Cu-phthalocyanine is widely studied as a hole-transport layer in organic electronic devices. Since Cu-phthalocyanine is a molecular solid, the crystal structure depends on a circumstance to a great extent. Vacuum depo...Cu-phthalocyanine is widely studied as a hole-transport layer in organic electronic devices. Since Cu-phthalocyanine is a molecular solid, the crystal structure depends on a circumstance to a great extent. Vacuum deposited layers were known to consist of two consecutive layers. In this article, Cu-phthalocyanine was deposited on the glass substrate inclined at several angles. The thickness of the first layer was found to be dependent on the substrate angle.展开更多
Metal halide perovskite solar cells(PSCs) have attracted extensive research interest for next-generation solution-processed photovoltaic devices because of their high solar-to-electric power conversion efficiency(PCE)...Metal halide perovskite solar cells(PSCs) have attracted extensive research interest for next-generation solution-processed photovoltaic devices because of their high solar-to-electric power conversion efficiency(PCE)and low fabrication cost. Although the world's best PSC successfully achieves a considerable PCE of over 20% within a very limited timeframe after intensive efforts, the stability, high cost, and up-scaling of PSCs still remain issues. Recently, inorganic perovskite material, CsPbBr_3, is emerging as a promising photo-sensitizer with excellent durability and thermal stability, but the efficiency is still embarrassing. In this work, we intend to address these issues by exploiting CsPbBr_3 as light absorber, accompanied by using Cu-phthalocyanine(CuPc) as hole transport material(HTM) and carbon as counter electrode. The optimal device acquires a decent PCE of 6.21%, over 60% higher than those of the HTM-free devices. The systematic characterization and analysis reveal a more effective charge transfer process and a suppressed charge recombination in PSCs after introducing CuPc as hole transfer layer. More importantly, our devices exhibit an outstanding durability and a promising thermal stability, making it rather meaningful in future fabrication and application of PSCs.展开更多
Using Cu-phthalocyanine(CuPc),4,4’-diaminodiphenyl ether and pyromellitic dianhydride as monomer materials, polyimide(PI) thin films doped-CuPc have been prepared onto glass substrate by vapor phase co-deposition...Using Cu-phthalocyanine(CuPc),4,4’-diaminodiphenyl ether and pyromellitic dianhydride as monomer materials, polyimide(PI) thin films doped-CuPc have been prepared onto glass substrate by vapor phase co-deposition polymerization under a vacuum of 2×10-3Pa and thermal curing of polyamic acid film in at temperature of 150-200℃ for 60min. In this process, the polymerization can be carried out through controlling the stoichiometric ratio, heating time and deposition rates of the three monomers. IR spectrum identifies the designed chemical structure of the polymer. The absorption of polyimide doped-CuPc is very intense in vis-range and near-infrared by UV-Vis spectrum. And, the PI films doped-CuPc polymerized by vapor phase deposition have uniformity, fine thermal stability and good nonlinear optical properties, and the third-order optical nonlinear susceptibility χ(3) with degenerate four-wave mixing can be 1.984×10-9ESU.展开更多
文摘Cu-phthalocyanine is widely studied as a hole-transport layer in organic electronic devices. Since Cu-phthalocyanine is a molecular solid, the crystal structure depends on a circumstance to a great extent. Vacuum deposited layers were known to consist of two consecutive layers. In this article, Cu-phthalocyanine was deposited on the glass substrate inclined at several angles. The thickness of the first layer was found to be dependent on the substrate angle.
基金the financial support from the National Natural Science Foundation of China (Grant Nos. 51675210 and 51675209)the China Postdoctoral Science Foundation (Grant No. 2016M602283)
文摘Metal halide perovskite solar cells(PSCs) have attracted extensive research interest for next-generation solution-processed photovoltaic devices because of their high solar-to-electric power conversion efficiency(PCE)and low fabrication cost. Although the world's best PSC successfully achieves a considerable PCE of over 20% within a very limited timeframe after intensive efforts, the stability, high cost, and up-scaling of PSCs still remain issues. Recently, inorganic perovskite material, CsPbBr_3, is emerging as a promising photo-sensitizer with excellent durability and thermal stability, but the efficiency is still embarrassing. In this work, we intend to address these issues by exploiting CsPbBr_3 as light absorber, accompanied by using Cu-phthalocyanine(CuPc) as hole transport material(HTM) and carbon as counter electrode. The optimal device acquires a decent PCE of 6.21%, over 60% higher than those of the HTM-free devices. The systematic characterization and analysis reveal a more effective charge transfer process and a suppressed charge recombination in PSCs after introducing CuPc as hole transfer layer. More importantly, our devices exhibit an outstanding durability and a promising thermal stability, making it rather meaningful in future fabrication and application of PSCs.
基金Natural Science Foundation of Shaanxi Province ( 2004CS110005 ) Research Foundation of Northwestern Polytechnical University
文摘Using Cu-phthalocyanine(CuPc),4,4’-diaminodiphenyl ether and pyromellitic dianhydride as monomer materials, polyimide(PI) thin films doped-CuPc have been prepared onto glass substrate by vapor phase co-deposition polymerization under a vacuum of 2×10-3Pa and thermal curing of polyamic acid film in at temperature of 150-200℃ for 60min. In this process, the polymerization can be carried out through controlling the stoichiometric ratio, heating time and deposition rates of the three monomers. IR spectrum identifies the designed chemical structure of the polymer. The absorption of polyimide doped-CuPc is very intense in vis-range and near-infrared by UV-Vis spectrum. And, the PI films doped-CuPc polymerized by vapor phase deposition have uniformity, fine thermal stability and good nonlinear optical properties, and the third-order optical nonlinear susceptibility χ(3) with degenerate four-wave mixing can be 1.984×10-9ESU.