The Kingdom of Saudi Arabia(KSA)has achieved significant milestones in cybersecurity.KSA has maintained solid regulatorymechanisms to prevent,trace,and punish offenders to protect the interests of both individual user...The Kingdom of Saudi Arabia(KSA)has achieved significant milestones in cybersecurity.KSA has maintained solid regulatorymechanisms to prevent,trace,and punish offenders to protect the interests of both individual users and organizations from the online threats of data poaching and pilferage.The widespread usage of Information Technology(IT)and IT Enable Services(ITES)reinforces securitymeasures.The constantly evolving cyber threats are a topic that is generating a lot of discussion.In this league,the present article enlists a broad perspective on how cybercrime is developing in KSA at present and also takes a look at some of the most significant attacks that have taken place in the region.The existing legislative framework and measures in the KSA are geared toward deterring criminal activity online.Different competency models have been devised to address the necessary cybercrime competencies in this context.The research specialists in this domain can benefit more by developing a master competency level for achieving optimum security.To address this research query,the present assessment uses the Fuzzy Decision-Making Trial and Evaluation Laboratory(Fuzzy-DMTAEL),Fuzzy Analytic Hierarchy Process(F.AHP),and Fuzzy TOPSIS methodology to achieve segment-wise competency development in cyber security policy.The similarities and differences between the three methods are also discussed.This cybersecurity analysis determined that the National Cyber Security Centre got the highest priority.The study concludes by perusing the challenges that still need to be examined and resolved in effectuating more credible and efficacious online security mechanisms to offer amoreempowered ITES-driven economy for SaudiArabia.Moreover,cybersecurity specialists and policymakers need to collate their efforts to protect the country’s digital assets in the era of overt and covert cyber warfare.展开更多
This article signals the use of Artificial Intelligence (AI) in information security where its merits, downsides as well as unanticipated negative outcomes are noted. It considers AI based models that can strengthen o...This article signals the use of Artificial Intelligence (AI) in information security where its merits, downsides as well as unanticipated negative outcomes are noted. It considers AI based models that can strengthen or undermine infrastructural functions and organize the networks. In addition, the essay delves into AI’s role in Cyber security software development and the need for AI-resilient strategies that could anticipate and thwart AI-created vulnerabilities. The document also touched on the socioeconomic ramifications of the emergence of AI in Cyber security as well. Looking into AI and security literature, the report outlines benefits including made threat detection precision, extended security ops efficiency, and preventive security tasks. At the same time, it emphasizes the positive side of AI, but it also shows potential limitations such as data bias, lack of interpretability, ethical concerns, and security flaws. The work similarly focuses on the characterized of misuse and sophisticated cyberattacks. The research suggests ways to diminish AI-generating maleficence which comprise ethical AI development, robust safety measures and constant audits and updates. With regard to the AI application in Cyber security, there are both pros and cons in terms of socio-economic issues, for example, job displacement, economic growth and the change in the required workforce skills.展开更多
Information security and quality management are often considered two different fields. However, organizations must be mindful of how software security may affect quality control. This paper examines and promotes metho...Information security and quality management are often considered two different fields. However, organizations must be mindful of how software security may affect quality control. This paper examines and promotes methods through which secure software development processes can be integrated into the Systems Software Development Life-cycle (SDLC) to improve system quality. Cyber-security and quality assurance are both involved in reducing risk. Software security teams work to reduce security risks, whereas quality assurance teams work to decrease risks to quality. There is a need for clear standards, frameworks, processes, and procedures to be followed by organizations to ensure high-level quality while reducing security risks. This research uses a survey of industry professionals to help identify best practices for developing software with fewer defects from the early stages of the SDLC to improve both the quality and security of software. Results show that there is a need for better security awareness among all members of software development teams.展开更多
The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated...The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated to cyber security threats that need to be addressed.This work investigates hybrid cyber threats(HCTs),which are now working on an entirely new level with the increasingly adopted IIoT.This work focuses on emerging methods to model,detect,and defend against hybrid cyber attacks using machine learning(ML)techniques.Specifically,a novel ML-based HCT modelling and analysis framework was proposed,in which L1 regularisation and Random Forest were used to cluster features and analyse the importance and impact of each feature in both individual threats and HCTs.A grey relation analysis-based model was employed to construct the correlation between IIoT components and different threats.展开更多
Cyber Defense is becoming a major issue for every organization to keep business continuity intact.The presented paper explores the effectiveness of a meta-heuristic optimization algorithm-Artificial Bees Colony Algori...Cyber Defense is becoming a major issue for every organization to keep business continuity intact.The presented paper explores the effectiveness of a meta-heuristic optimization algorithm-Artificial Bees Colony Algorithm(ABC)as an Nature Inspired Cyber Security mechanism to achieve adaptive defense.It experiments on the Denial-Of-Service attack scenarios which involves limiting the traffic flow for each node.Businesses today have adapted their service distribution models to include the use of the Internet,allowing them to effectively manage and interact with their customer data.This shift has created an increased reliance on online services to store vast amounts of confidential customer data,meaning any disruption or outage of these services could be disastrous for the business,leaving them without the knowledge to serve their customers.Adversaries can exploit such an event to gain unauthorized access to the confidential data of the customers.The proposed algorithm utilizes an Adaptive Defense approach to continuously select nodes that could present characteristics of a probable malicious entity.For any changes in network parameters,the cluster of nodes is selected in the prepared solution set as a probable malicious node and the traffic rate with the ratio of packet delivery is managed with respect to the properties of normal nodes to deliver a disaster recovery plan for potential businesses.展开更多
