for different time led to the formation of recrystallized grains close to the grit blasting surface. It was found that the recrystallization depth and velocity in the dendrite arm were respectively deeper and faster than those in the interdendritic region where the Y-NiMo phase existed. The recrystallization process in the interdendritic region was significantly inhibited by the Y-NiMo precipitates. However, the pinning effect gradually weakened with the annealing time due to the dissolution of the Y-NiMo phase, and the recrystallization depth in the dendrite arm was deeper than that in the interdendritic region.
文摘Downconversion (DC) with emission of two near-infrared photons about 1000 nm for each blue photon absorbed was obtained in thulium (Tm3+) and ytterbium (Yb3+) codoped yt- trium lithium fluoride (LiYF4) single crystals grown by an improved Bridgman method. The luminescent properties of the crystals were measured through photoluminescence excitation, emission spectra and decay curves. Luminescence between 960 and 1050 nm from yb3+: 2Fs/2--+2FT/2 transition, which was originated from the DC from Tm3+ ions to Yb3+ ions, was observed under the excitation of blue photon at 465 nm. Moreover, the energy transfer processes were studied based on the Inokuti-Hirayama model, and the results indicated that the energy transfer from Tm3+ to Yb3+ was an electric dipole-dipole interaction. The max- imum quantum cutting efficiency approached with 0.49mo1% Tm3+ and 5.99mo1% Yb3+. increasing the energy efficiency of crystalline energy part of the solar spectrum. up to 167.5% in LiYF4 single crystal codoped Application of this crystal has prospects for Si solar cells by photon doubling of the high
基金supported by the National Basic Research Program of China(Grant Nos.2010CB934202,2011CB921801,and 2012CB933102)the National Natural Science Foundation of China(Grant Nos.11174351,11274360,and 11034004)
文摘We have investigated the anisotropic magnetocaloric effect and the rotating field magnetic entropy in Dy FeO3 single crystal. A giant rotating field entropy change of -ΔSM^R = 16.62 J/kg·K was achieved from b axis to c axis in bc plane at 5 K for a low field change of 20 k Oe. The large anisotropic magnetic entropy change is mainly accounted for the 4 f electron of rare-earth Dy^3+ ion. The large value of rotating field entropy change, together with large refrigeration capacity and negligible hysteresis, suggests that the multiferroic ferrite Dy FeO3 singlecrystal could be a potential material for anisotropic magnetic refrigeration at low field, which can be realized in the practical application around liquid helium temperature region.
文摘Results on fracture mechanics and crack propagation have been obtained, making use of Vickers microhardness studies on two different crystallographic planes [(110) and (001)] of flux grown erbium aluminate crystals in the load ranging from 10-100 g. The variation of microhardness with load which is best explained by Hays and Kendall's law leads to the load independent values of hardness. Classification of cracks is dealt with and it is reported that the transition from Palmqvist to median types of cracks occurs at higher loads. The values of fracture toughness (K_C), and brittleness index (B_i) are calculated using median types of cracks.
基金Project supported by National Key Research and Development Plan of China(Grant Nos.2016YFB0400600 and 2016YFB0400601)the National Natural Science Foundation of China(Grant Nos.61574026,11675198,61774072,and 11405017)+2 种基金the Natural Science Foundation of Liaoning Province,China(Grant Nos.201602453 and 201602176)China Postdoctoral Science Foundation Funded Project(Grant No.2016M591434)the Dalian Science and Technology Innovation Fund(Grant No.2018J12GX060)
文摘A solar-blind photodetector is fabricated on single crystal Ga_2O_3 based on vertical structure Schottky barrier diode. A Cu Schottky contact electrode is prepared in a honeycomb porous structure to increase the ultraviolet(UV) transmittance.The quantum efficiency is about 400% at 42 V. The Ga_2O_3 photodetector shows a sharp cutoff wavelength at 259 nm with high solar-blind/visible(= 3213) and solar-blind/UV(= 834) rejection ratio. Time-resolved photoresponse of the photodetector is investigated at 253-nm illumination from room temperature(RT) to 85.8℃. The photodetector maintains a high reversibility and response speed, even at high temperatures.
