This study was aimed to investigate the effects of hydrothermal aging, propene and SO<sub>2</sub> poisoning on the ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) performance of both...This study was aimed to investigate the effects of hydrothermal aging, propene and SO<sub>2</sub> poisoning on the ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) performance of both Cu-SAPO-34 and Cu-ZSM-5. The catalytic activities of fresh, aged and poisoned samples were tested in ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) of NO<sub>x</sub> conditions. The XRD, TG and N<sub>2</sub>-desorption results showed that the structures of the Cu-SAPO-34 and Cu-ZSM-5 remained intact after 750˚C hydrothermally aged, SO<sub>2</sub> and propene poisoned. After hydrothermal aging at 750˚C for 12 h, the NO reduction performance of Cu-ZSM-5 was significantly reduced at lower temperatures, while that of Cu-SAPO-34 was less affected. Moreover, Cu-SAPO-34 catalyst showed high NO conversion with SO<sub>2</sub> or propene compared to Cu-ZSM-5. However, Cu-ZSM-5 showed a larger drop in catalytic activity with SO<sub>2</sub> or propene compared to Cu-SAPO-34 catalyst. The H<sub>2</sub>-TPR results showed that Cu<sup>2 </sup> ions could be reduced to Cu<sup> </sup> and Cu<sup>0</sup> for Cu-ZSM-5, while no significant transformation of copper species was observed for Cu-SAPO-34. Meanwhile, the UV-vis DRS results showed that CuO species were formed in Cu-ZSM-5, while little changes were observed for the Cu-SAPO-34. Cu-SAPO-34 showed high sulfur and hydrocarbon poison resistance compared to Cu-ZSM-5. In summary, Cu-SAPO-34 with small-pore zeolite showed higher hydrothermal stability and better hydrocarbon and sulfur poison resistant than Cu-ZSM-5 with medium-pore.展开更多
Cu-SAPO-34/cordierite catalysts were prepared via one-step hydrothermal synthesis method and their performances to remove NO x from the diesel vehicle exhaust were evaluated. The morphology, structure, Cu content and ...Cu-SAPO-34/cordierite catalysts were prepared via one-step hydrothermal synthesis method and their performances to remove NO x from the diesel vehicle exhaust were evaluated. The morphology, structure, Cu content and valence state were characterized by SEM, XRD, ICP and XPS, respectively. The experimental results show the active component Cu of the catalysts via in situ synthesis could significantly improve the selective catalytic reduction (SCR) activities of NOx and the optimal Cu content is in the range of 0.30%-0.40%(mass fraction). No N 2 O is detected by gas chromatograph (GC) during the evaluation process, which implies that NOx is almost entirely converted to N2 over Cu-SAPO-34/cordierite catalyst. The conversion rate of NOx to N2 by NH3 over catalyst could almost be up to 100%in the temperature range of 300-670 ℃with a space velocity of 12000 h-1 and it is still more than 60% at 300-620 ℃ under 36000 h-1. The catalysts also show the good hydrothermal and chemical stability at the atmosphere with H 2 O.展开更多
A reconstruction strategy has been developed to synthesize Cu-SAPO-34 with a wide crystallization phase region,high solid yield,and tunable Si and Cu contents.Cu-rich SAPO-34 was prepared from a Cu-amine complex,which...A reconstruction strategy has been developed to synthesize Cu-SAPO-34 with a wide crystallization phase region,high solid yield,and tunable Si and Cu contents.Cu-rich SAPO-34 was prepared from a Cu-amine complex,which acted as a precursor and Cu source for the reconstruction synthesis.The role of the Cu-amine complex as a template was restricted,which allowed easier control over the Cu and Si contents than in the previously reported"one-pot"synthesis method.Characterization of the material revealed that the Si(4Al)coordination environment dominates the synthesized Cu-SAPO-34 catalysts.High-temperature hydrothermal treatment increased the isolated Cu2+content slightly,and the acid sites in the low-silica catalyst are more resistant to hydrothermal treatment than those of the existing catalysts.The obtained materials,especially the low-silica Cu-SAPO-34 sample,exhibit excellent catalytic activity and hydrothermal stability for the selective catalytic reduction of NOx by NH3(NH3-SCR).In addition,the influence of the catalyst acidity on the NH3-SCR reaction was also investigated and is discussed.The high synthetic efficiency and outstanding catalytic performance make Cu-SAPO-34 synthesized by the reconstruction method a promising catalyst for the NH3-SCR process.展开更多