This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t...This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].展开更多
Platforms facilitate information exchange,streamline resources,and reduce production and management costs for companies.However,some viral information may invade and steal company resources,or lead to information leak...Platforms facilitate information exchange,streamline resources,and reduce production and management costs for companies.However,some viral information may invade and steal company resources,or lead to information leakage.For this reason,this paper discusses the standards for cybersecurity protection,examines the current state of cybersecurity management and the risks faced by cloud platforms,expands the time and space for training on cloud platforms,and provides recommendations for measuring the level of cybersecurity protection within cloud platforms in order to build a solid foundation for them.展开更多
As Egyptian oil and gas downstream information technology has grown digitally over the past decade, security breaches against these digitally connected systems have also increased. These cyber security threats could h...As Egyptian oil and gas downstream information technology has grown digitally over the past decade, security breaches against these digitally connected systems have also increased. These cyber security threats could have devastating effects on the operations and reputation of these companies. Preventing such cyberattacks is crucial. Especially, with the significance of the Egyptian oil and gas downstream sector to the local economy and the fact that many of these connected systems are sometimes managed remotely. This paper examines the value of the ISO 27001 standard in mitigating the effect of cyber threat and seeks to inspire decision-makers to the importance of the proactive measures to strengthen their organization’s cybersecurity posture and protect information critical assets. The study stresses the importance of improving the local educational system to bridge the gap between supply and demand for cybersecurity specialists by implementing a structured approach that emphasizes behavior modification to get a high return on investment in cybersecurity awareness.展开更多
Cyber threats and risks are increasing exponentially with time. For preventing and defense against these threats and risks, precise risk perception for effective mitigation is the first step. Risk perception is necess...Cyber threats and risks are increasing exponentially with time. For preventing and defense against these threats and risks, precise risk perception for effective mitigation is the first step. Risk perception is necessary requirement to mitigate risk as it drives the security strategy at the organizational level and human attitude at individual level. Sometime, individuals understand there is a risk that a negative event or incident can occur, but they do not believe there will be a personal impact if the risk comes to realization but instead, they believe that the negative event will impact others. This belief supports the common belief that individuals tend to think of themselves as invulnerable, i.e., optimistically bias about the situation, thus affecting their attitude for taking preventive measures due to inappropriate risk perception or overconfidence. The main motivation of this meta-analysis is to assess that how the cyber optimistic bias or cyber optimism bias affects individual’s cyber security risk perception and how it changes their decisions. Applying a meta-analysis, this study found that optimistic bias has an overall negative impact on the cyber security due to the inappropriate risk perception and considering themselves invulnerable by biasing that the threat will not occur to them. Due to the cyber optimism bias, the individual will sometimes share passwords by considering it will not be maliciously used, lack in adopting of preventive measures, ignore security incidents, wrong perception of cyber threats and overconfidence on themselves in the context of cyber security.展开更多
The application field for Unmanned Aerial Vehicle (UAV) technology and its adoption rate have been increasingsteadily in the past years. Decreasing cost of commercial drones has enabled their use at a scale broader th...The application field for Unmanned Aerial Vehicle (UAV) technology and its adoption rate have been increasingsteadily in the past years. Decreasing cost of commercial drones has enabled their use at a scale broader thanever before. However, increasing the complexity of UAVs and decreasing the cost, both contribute to a lack ofimplemented securitymeasures and raise new security and safety concerns. For instance, the issue of implausible ortampered UAV sensor measurements is barely addressed in the current research literature and thus, requires moreattention from the research community. The goal of this survey is to extensively review state-of-the-art literatureregarding common sensor- and communication-based vulnerabilities, existing threats, and active or passive cyberattacksagainst UAVs, as well as shed light on the research gaps in the literature. In this work, we describe theUnmanned Aerial System (UAS) architecture to point out the origination sources for security and safety issues.Weevaluate the coverage and completeness of each related research work in a comprehensive comparison table as wellas classify the threats, vulnerabilities and cyber-attacks into sensor-based and communication-based categories.Additionally, for each individual cyber-attack, we describe existing countermeasures or detectionmechanisms andprovide a list of requirements to ensureUAV’s security and safety.We also address the problem of implausible sensormeasurements and introduce the idea of a plausibility check for sensor data. By doing so, we discover additionalmeasures to improve security and safety and report on a research niche that is not well represented in the currentresearch literature.展开更多
