CsPbI_(2)Br perovskite solar cell has been extensively studied due to its exceptional thermal stability and relatively stable perovskite phase structure.However,the presence of bromine leads to a rapid crystallization...CsPbI_(2)Br perovskite solar cell has been extensively studied due to its exceptional thermal stability and relatively stable perovskite phase structure.However,the presence of bromine leads to a rapid crystallization rate of CsPbI_(2)Br films,resulting in small grain size and high defect density.Additionally,CsPbI_(2)Br demonstrates poor light absorption due to its wide bandgap.Therefore,it is crucial to control the crystallization rate and increase the film thickness to reduce defect density,enhance light absorption,and improve photovoltaic performance.In this study,we utilized a PbAc_(2)-incorporated twice spincoating(PTS) process to address these issues.Initially,PbAc_(2) was added to the CsPbI_(2)Br precursor solution to form a CsPbI_(2)Br film,which was then coated with the CsPbI_(2)Br precursor solution to produce the PTS film,Ac^(-)can delay the perovskite crystallization,leading to the formation of thicker and denser CsPbI_(2)Br films.Moreover,lone-pair electrons of the oxygen atom provided by Ac^(-)formed coordination bonds with under-coordinated Pb~(2+) ions to fill halogen ion vacancies,thereby reducing the defect density.Ultimately,the PTS CsPbI_(2)Br device achieved a peak power conversion efficiency(PCE) of 16.19% and maintained 96.7% of its initial PCE over 1500 h at room temperature under 25% relative humidity without any encapsulation.展开更多
In the construction of high performance planar perovskite solar cells(PSCs),the modification of compact TiO_(2) layer and engineering of perovskite/TiO_(2) interfaces are essential for efficient electron transfer and ...In the construction of high performance planar perovskite solar cells(PSCs),the modification of compact TiO_(2) layer and engineering of perovskite/TiO_(2) interfaces are essential for efficient electron transfer and retarded charge recombination loss.In this work,a facile and effective strategy is developed to modify the surface of compact TiO_(2) layer by TiCl_(4)-TiCl_(3) mixture treatment.Compared with conventional sole TiCl_(4),the TiCl_(4)-TiCl_(3) treatment takes the advantage of accelerated and controlled hydrolysis of TiCl_(3),therefore TiO_(2) with dominating anatase phase and moderate roughness is obtained to facilitate the growth of CsPbI_(2) Br perovskite layer with high quality.Furthermore,the oxidation-driven hydrolysis of TiCl_(3) component results in surface Cl doping that facilitates interfacial electron transfer with retarded recombination loss.The average power conversion efficiency(PCE) of carbon-based CsPbI_(2) Br planar PSCs based on TiCl_(4)-TiCl_(3) treatment increases to 14.18% from the intial 13.04% based on conventional sole TiCl_(4) treatment.The champion PSC exhibits a PCE of 14.46%(V_(oc)=1.28 V,J_(sc)=14.21 mA/cm^(2),and FF=0.794),which is one of the highest PCEs for carbon-based CsPbI_(2) Br PSCs.展开更多