NH_(3) selective catalytic reduction(SCR) has been widely recognized as a promising technique for reducing nitrogen oxides from diesel vehicle exhausts. High-efficiency SCR catalysts that could perform at low temperat...NH_(3) selective catalytic reduction(SCR) has been widely recognized as a promising technique for reducing nitrogen oxides from diesel vehicle exhausts. High-efficiency SCR catalysts that could perform at low temperatures are essential to denitration. In this work, a series of bimetallic CeCu-SAPO-34 molecular sieves were synthesized by one-step hydrothermal method. The Ce Cu-SAPO-34 maintained good crystallinity and a regular hexahedron appearance of Cu-SAPO-34 after introducing Ce species, while exhibiting a higher specific surface area and pore volume. The as-prepared CeCu-SAPO-34 with 0.02%(mass) Ce constituent exhibited the best catalytic activity below 300℃ and a maximum NO_(x) conversion of 99% was attained;the NO_(x) removal rates of more than 68% and 94% were achieved at 150℃ and 200℃, respectively. And the introduction of cerium species in Cu-SAPO-34 improves the low-temperature hydrothermal stability of the catalyst towards NH_(3)-SCR reaction. Additionally, the introduced Ce species could enhance the formation of abundant weak Br?nsted acid centers and promote the synergistic effect between CuO grains and isolated Cu^(2+) to enhance the redox cycle, which benefit the NH_(3)-SCR reaction.This work provides a facile synthesis method of high-efficiency SCR denitration catalysts towards diesel vehicles exhaust treatment under low temperature.展开更多
The low‐temperature hydrothermal stabilities of Cu‐SAPO‐34samples with various Si contents and Cu loadings were systematically investigated.The NH3oxidation activities and NH3‐selective catalytic reduction(SCR)act...The low‐temperature hydrothermal stabilities of Cu‐SAPO‐34samples with various Si contents and Cu loadings were systematically investigated.The NH3oxidation activities and NH3‐selective catalytic reduction(SCR)activities(mainly the low‐temperature activities)of all the Cu‐SAPO‐34catalysts declined after low‐temperature steam treatment(LTST).These results show that the texture and acid density of Cu‐SAPO‐34can be better preserved by increasing the Cu loading,although the hydrolysis of Si-O-Al bonds is inevitable.The stability of Cu ions and the stability of the SAPO framework were positively correlated at relatively low Cu loadings.However,a high Cu loading(e.g.,3.67wt%)resulted in a significant decrease in the number of isolated Cu ions.Aggregation of CuO particles also occurred during the LTST,which accounts for the decreasing NH3oxidation activities of the catalysts.Among the catalysts,Cu‐SAPO‐34with a high Si content and medium Cu content(1.37wt%)showed the lowest decrease in NH3‐SCR because its Cu2+content was well retained and its acid density was well preserved.展开更多