Digital assets have boomed over the past few years with the emergence of Non-fungible Tokens(NFTs).To be specific,the total trading volume of digital assets reached an astounding$55.5 billion in 2022.Nevertheless,nume...Digital assets have boomed over the past few years with the emergence of Non-fungible Tokens(NFTs).To be specific,the total trading volume of digital assets reached an astounding$55.5 billion in 2022.Nevertheless,numerous security concerns have been raised by the rapid expansion of the NFT ecosystem.NFT holders are exposed to a plethora of scams and traps,putting their digital assets at risk of being lost.However,academic research on NFT security is scarce,and the security issues have aroused rare attention.In this study,the NFT ecological process is comprehensively explored.This process falls into five different stages encompassing the entire lifecycle of NFTs.Subsequently,the security issues regarding the respective stage are elaborated and analyzed in depth.A matrix model is proposed as a novel contribution to the categorization of NFT security issues.Diverse data are collected from social networks,the Ethereum blockchain,and NFT markets to substantiate our claims regarding the severity of security concerns in the NFT ecosystem.From this comprehensive dataset,nine key NFT security issues are identified from the matrix model and then subjected to qualitative and quantitative analysis.This study aims to shed light on the severity of NFT ecosystem security issues.The findings stress the need for increased attention and proactive measures to safeguard the NFT ecosystem.展开更多
The identification and mitigation of anomaly data,characterized by deviations from normal patterns or singularities,stand as critical endeavors in modern technological landscapes,spanning domains such as Non-Fungible ...The identification and mitigation of anomaly data,characterized by deviations from normal patterns or singularities,stand as critical endeavors in modern technological landscapes,spanning domains such as Non-Fungible Tokens(NFTs),cyber-security,and the burgeoning metaverse.This paper presents a novel proposal aimed at refining anomaly detection methodologies,with a particular focus on continuous data streams.The essence of the proposed approach lies in analyzing the rate of change within such data streams,leveraging this dynamic aspect to discern anomalies with heightened precision and efficacy.Through empirical evaluation,our method demonstrates a marked improvement over existing techniques,showcasing more nuanced and sophisticated result values.Moreover,we envision a trajectory of continuous research and development,wherein iterative refinement and supplementation will tailor our approach to various anomaly detection scenarios,ensuring adaptability and robustness in real-world applications.展开更多
The widespread adoption of QR codes has revolutionized various industries, streamlined transactions and improved inventory management. However, this increased reliance on QR code technology also exposes it to potentia...The widespread adoption of QR codes has revolutionized various industries, streamlined transactions and improved inventory management. However, this increased reliance on QR code technology also exposes it to potential security risks that malicious actors can exploit. QR code Phishing, or “Quishing”, is a type of phishing attack that leverages QR codes to deceive individuals into visiting malicious websites or downloading harmful software. These attacks can be particularly effective due to the growing popularity and trust in QR codes. This paper examines the importance of enhancing the security of QR codes through the utilization of artificial intelligence (AI). The abstract investigates the integration of AI methods for identifying and mitigating security threats associated with QR code usage. By assessing the current state of QR code security and evaluating the effectiveness of AI-driven solutions, this research aims to propose comprehensive strategies for strengthening QR code technology’s resilience. The study contributes to discussions on secure data encoding and retrieval, providing valuable insights into the evolving synergy between QR codes and AI for the advancement of secure digital communication.展开更多
Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(I...Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(IDS)is to prevent malicious attacks that corrupt operations and interrupt data flow,which might have significant impact on critical industries and infrastructure.This research examines existing IDS,based on Artificial Intelligence(AI)for IoT devices,methods,and techniques.The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy,precision,recall and F1-score;this research also considers training time.Results demonstrate that Graph Neural Networks(GNN)have several benefits over other traditional AI frameworks through their ability to achieve in excess of 99%accuracy in a relatively short training time,while also capable of learning from network traffic the inherent characteristics of different cyber-attacks.These findings identify the GNN(a Deep Learning AI method)as the most efficient IDS system.The novelty of this research lies also in the linking between high yielding AI-based IDS algorithms and the AI-based learning approach for data privacy protection.This research recommends Federated Learning(FL)as the AI training model,which increases data privacy protection and reduces network data flow,resulting in a more secure and efficient IDS solution.展开更多
Data breaches have massive consequences for companies, affecting them financially and undermining their reputation, which poses significant challenges to online security and the long-term viability of businesses. This...Data breaches have massive consequences for companies, affecting them financially and undermining their reputation, which poses significant challenges to online security and the long-term viability of businesses. This study analyzes trends in data breaches in the United States, examining the frequency, causes, and magnitude of breaches across various industries. We document that data breaches are increasing, with hacking emerging as the leading cause. Our descriptive analyses explore factors influencing breaches, including security vulnerabilities, human error, and malicious attacks. The findings provide policymakers and businesses with actionable insights to bolster data security through proactive audits, patching, encryption, and response planning. By better understanding breach patterns and risk factors, organizations can take targeted steps to enhance protections and mitigate the potential damage of future incidents.展开更多