基金supported by National Natural Science Foundation of China (No. 50971005)
文摘The effects of annealing temperature and grit blasting pressure on the recrystallization behavior of a Ni3Al based single crystal superalloy were studied in this work. The results show that the precipitation of the Y-NiMo phase occurs at 900 and 1000 °C, which precedes recrystallization. The initial recrystallization temperature was between 1000 and 1100 °C. Cellular recrystallization was formed at 1100 and 1200 °C, which consisted of large columnar γ′ and fine γ + γ′. The dendrite arm closed to the interdendritic region may act as nucleation sites during initial recrystallization by a particle simulated nucleation mechanism at 1280 °C. The size of the grains first turned large and then became small upon the pressure while the recrystallization depth increased all the time.
基金supporting high quality of post growth treatment Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ)single crystalssupported by the National Key Research and Development Program of China(Grant No.2017YFA0304000)+4 种基金the National Natural Science Foundation of China(Grant Nos.61971408 and 61827823)Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)Shanghai Rising-Star Program(Grant No.20QA1410900)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant Nos.2020241 and 2021230)the Natural Science Foundation of Shanghai(Grant No.19ZR1467400)。
文摘The maximum velocity of a mobile vortex in movement is generally limited by the phenomenon of flux-flow instability(FFI),which necessitates weak vortex pinning and fast heat removal from non-equilibrium electrons.We here demonstrate exfoliations and nano-fabrications of Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ) crystalline nanostrips,which possess a rather weak pinning volume of vortices,relatively low resistivity,and large normal electron diffusion coefficient.The deduced vortex velocity in Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ) crystalline nanostrips can be up to 300 km/s near the superconducting transition temperature,well above the speed of sound.The observed vortex velocity is an order of magnitude faster than that of conventional superconducting systems,representing a perfect platform for exploration of ultra-fast vortex matter and a good candidate for fabrications of superconducting nanowire single photon detectors or superconducting THz modulator.
基金supported by the National Natural Science Foundation of China(No.51772159)the Natural Science Foundation of Zhejiang Province(No.LZ17E020001)K.C.Wong Magna Fund in Ningbo University
文摘High quality LiLuF4 single crystals doped with various Pr3+ ions were synthesized by a vertical Bridgman method in completely sealed platinum crucibles. The excitation spectra spans from 420 nm to 500 nm. The prepared single crystals exhibit a blue band at 480 nm(3P0→3H4), a green band at 522 nm (3P1→3H5), and a red band at 605 nm (1D2→3H4)when excited at 446 nm;their corresponding average lifetimes are 38.5μs, 37.3μs, and 36.8μs, respectively, which are much longer than those in oxide single crystals. The effects of excitation wavelength and doping concentration on emission intensities and chromaticity coordinates are investigated. The optimal Pr3+ concentration is confirmed to be 0.5%.The temperature dependent emission shows that the emission intensity constantly decreases with the increase of temperature from 298 K to 443 K due to the enhancement of nonradiative quenching at high temperature. The 3P0→3H4 transition is the most vulnerable to temperature, followed by the 3P1→3H5 transition and 1D2→3H4 transition.
基金"Development of ecological knowledge-based advanced materials and technologies for multifunctional application" (Grant No.TR34005)"New approach to designing materials for energy conversion and storage" (Grant No.OI172060)"0-3D nanostructures for application in electronics and renewable energy sources:synthesis,characterisation and processing" (Grant No.III45007)
文摘The results of experimental investigation of n-type semiconductor based on Bi2Te3 alloy were presented. This material is used in manufacture of thermoelectric coolers and electrical power generation devices. BizTe2.88Se0.12 solid solution single crystal has been grown using the Czochralski method. Monitoring of structure changes of the sample was carried out by electron microscope. The elemental composition of the studied alloy was obtained by energy dispersive spectrometry (EDS) analysis and empirical formula of the compound was established. X-ray diffraction analysis confirmed that the Bi2Te2.88Se0.12 sample was a single phase with rhombohedral structure. The behavior upon heating was studied using differential thermal analysis (DTA) technique. Changes in physical and chemical properties of materials were measured as a function of increasing temperature by thermogravimetric analysis (TGA). The lattice parameters values obtained by X-ray powder diffraction analyses of Bi2Te2.88Se0.12 are very similar to BizTe3 lattice constants, indicating that a small portion of tellurium is replaced with selenium. The obtained values for specific electrical and thermal conductivities are in correlation with available literature data. The Vickers microhardness values are in range between HV 187 and HV 39.02 and decrease with load increasing. It is shown that very complex process of infrared thermography can be applied for characterization of thermoelectric elements and modules.