Phosphate ions promoted Cu-SAPO-34(P-Cu-SAPO-34)were prepared using bulk CuO particles as Cu^(2+)precursor by a solid-state ion exchange technique for the selective catalytic reduction of NO_(x) with NH_3(NH_3-SCR).Th...Phosphate ions promoted Cu-SAPO-34(P-Cu-SAPO-34)were prepared using bulk CuO particles as Cu^(2+)precursor by a solid-state ion exchange technique for the selective catalytic reduction of NO_(x) with NH_3(NH_3-SCR).The effects of high temperature(H-T)hydrothermal aging on the NO_(x) removal(de-NO_(x))performance of Cu-SAPO-34 with and without phosphate ions were systematically investigated at atomic level.The results displayed that both Cu-SAPO-34 and P-Cu-SAPO-34 presented relatively poor NO_(x) removal activity with a low conversion(<30%)at 250-500℃.However,after H-T hydrothermal treatment(800℃ for 10 hr at 10%H_2O),these two samples showed significantly satisfied NO_(x) elimination performance with a quite high conversion(70%-90%)at 250-500℃.Additionally,phosphate ions decoration can further enhance the catalytic performance of Cu-SAPO-34 after hydrothermal treatment(Cu-SAPO-34H).The textural properties,morphologies,structural feature,acidity,redox characteristic,and surface-active species of the fresh and hydrothermally aged samples were analyzed using various characterization methods.The systematical characterization results revealed that increases of 28%of the isolated Cu^(2+)active species(Cu^(2+)-2Z,Cu(OH)^(+)-Z)mainly from bulk CuO and 50%of the Bronsted acid sites,the high dispersion of isolated Cu^(2+)active component as well as the Bronsted acid sites were mainly responsible for the accepted catalytic activity of these two hydrothermally aged samples,especially for P-Cu-SAPO-34H.展开更多
A series of meso-microporous Cu-SAPO-34 catalysts were successfully synthesized by a one-pot hydrothermal crystallization method, and these catalysts exhibited excellent NH3-SCR performance at low temperature. Their s...A series of meso-microporous Cu-SAPO-34 catalysts were successfully synthesized by a one-pot hydrothermal crystallization method, and these catalysts exhibited excellent NH3-SCR performance at low temperature. Their structure and physic chemical properties were characterized by means of X-ray diffraction patterns (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), N2 sorption-desorption, nuclear magnetic resonance (NMR), Inductively Coupled Plasma-Atomic Emission spectrometer (ICP-AES), X-ray absorption spectroscopy (XPS), Temperature-programmed desorption of ammonia (NH3-TPD), Ultraviolet visible diffuse reflectance spectroscopy (UV-Vis DRS) and Temperature programmed reduction (TPR). The analysis results indicate that the high activities of Cu-SAPO-34 catalysts could be attributed to the enhancement of redox property, the formation of mesopores and the more acid sites. Furthermore, the kinetic results verify that the formation of mesopores remarkably reduces diffusion resistance and then improves the accessibility of reactants to catalytically active sites. The 1.0-Cu-SAPO-34 catalyst exhibited the high NO conversion (〉90%) among the wide activity temperature window in the range of 150- 425℃.展开更多
The influence of the various preparation methods of Cu-SAPO-34 nanocatalysts on the selective catalytic reduction of NO with NH3 under excess oxygen was studied. Cu-SAPO-34 nanocatalysts were prepared by using four te...The influence of the various preparation methods of Cu-SAPO-34 nanocatalysts on the selective catalytic reduction of NO with NH3 under excess oxygen was studied. Cu-SAPO-34 nanocatalysts were prepared by using four techniques: conventional impregnation(IM),ultrasound-enhanced impregnation(UIM), conventional deposition precipitation(DP) using Na OH and homogeneous deposition precipitation(HDP) using urea. These catalysts were characterized in detail by various techniques such as N2-sorption, XRD, TEM, H2-TPR,NH3-TPD and XPS to understand the catalyst structure, the nature and the dispersed state of the copper species, and the acid sites for NH3 adsorption. All of the nanocatalysts showed high activities for NO removal. However, the activities were different and followed the sequence of Cu-SAPO-34(UIM) 〉 Cu-SAPO-34(HDP) 〉 Cu-SAPO-34(IM) 〉 Cu-SAPO-34(DP).Based on the obtained results, it was concluded that the NO conversion on Cu-SAPO-34 nanocatalysts was mainly related to the high reducibility of the isolated Cu^2+ions and Cu O species, the number of the acid sites and the dispersion of Cu O species on SAPO-34.展开更多