Network intrusion detection systems need to be updated due to the rise in cyber threats. In order to improve detection accuracy, this research presents a strong strategy that makes use of a stacked ensemble method, wh...Network intrusion detection systems need to be updated due to the rise in cyber threats. In order to improve detection accuracy, this research presents a strong strategy that makes use of a stacked ensemble method, which combines the advantages of several machine learning models. The ensemble is made up of various base models, such as Decision Trees, K-Nearest Neighbors (KNN), Multi-Layer Perceptrons (MLP), and Naive Bayes, each of which offers a distinct perspective on the properties of the data. The research adheres to a methodical workflow that begins with thorough data preprocessing to guarantee the accuracy and applicability of the data. In order to extract useful attributes from network traffic data—which are essential for efficient model training—feature engineering is used. The ensemble approach combines these models by training a Logistic Regression model meta-learner on base model predictions. In addition to increasing prediction accuracy, this tiered approach helps get around the drawbacks that come with using individual models. High accuracy, precision, and recall are shown in the model’s evaluation of a network intrusion dataset, indicating the model’s efficacy in identifying malicious activity. Cross-validation is used to make sure the models are reliable and well-generalized to new, untested data. In addition to advancing cybersecurity, the research establishes a foundation for the implementation of flexible and scalable intrusion detection systems. This hybrid, stacked ensemble model has a lot of potential for improving cyberattack prevention, lowering the likelihood of cyberattacks, and offering a scalable solution that can be adjusted to meet new threats and technological advancements.展开更多
The increasing amount and intricacy of network traffic in the modern digital era have worsened the difficulty of identifying abnormal behaviours that may indicate potential security breaches or operational interruptio...The increasing amount and intricacy of network traffic in the modern digital era have worsened the difficulty of identifying abnormal behaviours that may indicate potential security breaches or operational interruptions. Conventional detection approaches face challenges in keeping up with the ever-changing strategies of cyber-attacks, resulting in heightened susceptibility and significant harm to network infrastructures. In order to tackle this urgent issue, this project focused on developing an effective anomaly detection system that utilizes Machine Learning technology. The suggested model utilizes contemporary machine learning algorithms and frameworks to autonomously detect deviations from typical network behaviour. It promptly identifies anomalous activities that may indicate security breaches or performance difficulties. The solution entails a multi-faceted approach encompassing data collection, preprocessing, feature engineering, model training, and evaluation. By utilizing machine learning methods, the model is trained on a wide range of datasets that include both regular and abnormal network traffic patterns. This training ensures that the model can adapt to numerous scenarios. The main priority is to ensure that the system is functional and efficient, with a particular emphasis on reducing false positives to avoid unwanted alerts. Additionally, efforts are directed on improving anomaly detection accuracy so that the model can consistently distinguish between potentially harmful and benign activity. This project aims to greatly strengthen network security by addressing emerging cyber threats and improving their resilience and reliability.展开更多
This paper addressed the current state of police officers’ capabilities, skills, and their readiness to deal with the developments of cybercrime. This study discussed definition of cybercrime, cybercrime categories a...This paper addressed the current state of police officers’ capabilities, skills, and their readiness to deal with the developments of cybercrime. This study discussed definition of cybercrime, cybercrime categories as well as comparison between traditional criminal techniques and cybercrime. As the abilities and skills required for detectives to investigate cybercrime have been discussed. Additionally, literature review and related work, was addressed challenges role of the police in combating cybercrime and facing cybercrime policing. We proposed the main tool in the study which is “Checklist of essential skills for a cybercrime investigator”. Thus, to gain the ability to Identify technical and practical requirements in terms of skills, programs, and equipment to achieve effective and professional results in fight cybercrimes.展开更多
In recent years, the place occupied by the various manifestations of cyber-crime in companies has been considerable. Indeed, due to the rapid evolution of telecommunications technologies, companies, regardless of thei...In recent years, the place occupied by the various manifestations of cyber-crime in companies has been considerable. Indeed, due to the rapid evolution of telecommunications technologies, companies, regardless of their size or sector of activity, are now the target of advanced persistent threats. The Work 2035 study also revealed that cyber crimes (such as critical infrastructure hacks) and massive data breaches are major sources of concern. Thus, it is important for organizations to guarantee a minimum level of security to avoid potential attacks that can cause paralysis of systems, loss of sensitive data, exposure to blackmail, damage to reputation or even a commercial harm. To do this, among other means, hardening is used, the main objective of which is to reduce the attack surface within a company. The execution of the hardening configurations as well as the verification of these are carried out on the servers and network equipment with the aim of reducing the number of openings present by keeping only those which are necessary for proper operation. However, nowadays, in many companies, these tasks are done manually. As a result, the execution and verification of hardening configurations are very often subject to potential errors but also highly consuming human and financial resources. The problem is that it is essential for operators to maintain an optimal level of security while minimizing costs, hence the interest in automating hardening processes and verifying the hardening of servers and network equipment. It is in this logic that we propose within the framework of this work the reinforcement of the security of the information systems (IS) by the automation of the mechanisms of hardening. In our work, we have, on the one hand, set up a hardening procedure in accordance with international security standards for servers, routers and switches and, on the other hand, designed and produced a functional application which makes it possible to: 1) Realise the configuration of the hardening;2) Verify them;3) Correct the non conformities;4) Write and send by mail a verification report for the configurations;5) And finally update the procedures of hardening. Our web application thus created allows in less than fifteen (15) minutes actions that previously took at least five (5) hours of time. This allows supervised network operators to save time and money, but also to improve their security standards in line with international standards.展开更多