All-inorganic CsPbI_(2)Br perovskite solar cells(PSCs)have received extensive research interests recently.Nevertheless,their low efficiency and poor long-term stability are still obstacles for further commercial appli...All-inorganic CsPbI_(2)Br perovskite solar cells(PSCs)have received extensive research interests recently.Nevertheless,their low efficiency and poor long-term stability are still obstacles for further commercial application.Herein,we demonstrate that high efficiency and exceptional long-term stability are realized by incorporating gadolinium(III)chloride(GdCl_(3))into the CsPbI_(2)Br perovskite film.The incorporation of GdCl_(3) enhances the Goldschmidt tolerance factor of CsPbI_(2)Br perovskite,yielding a dense perovskite film with small grains,thus the a-phase CsPbI_(2)Br is remarkably stabilized.Additionally,it is found that the GdCl_(3)-incorporated perovskite film achieves suppressed charge recombination and appropriate energy level alignment compared with the pristine CsPbI_(2)Br film.The noticeable increment in efficiency from14.01%(control PSC)to 16.24%is achieved for GdCl_(3)-incorporated PSC.Moreover,the nonencapsulated GdCl_(3)-incorporated PSC exhibits excellent environmental and thermal stability,remaining over 91%or90%of the original efficiency after 1200 h aging at 40%relative humidity or 480 h heating at 85℃ in nitrogen glove box respectively.The encapsulated GdCl_(3)-incorporated PSC presents an improved operational stability with over 88%of initial efficiency under maximum power point(MPP)tracking at 45℃ for1000 h.This work presents an effective ion-incorporation approach for boosting efficiency and long-term stability of all-inorganic PSCs.展开更多
Inorganic CsPbI_(2) Br perovskite solar cells(PSCs) have a tremendous development in last few years due to the trade-off between the excellent optoelectronic properties and the relatively outstanding stability.Herein,...Inorganic CsPbI_(2) Br perovskite solar cells(PSCs) have a tremendous development in last few years due to the trade-off between the excellent optoelectronic properties and the relatively outstanding stability.Herein,we demonstrated a strategy of secondary crystallization(SC) for CsPbI_(2) Br film in a facile planar n-i-p structure(ITO/ZnO-SnO_(2)/CsPbI_(2) Br/Spiro-OMeTAD/Ag) at low-temperature(150℃).It is achieved through the method of post-treatment with guanidinium bromine(GABr) atop annealed CsPbI_(2) Br film.It was found that the secondary crystallization by GABr can not only regulate the crystal growth and passivate defects,but also serve as a charge collection center to effectively collect photogenerated carriers.In addition,due to the excess Br ions in GABr,the formation of the Br-rich region at the CsPbI_(2) Br perovskite surface can further lower the Fermi level,leading to more beneficial band alignment between the perovskite and the hole transport layer(HTL),while the phase stability was also improved.As a result,the champion cell shows a superb open-circuit voltage(V_(oc)) of 1.31 V,a satisfactory power conversion efficiency(PCE) of 16.97% and outstanding stabilities.As far as we know,this should be one of the highest PCEs reported among all-inorganic CsPbI_(2) Br based PSCs.展开更多
钙钛矿材料由于具有结构稳定、易于获取、成本低廉和易于合成等优点,在发光二极管、激光器和太阳能电池等光电器件领域具有广阔的应用前景。目前,部分适合UV-LED应用的钙钛矿具有结构不稳定性。为了寻找结构稳定的钙钛矿,此项研究利用...钙钛矿材料由于具有结构稳定、易于获取、成本低廉和易于合成等优点,在发光二极管、激光器和太阳能电池等光电器件领域具有广阔的应用前景。目前,部分适合UV-LED应用的钙钛矿具有结构不稳定性。为了寻找结构稳定的钙钛矿,此项研究利用第一性原理对无铅双钙钛矿Cs_(2)NaScX_(6)(X=Cl,Br,I)的电子及光学性质进行了理论计算。计算结果表明:Cs_(2)NaScX_(6)(X=Cl,Br,I)为直接带隙半导体,带隙值分别为5.545 e V(Cl)、4.549 eV(Br)和3.408 eV(I),Cs_(2)NaScI_(6)在紫外光范围内具有较强的光吸收。本研究内容为无铅A_(2)B^(I)B^(III)X_(6)型双钙钛矿成为UV-LED的候选材料提供理论支持。展开更多
CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state d...CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs.展开更多