Selective catalytic reduction(SCR) with urea catalyzed by Cu-SAPO-34 is an effective method to eliminate NO_x from diesel exhaust. However, urea-related deposits may form during cold-start and urban driving due to low...Selective catalytic reduction(SCR) with urea catalyzed by Cu-SAPO-34 is an effective method to eliminate NO_x from diesel exhaust. However, urea-related deposits may form during cold-start and urban driving due to low exhaust temperatures. The activity of CuSAPO-34 at 175°C is significantly degraded by urea exposure, and 300°C is required for regeneration. Through in-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS) and temperature-programmed hydrolysis studies, the dominant stable deposit at 175°C is identified as biuret, which can be eliminated at 300°C. The urea-derived deactivation and regeneration mechanisms of Cu-SAPO-34 were compared with those of anatase-supported catalysts.展开更多
Reducing pollution and carbon emissions is an important step toward peaking CO_(2)emissions before 2030 and reaching carbon neutrality before 2060,and heavy diesel vehicle pollution,particularly nitrogen oxides(NOx)em...Reducing pollution and carbon emissions is an important step toward peaking CO_(2)emissions before 2030 and reaching carbon neutrality before 2060,and heavy diesel vehicle pollution,particularly nitrogen oxides(NOx)emissions,is an essential part.CuSAPO-34 is a CHA-type small pore molecular sieve with excellent ammonia(NH_(3))selective catalytic reduction(NH_(3)-SCR)catalytic activity,but it cannot be stored or applied because of severe degradation caused by low-temperature hydrothermal aging.To improve the hydrothermal stability,TiO_(2)was coated on the surface of Cu-SAPO-34 by the ALD method to form a uniform nanolayer.Though this ultrathin TiO_(2)nanolayer has little effect on NH_(3)-SCR catalytic activity of Cu-SAPO-34,the resistance to low-temperature hydrothermal aging in liquid water at 80℃for 24 h has greatly been improved.A study carried out by SEM,XRD,NH_(3)-TPD,and EPR,showed that the ultra-thin TiO_(2)nanolayers were covered uniformly and hydrolysis of frameworks silicon and the migration of Cu^(2+)was retarded.This method has some implications for the future preparation of highly robust Cu-SAPO-34 catalysts for industrial applications.This research could inspire the development of highly robust CuSAPO-34 catalysts to control the NOx emissions from diesel engines.展开更多
文摘This study was aimed to investigate the effects of hydrothermal aging, propene and SO<sub>2</sub> poisoning on the ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) performance of both Cu-SAPO-34 and Cu-ZSM-5. The catalytic activities of fresh, aged and poisoned samples were tested in ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) of NO<sub>x</sub> conditions. The XRD, TG and N<sub>2</sub>-desorption results showed that the structures of the Cu-SAPO-34 and Cu-ZSM-5 remained intact after 750˚C hydrothermally aged, SO<sub>2</sub> and propene poisoned. After hydrothermal aging at 750˚C for 12 h, the NO reduction performance of Cu-ZSM-5 was significantly reduced at lower temperatures, while that of Cu-SAPO-34 was less affected. Moreover, Cu-SAPO-34 catalyst showed high NO conversion with SO<sub>2</sub> or propene compared to Cu-ZSM-5. However, Cu-ZSM-5 showed a larger drop in catalytic activity with SO<sub>2</sub> or propene compared to Cu-SAPO-34 catalyst. The H<sub>2</sub>-TPR results showed that Cu<sup>2 </sup> ions could be reduced to Cu<sup> </sup> and Cu<sup>0</sup> for Cu-ZSM-5, while no significant transformation of copper species was observed for Cu-SAPO-34. Meanwhile, the UV-vis DRS results showed that CuO species were formed in Cu-ZSM-5, while little changes were observed for the Cu-SAPO-34. Cu-SAPO-34 showed high sulfur and hydrocarbon poison resistance compared to Cu-ZSM-5. In summary, Cu-SAPO-34 with small-pore zeolite showed higher hydrothermal stability and better hydrocarbon and sulfur poison resistant than Cu-ZSM-5 with medium-pore.