Intrusion Detection System(IDS)is a network security mechanism that analyses all users’and applications’traffic and detectsmalicious activities in real-time.The existing IDSmethods suffer fromlower accuracy and lack...Intrusion Detection System(IDS)is a network security mechanism that analyses all users’and applications’traffic and detectsmalicious activities in real-time.The existing IDSmethods suffer fromlower accuracy and lack the required level of security to prevent sophisticated attacks.This problem can result in the system being vulnerable to attacks,which can lead to the loss of sensitive data and potential system failure.Therefore,this paper proposes an Intrusion Detection System using Logistic Tanh-based Convolutional Neural Network Classification(LTH-CNN).Here,the Correlation Coefficient based Mayfly Optimization(CC-MA)algorithm is used to extract the input characteristics for the IDS from the input data.Then,the optimized features are utilized by the LTH-CNN,which returns the attacked and non-attacked data.After that,the attacked data is stored in the log file and non-attacked data is mapped to the cyber security and data security phases.To prevent the system from cyber-attack,the Source and Destination IP address is converted into a complex binary format named 1’s Complement Reverse Shift Right(CRSR),where,in the data security phase the sensed data is converted into an encrypted format using Senders Public key Exclusive OR Receivers Public Key-Elliptic Curve Cryptography(PXORP-ECC)Algorithm to improve the data security.TheNetwork Security Laboratory-Knowledge Discovery inDatabases(NSLKDD)dataset and real-time sensor are used to train and evaluate the proposed LTH-CNN.The suggested model is evaluated based on accuracy,sensitivity,and specificity,which outperformed the existing IDS methods,according to the results of the experiments.展开更多
文摘The Kingdom of Saudi Arabia(KSA)has achieved significant milestones in cybersecurity.KSA has maintained solid regulatorymechanisms to prevent,trace,and punish offenders to protect the interests of both individual users and organizations from the online threats of data poaching and pilferage.The widespread usage of Information Technology(IT)and IT Enable Services(ITES)reinforces securitymeasures.The constantly evolving cyber threats are a topic that is generating a lot of discussion.In this league,the present article enlists a broad perspective on how cybercrime is developing in KSA at present and also takes a look at some of the most significant attacks that have taken place in the region.The existing legislative framework and measures in the KSA are geared toward deterring criminal activity online.Different competency models have been devised to address the necessary cybercrime competencies in this context.The research specialists in this domain can benefit more by developing a master competency level for achieving optimum security.To address this research query,the present assessment uses the Fuzzy Decision-Making Trial and Evaluation Laboratory(Fuzzy-DMTAEL),Fuzzy Analytic Hierarchy Process(F.AHP),and Fuzzy TOPSIS methodology to achieve segment-wise competency development in cyber security policy.The similarities and differences between the three methods are also discussed.This cybersecurity analysis determined that the National Cyber Security Centre got the highest priority.The study concludes by perusing the challenges that still need to be examined and resolved in effectuating more credible and efficacious online security mechanisms to offer amoreempowered ITES-driven economy for SaudiArabia.Moreover,cybersecurity specialists and policymakers need to collate their efforts to protect the country’s digital assets in the era of overt and covert cyber warfare.
文摘This article signals the use of Artificial Intelligence (AI) in information security where its merits, downsides as well as unanticipated negative outcomes are noted. It considers AI based models that can strengthen or undermine infrastructural functions and organize the networks. In addition, the essay delves into AI’s role in Cyber security software development and the need for AI-resilient strategies that could anticipate and thwart AI-created vulnerabilities. The document also touched on the socioeconomic ramifications of the emergence of AI in Cyber security as well. Looking into AI and security literature, the report outlines benefits including made threat detection precision, extended security ops efficiency, and preventive security tasks. At the same time, it emphasizes the positive side of AI, but it also shows potential limitations such as data bias, lack of interpretability, ethical concerns, and security flaws. The work similarly focuses on the characterized of misuse and sophisticated cyberattacks. The research suggests ways to diminish AI-generating maleficence which comprise ethical AI development, robust safety measures and constant audits and updates. With regard to the AI application in Cyber security, there are both pros and cons in terms of socio-economic issues, for example, job displacement, economic growth and the change in the required workforce skills.
文摘Information security and quality management are often considered two different fields. However, organizations must be mindful of how software security may affect quality control. This paper examines and promotes methods through which secure software development processes can be integrated into the Systems Software Development Life-cycle (SDLC) to improve system quality. Cyber-security and quality assurance are both involved in reducing risk. Software security teams work to reduce security risks, whereas quality assurance teams work to decrease risks to quality. There is a need for clear standards, frameworks, processes, and procedures to be followed by organizations to ensure high-level quality while reducing security risks. This research uses a survey of industry professionals to help identify best practices for developing software with fewer defects from the early stages of the SDLC to improve both the quality and security of software. Results show that there is a need for better security awareness among all members of software development teams.
文摘The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated to cyber security threats that need to be addressed.This work investigates hybrid cyber threats(HCTs),which are now working on an entirely new level with the increasingly adopted IIoT.This work focuses on emerging methods to model,detect,and defend against hybrid cyber attacks using machine learning(ML)techniques.Specifically,a novel ML-based HCT modelling and analysis framework was proposed,in which L1 regularisation and Random Forest were used to cluster features and analyse the importance and impact of each feature in both individual threats and HCTs.A grey relation analysis-based model was employed to construct the correlation between IIoT components and different threats.