基于无机CsPbI_(2)Br的碳基无空穴传输层钙钛矿太阳能电池(carbon based hole transport material freeperovskite solar cells,C-PSCs)具有成本低、易制备和稳定性好等优点而受到广泛关注。研究了空气环境下制备高效稳定的平面异质结Cs...基于无机CsPbI_(2)Br的碳基无空穴传输层钙钛矿太阳能电池(carbon based hole transport material freeperovskite solar cells,C-PSCs)具有成本低、易制备和稳定性好等优点而受到广泛关注。研究了空气环境下制备高效稳定的平面异质结CsPbI_(2)Br C-PSCs的2种制备工艺。首先,通过对反溶剂材料的种类及用量、钙钛矿前驱体溶液浓度等参数的优化,在反溶剂为800μL、钙钛矿前驱体溶液浓度为1.2 mol/L的条件下,采用一步溶液法成功制备了光电转换效率为9.87%的CsPbI_(2)Br C-PSCs。其次,为摆脱一步溶液法对有毒反溶剂的依赖,引入低温预退火工艺,通过对预退火时间及温度、钙钛矿前驱体溶液浓度等参数的优化,在空气环境下,预退火温度为80℃、钙钛矿前驱体溶液浓度为1.6 mol/L且未使用反溶剂的条件下获得了10.52%的最佳光电转化效率,同时CsPbI_(2)Br钙钛矿的退火温度可降低至240℃,并且未封装的器件在空气环境下显示出了较好的稳定性。展开更多
CsPbI_(2)Br perovskite solar cells have achieved rapid development owing to their exceptional optoelectronic properties and relatively outstanding stability.However,open-circuit voltage(Voc)loss caused by band mismatc...CsPbI_(2)Br perovskite solar cells have achieved rapid development owing to their exceptional optoelectronic properties and relatively outstanding stability.However,open-circuit voltage(Voc)loss caused by band mismatch and charge recombination between perovskite and charge transporting layer is one of the crucial obstacles to further improve the device performance.Here,we proposed a bilayer electron transport layer ZnO(bottom)/SnO_(2)(top)to reduce the Voc loss(Eloss)and promote device Voc by ZnO insert layer thickness modulation,which could improve the efficiency of charge carrier extraction/transfer and suppress the charge carrier recombination.In addition,guanidinium iodide top surface treatment is used to further reduce the trap density,stabilize the perovskite film and align the energy levels,which promotes the fill factor,short-circuit current density(Jsc),and stability of the device.As a result,the champion cell of double-side optimized CsPbI_(2)Br perovskite solar cells exhibits an extraordinary efficiency of 16.25%with the best Voc as high as 1.27 V and excellent thermal and storage stability.展开更多
基金supported by the National Natural Science Foundation of China (U22A20142)the Fundamental Research Funds for the Central Universities (2023JC007)。
文摘CsPbI_(2)Br perovskite solar cell has been extensively studied due to its exceptional thermal stability and relatively stable perovskite phase structure.However,the presence of bromine leads to a rapid crystallization rate of CsPbI_(2)Br films,resulting in small grain size and high defect density.Additionally,CsPbI_(2)Br demonstrates poor light absorption due to its wide bandgap.Therefore,it is crucial to control the crystallization rate and increase the film thickness to reduce defect density,enhance light absorption,and improve photovoltaic performance.In this study,we utilized a PbAc_(2)-incorporated twice spincoating(PTS) process to address these issues.Initially,PbAc_(2) was added to the CsPbI_(2)Br precursor solution to form a CsPbI_(2)Br film,which was then coated with the CsPbI_(2)Br precursor solution to produce the PTS film,Ac^(-)can delay the perovskite crystallization,leading to the formation of thicker and denser CsPbI_(2)Br films.Moreover,lone-pair electrons of the oxygen atom provided by Ac^(-)formed coordination bonds with under-coordinated Pb~(2+) ions to fill halogen ion vacancies,thereby reducing the defect density.Ultimately,the PTS CsPbI_(2)Br device achieved a peak power conversion efficiency(PCE) of 16.19% and maintained 96.7% of its initial PCE over 1500 h at room temperature under 25% relative humidity without any encapsulation.