基金Project(20906067)supported by the National Natural Science Foundation of ChinaProject(2011M500543)supported by the Postdoctoral Science Foundation of ChinaProject supported by the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi
文摘Cu-SAPO-34/cordierite catalysts were prepared via one-step hydrothermal synthesis method and their performances to remove NO x from the diesel vehicle exhaust were evaluated. The morphology, structure, Cu content and valence state were characterized by SEM, XRD, ICP and XPS, respectively. The experimental results show the active component Cu of the catalysts via in situ synthesis could significantly improve the selective catalytic reduction (SCR) activities of NOx and the optimal Cu content is in the range of 0.30%-0.40%(mass fraction). No N 2 O is detected by gas chromatograph (GC) during the evaluation process, which implies that NOx is almost entirely converted to N2 over Cu-SAPO-34/cordierite catalyst. The conversion rate of NOx to N2 by NH3 over catalyst could almost be up to 100%in the temperature range of 300-670 ℃with a space velocity of 12000 h-1 and it is still more than 60% at 300-620 ℃ under 36000 h-1. The catalysts also show the good hydrothermal and chemical stability at the atmosphere with H 2 O.
文摘A reconstruction strategy has been developed to synthesize Cu-SAPO-34 with a wide crystallization phase region,high solid yield,and tunable Si and Cu contents.Cu-rich SAPO-34 was prepared from a Cu-amine complex,which acted as a precursor and Cu source for the reconstruction synthesis.The role of the Cu-amine complex as a template was restricted,which allowed easier control over the Cu and Si contents than in the previously reported"one-pot"synthesis method.Characterization of the material revealed that the Si(4Al)coordination environment dominates the synthesized Cu-SAPO-34 catalysts.High-temperature hydrothermal treatment increased the isolated Cu2+content slightly,and the acid sites in the low-silica catalyst are more resistant to hydrothermal treatment than those of the existing catalysts.The obtained materials,especially the low-silica Cu-SAPO-34 sample,exhibit excellent catalytic activity and hydrothermal stability for the selective catalytic reduction of NOx by NH3(NH3-SCR).In addition,the influence of the catalyst acidity on the NH3-SCR reaction was also investigated and is discussed.The high synthetic efficiency and outstanding catalytic performance make Cu-SAPO-34 synthesized by the reconstruction method a promising catalyst for the NH3-SCR process.
基金supported by Project of Central Government for Local Science and Technology Development of China (2022JH6/100100050)the National Natural Science Foundation of China (21776028)Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (ZJKF2001)。
文摘NH_(3) selective catalytic reduction(SCR) has been widely recognized as a promising technique for reducing nitrogen oxides from diesel vehicle exhausts. High-efficiency SCR catalysts that could perform at low temperatures are essential to denitration. In this work, a series of bimetallic CeCu-SAPO-34 molecular sieves were synthesized by one-step hydrothermal method. The Ce Cu-SAPO-34 maintained good crystallinity and a regular hexahedron appearance of Cu-SAPO-34 after introducing Ce species, while exhibiting a higher specific surface area and pore volume. The as-prepared CeCu-SAPO-34 with 0.02%(mass) Ce constituent exhibited the best catalytic activity below 300℃ and a maximum NO_(x) conversion of 99% was attained;the NO_(x) removal rates of more than 68% and 94% were achieved at 150℃ and 200℃, respectively. And the introduction of cerium species in Cu-SAPO-34 improves the low-temperature hydrothermal stability of the catalyst towards NH_(3)-SCR reaction. Additionally, the introduced Ce species could enhance the formation of abundant weak Br?nsted acid centers and promote the synergistic effect between CuO grains and isolated Cu^(2+) to enhance the redox cycle, which benefit the NH_(3)-SCR reaction.This work provides a facile synthesis method of high-efficiency SCR denitration catalysts towards diesel vehicles exhaust treatment under low temperature.