文摘Cyber Defense is becoming a major issue for every organization to keep business continuity intact.The presented paper explores the effectiveness of a meta-heuristic optimization algorithm-Artificial Bees Colony Algorithm(ABC)as an Nature Inspired Cyber Security mechanism to achieve adaptive defense.It experiments on the Denial-Of-Service attack scenarios which involves limiting the traffic flow for each node.Businesses today have adapted their service distribution models to include the use of the Internet,allowing them to effectively manage and interact with their customer data.This shift has created an increased reliance on online services to store vast amounts of confidential customer data,meaning any disruption or outage of these services could be disastrous for the business,leaving them without the knowledge to serve their customers.Adversaries can exploit such an event to gain unauthorized access to the confidential data of the customers.The proposed algorithm utilizes an Adaptive Defense approach to continuously select nodes that could present characteristics of a probable malicious entity.For any changes in network parameters,the cluster of nodes is selected in the prepared solution set as a probable malicious node and the traffic rate with the ratio of packet delivery is managed with respect to the properties of normal nodes to deliver a disaster recovery plan for potential businesses.
文摘This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].
文摘Platforms facilitate information exchange,streamline resources,and reduce production and management costs for companies.However,some viral information may invade and steal company resources,or lead to information leakage.For this reason,this paper discusses the standards for cybersecurity protection,examines the current state of cybersecurity management and the risks faced by cloud platforms,expands the time and space for training on cloud platforms,and provides recommendations for measuring the level of cybersecurity protection within cloud platforms in order to build a solid foundation for them.
文摘As Egyptian oil and gas downstream information technology has grown digitally over the past decade, security breaches against these digitally connected systems have also increased. These cyber security threats could have devastating effects on the operations and reputation of these companies. Preventing such cyberattacks is crucial. Especially, with the significance of the Egyptian oil and gas downstream sector to the local economy and the fact that many of these connected systems are sometimes managed remotely. This paper examines the value of the ISO 27001 standard in mitigating the effect of cyber threat and seeks to inspire decision-makers to the importance of the proactive measures to strengthen their organization’s cybersecurity posture and protect information critical assets. The study stresses the importance of improving the local educational system to bridge the gap between supply and demand for cybersecurity specialists by implementing a structured approach that emphasizes behavior modification to get a high return on investment in cybersecurity awareness.
文摘Cyber threats and risks are increasing exponentially with time. For preventing and defense against these threats and risks, precise risk perception for effective mitigation is the first step. Risk perception is necessary requirement to mitigate risk as it drives the security strategy at the organizational level and human attitude at individual level. Sometime, individuals understand there is a risk that a negative event or incident can occur, but they do not believe there will be a personal impact if the risk comes to realization but instead, they believe that the negative event will impact others. This belief supports the common belief that individuals tend to think of themselves as invulnerable, i.e., optimistically bias about the situation, thus affecting their attitude for taking preventive measures due to inappropriate risk perception or overconfidence. The main motivation of this meta-analysis is to assess that how the cyber optimistic bias or cyber optimism bias affects individual’s cyber security risk perception and how it changes their decisions. Applying a meta-analysis, this study found that optimistic bias has an overall negative impact on the cyber security due to the inappropriate risk perception and considering themselves invulnerable by biasing that the threat will not occur to them. Due to the cyber optimism bias, the individual will sometimes share passwords by considering it will not be maliciously used, lack in adopting of preventive measures, ignore security incidents, wrong perception of cyber threats and overconfidence on themselves in the context of cyber security.
基金the FederalMinistry of Education and Research of Germany under Grant Numbers 16ES1131 and 16ES1128K.
文摘The application field for Unmanned Aerial Vehicle (UAV) technology and its adoption rate have been increasingsteadily in the past years. Decreasing cost of commercial drones has enabled their use at a scale broader thanever before. However, increasing the complexity of UAVs and decreasing the cost, both contribute to a lack ofimplemented securitymeasures and raise new security and safety concerns. For instance, the issue of implausible ortampered UAV sensor measurements is barely addressed in the current research literature and thus, requires moreattention from the research community. The goal of this survey is to extensively review state-of-the-art literatureregarding common sensor- and communication-based vulnerabilities, existing threats, and active or passive cyberattacksagainst UAVs, as well as shed light on the research gaps in the literature. In this work, we describe theUnmanned Aerial System (UAS) architecture to point out the origination sources for security and safety issues.Weevaluate the coverage and completeness of each related research work in a comprehensive comparison table as wellas classify the threats, vulnerabilities and cyber-attacks into sensor-based and communication-based categories.Additionally, for each individual cyber-attack, we describe existing countermeasures or detectionmechanisms andprovide a list of requirements to ensureUAV’s security and safety.We also address the problem of implausible sensormeasurements and introduce the idea of a plausibility check for sensor data. By doing so, we discover additionalmeasures to improve security and safety and report on a research niche that is not well represented in the currentresearch literature.