基金supported by the National Natural Science Foundation of China (51732004, 21805093, 21975083, 2170307122075090)the Science and Technology Program of Guangzhou,China (201904010178)。
文摘In the construction of high performance planar perovskite solar cells(PSCs),the modification of compact TiO_(2) layer and engineering of perovskite/TiO_(2) interfaces are essential for efficient electron transfer and retarded charge recombination loss.In this work,a facile and effective strategy is developed to modify the surface of compact TiO_(2) layer by TiCl_(4)-TiCl_(3) mixture treatment.Compared with conventional sole TiCl_(4),the TiCl_(4)-TiCl_(3) treatment takes the advantage of accelerated and controlled hydrolysis of TiCl_(3),therefore TiO_(2) with dominating anatase phase and moderate roughness is obtained to facilitate the growth of CsPbI_(2) Br perovskite layer with high quality.Furthermore,the oxidation-driven hydrolysis of TiCl_(3) component results in surface Cl doping that facilitates interfacial electron transfer with retarded recombination loss.The average power conversion efficiency(PCE) of carbon-based CsPbI_(2) Br planar PSCs based on TiCl_(4)-TiCl_(3) treatment increases to 14.18% from the intial 13.04% based on conventional sole TiCl_(4) treatment.The champion PSC exhibits a PCE of 14.46%(V_(oc)=1.28 V,J_(sc)=14.21 mA/cm^(2),and FF=0.794),which is one of the highest PCEs for carbon-based CsPbI_(2) Br PSCs.
基金supported by the National Natural Science Foundation of China(52172237,52072228)the Shaanxi International Cooperational Project(2020KWZ-018)+1 种基金the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(Grant No.2021-QZ-02)the Fundamental Research Funds for the Central Universities(3102019JC005)。
文摘All-inorganic CsPbI_(2)Br perovskite solar cells(PSCs)have received extensive research interests recently.Nevertheless,their low efficiency and poor long-term stability are still obstacles for further commercial application.Herein,we demonstrate that high efficiency and exceptional long-term stability are realized by incorporating gadolinium(III)chloride(GdCl_(3))into the CsPbI_(2)Br perovskite film.The incorporation of GdCl_(3) enhances the Goldschmidt tolerance factor of CsPbI_(2)Br perovskite,yielding a dense perovskite film with small grains,thus the a-phase CsPbI_(2)Br is remarkably stabilized.Additionally,it is found that the GdCl_(3)-incorporated perovskite film achieves suppressed charge recombination and appropriate energy level alignment compared with the pristine CsPbI_(2)Br film.The noticeable increment in efficiency from14.01%(control PSC)to 16.24%is achieved for GdCl_(3)-incorporated PSC.Moreover,the nonencapsulated GdCl_(3)-incorporated PSC exhibits excellent environmental and thermal stability,remaining over 91%or90%of the original efficiency after 1200 h aging at 40%relative humidity or 480 h heating at 85℃ in nitrogen glove box respectively.The encapsulated GdCl_(3)-incorporated PSC presents an improved operational stability with over 88%of initial efficiency under maximum power point(MPP)tracking at 45℃ for1000 h.This work presents an effective ion-incorporation approach for boosting efficiency and long-term stability of all-inorganic PSCs.
基金financially supported by the National Natural Science Foundation of China (61704131,61804111)the National Key Research and Development Program of China (Grant2018YFB2202900)+3 种基金the Key Research and Development Program of Shaanxi Province (Grant 2020GY-310)the Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University (2020GXLH-Z-018)the Fundamental Research Funds for the Central Universitiesthe Innovation Fund of Xidian University。
文摘Inorganic CsPbI_(2) Br perovskite solar cells(PSCs) have a tremendous development in last few years due to the trade-off between the excellent optoelectronic properties and the relatively outstanding stability.Herein,we demonstrated a strategy of secondary crystallization(SC) for CsPbI_(2) Br film in a facile planar n-i-p structure(ITO/ZnO-SnO_(2)/CsPbI_(2) Br/Spiro-OMeTAD/Ag) at low-temperature(150℃).It is achieved through the method of post-treatment with guanidinium bromine(GABr) atop annealed CsPbI_(2) Br film.It was found that the secondary crystallization by GABr can not only regulate the crystal growth and passivate defects,but also serve as a charge collection center to effectively collect photogenerated carriers.In addition,due to the excess Br ions in GABr,the formation of the Br-rich region at the CsPbI_(2) Br perovskite surface can further lower the Fermi level,leading to more beneficial band alignment between the perovskite and the hole transport layer(HTL),while the phase stability was also improved.As a result,the champion cell shows a superb open-circuit voltage(V_(oc)) of 1.31 V,a satisfactory power conversion efficiency(PCE) of 16.97% and outstanding stabilities.As far as we know,this should be one of the highest PCEs reported among all-inorganic CsPbI_(2) Br based PSCs.