基金supported by the National Natural Science Foundation of China(21676262,21506207,21606221)the Key Research Program of Frontier Sciences,CAS(QYZDB-SSW-JSC040)~~
文摘The low‐temperature hydrothermal stabilities of Cu‐SAPO‐34samples with various Si contents and Cu loadings were systematically investigated.The NH3oxidation activities and NH3‐selective catalytic reduction(SCR)activities(mainly the low‐temperature activities)of all the Cu‐SAPO‐34catalysts declined after low‐temperature steam treatment(LTST).These results show that the texture and acid density of Cu‐SAPO‐34can be better preserved by increasing the Cu loading,although the hydrolysis of Si-O-Al bonds is inevitable.The stability of Cu ions and the stability of the SAPO framework were positively correlated at relatively low Cu loadings.However,a high Cu loading(e.g.,3.67wt%)resulted in a significant decrease in the number of isolated Cu ions.Aggregation of CuO particles also occurred during the LTST,which accounts for the decreasing NH3oxidation activities of the catalysts.Among the catalysts,Cu‐SAPO‐34with a high Si content and medium Cu content(1.37wt%)showed the lowest decrease in NH3‐SCR because its Cu2+content was well retained and its acid density was well preserved.
基金supported by the National Natural Science Foundation of China (No.NSFC22166020)。
文摘Phosphate ions promoted Cu-SAPO-34(P-Cu-SAPO-34)were prepared using bulk CuO particles as Cu^(2+)precursor by a solid-state ion exchange technique for the selective catalytic reduction of NO_(x) with NH_3(NH_3-SCR).The effects of high temperature(H-T)hydrothermal aging on the NO_(x) removal(de-NO_(x))performance of Cu-SAPO-34 with and without phosphate ions were systematically investigated at atomic level.The results displayed that both Cu-SAPO-34 and P-Cu-SAPO-34 presented relatively poor NO_(x) removal activity with a low conversion(<30%)at 250-500℃.However,after H-T hydrothermal treatment(800℃ for 10 hr at 10%H_2O),these two samples showed significantly satisfied NO_(x) elimination performance with a quite high conversion(70%-90%)at 250-500℃.Additionally,phosphate ions decoration can further enhance the catalytic performance of Cu-SAPO-34 after hydrothermal treatment(Cu-SAPO-34H).The textural properties,morphologies,structural feature,acidity,redox characteristic,and surface-active species of the fresh and hydrothermally aged samples were analyzed using various characterization methods.The systematical characterization results revealed that increases of 28%of the isolated Cu^(2+)active species(Cu^(2+)-2Z,Cu(OH)^(+)-Z)mainly from bulk CuO and 50%of the Bronsted acid sites,the high dispersion of isolated Cu^(2+)active component as well as the Bronsted acid sites were mainly responsible for the accepted catalytic activity of these two hydrothermally aged samples,especially for P-Cu-SAPO-34H.
基金supported by the National Natural Science Foundation of China (Nos. 21376261, 21173270)the National Hi-Tech Research and Development Program (863) of China (No. 2015AA034603)+1 种基金the Beijing Natural Science Foundation(No. 2142027)the China University of Petroleum Fund (Nos. 20130007110007, 2462015QZDX04)
文摘A series of meso-microporous Cu-SAPO-34 catalysts were successfully synthesized by a one-pot hydrothermal crystallization method, and these catalysts exhibited excellent NH3-SCR performance at low temperature. Their structure and physic chemical properties were characterized by means of X-ray diffraction patterns (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), N2 sorption-desorption, nuclear magnetic resonance (NMR), Inductively Coupled Plasma-Atomic Emission spectrometer (ICP-AES), X-ray absorption spectroscopy (XPS), Temperature-programmed desorption of ammonia (NH3-TPD), Ultraviolet visible diffuse reflectance spectroscopy (UV-Vis DRS) and Temperature programmed reduction (TPR). The analysis results indicate that the high activities of Cu-SAPO-34 catalysts could be attributed to the enhancement of redox property, the formation of mesopores and the more acid sites. Furthermore, the kinetic results verify that the formation of mesopores remarkably reduces diffusion resistance and then improves the accessibility of reactants to catalytically active sites. The 1.0-Cu-SAPO-34 catalyst exhibited the high NO conversion (〉90%) among the wide activity temperature window in the range of 150- 425℃.