文摘Digital assets have boomed over the past few years with the emergence of Non-fungible Tokens(NFTs).To be specific,the total trading volume of digital assets reached an astounding$55.5 billion in 2022.Nevertheless,numerous security concerns have been raised by the rapid expansion of the NFT ecosystem.NFT holders are exposed to a plethora of scams and traps,putting their digital assets at risk of being lost.However,academic research on NFT security is scarce,and the security issues have aroused rare attention.In this study,the NFT ecological process is comprehensively explored.This process falls into five different stages encompassing the entire lifecycle of NFTs.Subsequently,the security issues regarding the respective stage are elaborated and analyzed in depth.A matrix model is proposed as a novel contribution to the categorization of NFT security issues.Diverse data are collected from social networks,the Ethereum blockchain,and NFT markets to substantiate our claims regarding the severity of security concerns in the NFT ecosystem.From this comprehensive dataset,nine key NFT security issues are identified from the matrix model and then subjected to qualitative and quantitative analysis.This study aims to shed light on the severity of NFT ecosystem security issues.The findings stress the need for increased attention and proactive measures to safeguard the NFT ecosystem.
基金supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea(NRF-2019S1A5B5A02041334).
文摘The identification and mitigation of anomaly data,characterized by deviations from normal patterns or singularities,stand as critical endeavors in modern technological landscapes,spanning domains such as Non-Fungible Tokens(NFTs),cyber-security,and the burgeoning metaverse.This paper presents a novel proposal aimed at refining anomaly detection methodologies,with a particular focus on continuous data streams.The essence of the proposed approach lies in analyzing the rate of change within such data streams,leveraging this dynamic aspect to discern anomalies with heightened precision and efficacy.Through empirical evaluation,our method demonstrates a marked improvement over existing techniques,showcasing more nuanced and sophisticated result values.Moreover,we envision a trajectory of continuous research and development,wherein iterative refinement and supplementation will tailor our approach to various anomaly detection scenarios,ensuring adaptability and robustness in real-world applications.
文摘The widespread adoption of QR codes has revolutionized various industries, streamlined transactions and improved inventory management. However, this increased reliance on QR code technology also exposes it to potential security risks that malicious actors can exploit. QR code Phishing, or “Quishing”, is a type of phishing attack that leverages QR codes to deceive individuals into visiting malicious websites or downloading harmful software. These attacks can be particularly effective due to the growing popularity and trust in QR codes. This paper examines the importance of enhancing the security of QR codes through the utilization of artificial intelligence (AI). The abstract investigates the integration of AI methods for identifying and mitigating security threats associated with QR code usage. By assessing the current state of QR code security and evaluating the effectiveness of AI-driven solutions, this research aims to propose comprehensive strategies for strengthening QR code technology’s resilience. The study contributes to discussions on secure data encoding and retrieval, providing valuable insights into the evolving synergy between QR codes and AI for the advancement of secure digital communication.
文摘Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(IDS)is to prevent malicious attacks that corrupt operations and interrupt data flow,which might have significant impact on critical industries and infrastructure.This research examines existing IDS,based on Artificial Intelligence(AI)for IoT devices,methods,and techniques.The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy,precision,recall and F1-score;this research also considers training time.Results demonstrate that Graph Neural Networks(GNN)have several benefits over other traditional AI frameworks through their ability to achieve in excess of 99%accuracy in a relatively short training time,while also capable of learning from network traffic the inherent characteristics of different cyber-attacks.These findings identify the GNN(a Deep Learning AI method)as the most efficient IDS system.The novelty of this research lies also in the linking between high yielding AI-based IDS algorithms and the AI-based learning approach for data privacy protection.This research recommends Federated Learning(FL)as the AI training model,which increases data privacy protection and reduces network data flow,resulting in a more secure and efficient IDS solution.
文摘Data breaches have massive consequences for companies, affecting them financially and undermining their reputation, which poses significant challenges to online security and the long-term viability of businesses. This study analyzes trends in data breaches in the United States, examining the frequency, causes, and magnitude of breaches across various industries. We document that data breaches are increasing, with hacking emerging as the leading cause. Our descriptive analyses explore factors influencing breaches, including security vulnerabilities, human error, and malicious attacks. The findings provide policymakers and businesses with actionable insights to bolster data security through proactive audits, patching, encryption, and response planning. By better understanding breach patterns and risk factors, organizations can take targeted steps to enhance protections and mitigate the potential damage of future incidents.
文摘Network intrusion detection systems need to be updated due to the rise in cyber threats. In order to improve detection accuracy, this research presents a strong strategy that makes use of a stacked ensemble method, which combines the advantages of several machine learning models. The ensemble is made up of various base models, such as Decision Trees, K-Nearest Neighbors (KNN), Multi-Layer Perceptrons (MLP), and Naive Bayes, each of which offers a distinct perspective on the properties of the data. The research adheres to a methodical workflow that begins with thorough data preprocessing to guarantee the accuracy and applicability of the data. In order to extract useful attributes from network traffic data—which are essential for efficient model training—feature engineering is used. The ensemble approach combines these models by training a Logistic Regression model meta-learner on base model predictions. In addition to increasing prediction accuracy, this tiered approach helps get around the drawbacks that come with using individual models. High accuracy, precision, and recall are shown in the model’s evaluation of a network intrusion dataset, indicating the model’s efficacy in identifying malicious activity. Cross-validation is used to make sure the models are reliable and well-generalized to new, untested data. In addition to advancing cybersecurity, the research establishes a foundation for the implementation of flexible and scalable intrusion detection systems. This hybrid, stacked ensemble model has a lot of potential for improving cyberattack prevention, lowering the likelihood of cyberattacks, and offering a scalable solution that can be adjusted to meet new threats and technological advancements.