文摘钙钛矿材料由于具有结构稳定、易于获取、成本低廉和易于合成等优点,在发光二极管、激光器和太阳能电池等光电器件领域具有广阔的应用前景。目前,部分适合UV-LED应用的钙钛矿具有结构不稳定性。为了寻找结构稳定的钙钛矿,此项研究利用第一性原理对无铅双钙钛矿Cs_(2)NaScX_(6)(X=Cl,Br,I)的电子及光学性质进行了理论计算。计算结果表明:Cs_(2)NaScX_(6)(X=Cl,Br,I)为直接带隙半导体,带隙值分别为5.545 e V(Cl)、4.549 eV(Br)和3.408 eV(I),Cs_(2)NaScI_(6)在紫外光范围内具有较强的光吸收。本研究内容为无铅A_(2)B^(I)B^(III)X_(6)型双钙钛矿成为UV-LED的候选材料提供理论支持。
基金financially supported by the Guangzhou Basic and Applied Basic Research Foundation,China(No.303523)。
文摘CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs.
文摘基于无机CsPbI_(2)Br的碳基无空穴传输层钙钛矿太阳能电池(carbon based hole transport material freeperovskite solar cells,C-PSCs)具有成本低、易制备和稳定性好等优点而受到广泛关注。研究了空气环境下制备高效稳定的平面异质结CsPbI_(2)Br C-PSCs的2种制备工艺。首先,通过对反溶剂材料的种类及用量、钙钛矿前驱体溶液浓度等参数的优化,在反溶剂为800μL、钙钛矿前驱体溶液浓度为1.2 mol/L的条件下,采用一步溶液法成功制备了光电转换效率为9.87%的CsPbI_(2)Br C-PSCs。其次,为摆脱一步溶液法对有毒反溶剂的依赖,引入低温预退火工艺,通过对预退火时间及温度、钙钛矿前驱体溶液浓度等参数的优化,在空气环境下,预退火温度为80℃、钙钛矿前驱体溶液浓度为1.6 mol/L且未使用反溶剂的条件下获得了10.52%的最佳光电转化效率,同时CsPbI_(2)Br钙钛矿的退火温度可降低至240℃,并且未封装的器件在空气环境下显示出了较好的稳定性。
基金supported by National Natural Science Foundation of China(61704131 and 61804111)National Key Research and Development Program of China(Grant 2018YFB2202900)+2 种基金Key Research and Development Program of Shaanxi Province(Grant 2020GY-310)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(2020GXLH-Z-018)the Fundamental Research Funds for the Central Universities and the Innovation Fund of Xidian University.
文摘CsPbI_(2)Br perovskite solar cells have achieved rapid development owing to their exceptional optoelectronic properties and relatively outstanding stability.However,open-circuit voltage(Voc)loss caused by band mismatch and charge recombination between perovskite and charge transporting layer is one of the crucial obstacles to further improve the device performance.Here,we proposed a bilayer electron transport layer ZnO(bottom)/SnO_(2)(top)to reduce the Voc loss(Eloss)and promote device Voc by ZnO insert layer thickness modulation,which could improve the efficiency of charge carrier extraction/transfer and suppress the charge carrier recombination.In addition,guanidinium iodide top surface treatment is used to further reduce the trap density,stabilize the perovskite film and align the energy levels,which promotes the fill factor,short-circuit current density(Jsc),and stability of the device.As a result,the champion cell of double-side optimized CsPbI_(2)Br perovskite solar cells exhibits an extraordinary efficiency of 16.25%with the best Voc as high as 1.27 V and excellent thermal and storage stability.