基金financial support from University of Tabriz and Iranian Nanotechnology Initiative
文摘The influence of the various preparation methods of Cu-SAPO-34 nanocatalysts on the selective catalytic reduction of NO with NH3 under excess oxygen was studied. Cu-SAPO-34 nanocatalysts were prepared by using four techniques: conventional impregnation(IM),ultrasound-enhanced impregnation(UIM), conventional deposition precipitation(DP) using Na OH and homogeneous deposition precipitation(HDP) using urea. These catalysts were characterized in detail by various techniques such as N2-sorption, XRD, TEM, H2-TPR,NH3-TPD and XPS to understand the catalyst structure, the nature and the dispersed state of the copper species, and the acid sites for NH3 adsorption. All of the nanocatalysts showed high activities for NO removal. However, the activities were different and followed the sequence of Cu-SAPO-34(UIM) 〉 Cu-SAPO-34(HDP) 〉 Cu-SAPO-34(IM) 〉 Cu-SAPO-34(DP).Based on the obtained results, it was concluded that the NO conversion on Cu-SAPO-34 nanocatalysts was mainly related to the high reducibility of the isolated Cu^2+ions and Cu O species, the number of the acid sites and the dispersion of Cu O species on SAPO-34.
基金supported by the projects of China Science and Technology Exchange Center(No.2016YFE0126600)the National Key R&D Program of China(No.2017YFC0211102)the Key Laboratory of Advanced Materials of Ministry of Education(No.2016AML01)
文摘Selective catalytic reduction(SCR) with urea catalyzed by Cu-SAPO-34 is an effective method to eliminate NO_x from diesel exhaust. However, urea-related deposits may form during cold-start and urban driving due to low exhaust temperatures. The activity of CuSAPO-34 at 175°C is significantly degraded by urea exposure, and 300°C is required for regeneration. Through in-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS) and temperature-programmed hydrolysis studies, the dominant stable deposit at 175°C is identified as biuret, which can be eliminated at 300°C. The urea-derived deactivation and regeneration mechanisms of Cu-SAPO-34 were compared with those of anatase-supported catalysts.
基金supported by the National Natural Science Foundation of China(Grant Nos.22072141,22176185,and 22002150)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2018263)+1 种基金the Key Research Program of the Chinese Academy of Sciences(Grant No.ZDRW-CN-2021-3)the Self-deployed Projects of Ganjiang Innovation Academy,Chinese Academy of Sciences(Grant No.E055C003)。
文摘Reducing pollution and carbon emissions is an important step toward peaking CO_(2)emissions before 2030 and reaching carbon neutrality before 2060,and heavy diesel vehicle pollution,particularly nitrogen oxides(NOx)emissions,is an essential part.CuSAPO-34 is a CHA-type small pore molecular sieve with excellent ammonia(NH_(3))selective catalytic reduction(NH_(3)-SCR)catalytic activity,but it cannot be stored or applied because of severe degradation caused by low-temperature hydrothermal aging.To improve the hydrothermal stability,TiO_(2)was coated on the surface of Cu-SAPO-34 by the ALD method to form a uniform nanolayer.Though this ultrathin TiO_(2)nanolayer has little effect on NH_(3)-SCR catalytic activity of Cu-SAPO-34,the resistance to low-temperature hydrothermal aging in liquid water at 80℃for 24 h has greatly been improved.A study carried out by SEM,XRD,NH_(3)-TPD,and EPR,showed that the ultra-thin TiO_(2)nanolayers were covered uniformly and hydrolysis of frameworks silicon and the migration of Cu^(2+)was retarded.This method has some implications for the future preparation of highly robust Cu-SAPO-34 catalysts for industrial applications.This research could inspire the development of highly robust CuSAPO-34 catalysts to control the NOx emissions from diesel engines.