文摘The increasing amount and intricacy of network traffic in the modern digital era have worsened the difficulty of identifying abnormal behaviours that may indicate potential security breaches or operational interruptions. Conventional detection approaches face challenges in keeping up with the ever-changing strategies of cyber-attacks, resulting in heightened susceptibility and significant harm to network infrastructures. In order to tackle this urgent issue, this project focused on developing an effective anomaly detection system that utilizes Machine Learning technology. The suggested model utilizes contemporary machine learning algorithms and frameworks to autonomously detect deviations from typical network behaviour. It promptly identifies anomalous activities that may indicate security breaches or performance difficulties. The solution entails a multi-faceted approach encompassing data collection, preprocessing, feature engineering, model training, and evaluation. By utilizing machine learning methods, the model is trained on a wide range of datasets that include both regular and abnormal network traffic patterns. This training ensures that the model can adapt to numerous scenarios. The main priority is to ensure that the system is functional and efficient, with a particular emphasis on reducing false positives to avoid unwanted alerts. Additionally, efforts are directed on improving anomaly detection accuracy so that the model can consistently distinguish between potentially harmful and benign activity. This project aims to greatly strengthen network security by addressing emerging cyber threats and improving their resilience and reliability.
文摘This paper addressed the current state of police officers’ capabilities, skills, and their readiness to deal with the developments of cybercrime. This study discussed definition of cybercrime, cybercrime categories as well as comparison between traditional criminal techniques and cybercrime. As the abilities and skills required for detectives to investigate cybercrime have been discussed. Additionally, literature review and related work, was addressed challenges role of the police in combating cybercrime and facing cybercrime policing. We proposed the main tool in the study which is “Checklist of essential skills for a cybercrime investigator”. Thus, to gain the ability to Identify technical and practical requirements in terms of skills, programs, and equipment to achieve effective and professional results in fight cybercrimes.
文摘In recent years, the place occupied by the various manifestations of cyber-crime in companies has been considerable. Indeed, due to the rapid evolution of telecommunications technologies, companies, regardless of their size or sector of activity, are now the target of advanced persistent threats. The Work 2035 study also revealed that cyber crimes (such as critical infrastructure hacks) and massive data breaches are major sources of concern. Thus, it is important for organizations to guarantee a minimum level of security to avoid potential attacks that can cause paralysis of systems, loss of sensitive data, exposure to blackmail, damage to reputation or even a commercial harm. To do this, among other means, hardening is used, the main objective of which is to reduce the attack surface within a company. The execution of the hardening configurations as well as the verification of these are carried out on the servers and network equipment with the aim of reducing the number of openings present by keeping only those which are necessary for proper operation. However, nowadays, in many companies, these tasks are done manually. As a result, the execution and verification of hardening configurations are very often subject to potential errors but also highly consuming human and financial resources. The problem is that it is essential for operators to maintain an optimal level of security while minimizing costs, hence the interest in automating hardening processes and verifying the hardening of servers and network equipment. It is in this logic that we propose within the framework of this work the reinforcement of the security of the information systems (IS) by the automation of the mechanisms of hardening. In our work, we have, on the one hand, set up a hardening procedure in accordance with international security standards for servers, routers and switches and, on the other hand, designed and produced a functional application which makes it possible to: 1) Realise the configuration of the hardening;2) Verify them;3) Correct the non conformities;4) Write and send by mail a verification report for the configurations;5) And finally update the procedures of hardening. Our web application thus created allows in less than fifteen (15) minutes actions that previously took at least five (5) hours of time. This allows supervised network operators to save time and money, but also to improve their security standards in line with international standards.
文摘Intrusion Detection System(IDS)is a network security mechanism that analyses all users’and applications’traffic and detectsmalicious activities in real-time.The existing IDSmethods suffer fromlower accuracy and lack the required level of security to prevent sophisticated attacks.This problem can result in the system being vulnerable to attacks,which can lead to the loss of sensitive data and potential system failure.Therefore,this paper proposes an Intrusion Detection System using Logistic Tanh-based Convolutional Neural Network Classification(LTH-CNN).Here,the Correlation Coefficient based Mayfly Optimization(CC-MA)algorithm is used to extract the input characteristics for the IDS from the input data.Then,the optimized features are utilized by the LTH-CNN,which returns the attacked and non-attacked data.After that,the attacked data is stored in the log file and non-attacked data is mapped to the cyber security and data security phases.To prevent the system from cyber-attack,the Source and Destination IP address is converted into a complex binary format named 1’s Complement Reverse Shift Right(CRSR),where,in the data security phase the sensed data is converted into an encrypted format using Senders Public key Exclusive OR Receivers Public Key-Elliptic Curve Cryptography(PXORP-ECC)Algorithm to improve the data security.TheNetwork Security Laboratory-Knowledge Discovery inDatabases(NSLKDD)dataset and real-time sensor are used to train and evaluate the proposed LTH-CNN.The suggested model is evaluated based on accuracy,sensitivity,and specificity,which outperformed the existing IDS methods,according to the results of the experiments.