Hexagonal MnMX-based(M=Co or Ni,X=Si or Ge)alloys exhibit giant reversible barocaloric effects.However,giant volume expansion would result in the as-cast MnMX ingots fragmenting into powders,and inevitably bring the d...Hexagonal MnMX-based(M=Co or Ni,X=Si or Ge)alloys exhibit giant reversible barocaloric effects.However,giant volume expansion would result in the as-cast MnMX ingots fragmenting into powders,and inevitably bring the deterioration of mechanical properties and formability.Grain fragmentation can bring degradation of structural transformation entropy change during cyclic application and removal of pressure.In this paper,giant reversible barocaloric effects with high thermal cycle stability can be achieved in the epoxy bonded(MnCoGe)0.96(CuCoSn)0.04 composite.Giant reversible isothermal entropy change of 43.0 J·kg^(−1)·K^(−1) and adiabatic temperature change from barocaloric effects(ΔT_(BCE))of 15.6 K can be obtained within a wide temperature span of 30 K at 360 MPa,which is mainly attributed to the integration of the change in the transition temperature driven by pressure of−101 K·GPa^(−1) and suitable thermal hysteresis of 11.1 K.Further,the variation of reversibleΔ_(TBCE) against the applied hydrostatic pressure reaches up to 43 K·GPa^(−1),which is at the highest level among the other reported giant barocaloric compounds.More importantly,after 60 thermal cycles,the composite does not break and the calorimetric curves coincide well,demonstrating good thermal cycle stability.展开更多
In order to improve the cycle stability of La-Mg-Ni-Co type alloy electrode, rapid quenching technology was employed. The effects of rapid quenching on the microstructure and cycle stability of the alloy were investig...In order to improve the cycle stability of La-Mg-Ni-Co type alloy electrode, rapid quenching technology was employed. The effects of rapid quenching on the microstructure and cycle stability of the alloy were investigated. The obtained results show that the La2Mg(Ni0.85Co0.15)9M0.1 (M=B, Cr) alloy electrodes are composed of (La, Mg)Ni3 phase, LaNi5 phase and a small amount of the LaNi2 phase. A trace of the Ni2B phase exists in the as-cast MB alloy, and the Ni2B phase in the alloy nearly disappears after rapid quenching. Rapid quenching technology can slightly improve the cycling life of the alloy. When the quenching rate increases from 0 m·s-1 (As-cast is defined as quenching rate of 0 m·s-1) to 30 m·s-1, the cycle lives of the MB, MCr alloys enhance from 86 and 87 cycles to 106 and 119 cycles, respectively. On the other hand, the average capacity decay rates of the MB, MCr alloys decrease from 1.7172 and 1.7178 mAh·g-1·cycle-1 to 1.5751 and 1.3060 mAh·g-1·cycle-1 after 86 charge-discharges cycling, respectively.展开更多
Currently,the major challenge in terms of research on K-ion batteries is to ensure that they possess satisfactory cycle stability and specific capacity,especially in terms of the intrinsically sluggish kinetics induce...Currently,the major challenge in terms of research on K-ion batteries is to ensure that they possess satisfactory cycle stability and specific capacity,especially in terms of the intrinsically sluggish kinetics induced by the large radius of K+ions.Here,we explore high-performance K-ion half/full batteries with high rate capability,high specific capacity,and extremely durable cycle stability based on carbon nanosheets with tailored N dopants,which can alleviate the change of volume,increase electronic conductivity,and enhance the K+ion adsorption.The as-assembled K-ion half-batteries show an excellent rate capability of 468 mA h g^(−1) at 100 mA g^(−1),which is superior to those of most carbon materials reported to date.Moreover,the as-assembled half-cells have an outstanding life span,running 40,000 cycles over 8 months with a specific capacity retention of 100%at a high current density of 2000 mA g^(−1),and the target full cells deliver a high reversible specific capacity of 146 mA h g^(−1) after 2000 cycles over 2 months,with a specific capacity retention of 113%at a high current density of 500 mA g^(−1),both of which are state of the art in the field of K-ion batteries.This study might provide some insights into and potential avenues for exploration of advanced K-ion batteries with durable stability for practical applications.展开更多
Exploring cathode materials that combine excellent cycling stability and high energy density poses a challenge to aqueous Zn-ion hybrid supercapacitors(ZHSCs).Herein,polyaniline(PANI)coated boron-carbon-nitrogen(BCN)n...Exploring cathode materials that combine excellent cycling stability and high energy density poses a challenge to aqueous Zn-ion hybrid supercapacitors(ZHSCs).Herein,polyaniline(PANI)coated boron-carbon-nitrogen(BCN)nanoarray on carbon cloth surface is prepared as advanced cathode materials via simple high-temperature calcination and electrochemical deposition methods.Because of the excellent specific capacity and conductivity of PANI,the CC@BCN@PANI core-shell nanoarrays cathode shows an excellent ion storage capability.Moreover,the 3D nanoarray structure can provide enough space for the volume expansion and contraction of PANI in the charging/discharging cycles,which effectively avoids the collapse of the microstructure and greatly improves the electrochemical stability of PANI.Therefore,the CC@BCN@PANI-based ZHSCs exhibit superior electrochemical performances showing a specific capacity of 145.8 mAh/g,a high energy density of 116.78 Wh/kg,an excellent power density of 12 kW/kg,and a capacity retention rate of 86.2%after 8000 charge/discharge cycles at a current density of 2 A/g.In addition,the flexible ZHSCs(FZHSCs)also show a capacity retention rate of 87.7%at the current density of 2 A/g after 450 cycles.展开更多
The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder...The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder their practical implementation.Polymer has been used extensively to improve the cathode-electrolyte interface in garnet-based all-solid-state LIBs(ASSLBs),while it introduces new concerns about thermal stability.In this study,we propose the incorporation of a multi-functional flame-retardant triphenyl phos-phate additive into poly(ethylene oxide),acting as a thin buffer layer between LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathode and garnet electro-lyte.Through electrochemical stability tests,cycling performance evaluations,interfacial thermal stability analysis and flammability tests,improved thermal stability(capacity retention of 98.5%after 100 cycles at 60℃,and 89.6%after 50 cycles at 80℃)and safety characteristics(safe and stable cycling up to 100℃)are demonstrated.Based on various materials characterizations,the mechanism for the improved thermal stability of the interface is proposed.The results highlight the potential of multi-functional flame-retardant additives to address the challenges associated with the electrode-electrolyte interface in ASSLBs at high temperature.Efficient thermal modification in ASSLBs operating at elevated temperatures is also essential for enabling large-scale energy storage with safety being the primary concern.展开更多
All-solid-state lithium-sulfur batteries(ASSLSBs) have become one of the most potential candidates for the next-generation high-energy systems due to their intrinsic safety and high theoretical energy density.However,...All-solid-state lithium-sulfur batteries(ASSLSBs) have become one of the most potential candidates for the next-generation high-energy systems due to their intrinsic safety and high theoretical energy density.However, PEO-based ASSLSBs face the dilemma of insufficient Coulombic efficiency and long-term stability caused by the coupling problems of dendrite growth of anode and polysulfide shuttle of cathode. In this work, 1,3,5-trioxane(TOX) is used as a functional additive to design a PEO-based composite solidstate electrolyte(denoted as TOX-CSE), which realizes the stable long-term cycle of an ASSLSB. The results show that TOX can in-situ decompose on the anode to form a composite solid electrolyte interphase(SEI) layer with rich-organic component. It yields a high average modulus of 5.0 GPa, greatly improving the mechanical stability of the SEI layer and thus inhibiting the growth of dendrites. Also,the robust SEI layer can act as a barrier to block the side reaction between polysulfides and lithium metal.As a result, a Li-Li symmetric cell assembled with a TOX-CSE exhibits prolonged cycling stability over 2000 h at 0.2 m A cm^(-2). The ASSLSB also shows a stable cycling performance of 500 cycles at 0.5 C.This work reveals the structure–activity relationship between the mechanical property of interface layer and the battery's cycling stability.展开更多
Ni-rich layered oxides are considered promising cathodes for advanced lithium-ion batteries(LIBs)in the future,owing to their high capacity and low cost.However,the issues on structural and interfacial stability of Ni...Ni-rich layered oxides are considered promising cathodes for advanced lithium-ion batteries(LIBs)in the future,owing to their high capacity and low cost.However,the issues on structural and interfacial stability of Ni-rich cathodes still pose substantial obstacles in the practical application of advanced LIBs.Here,we employ a one-step method to synthesize a B-doped and La_(4)NiLiO_(8)-coated LiNi_(0.82)5Co_(0.115)Mn_(0.06)O_(2)(BL-1)cathode with reliable structure and interface,for the first time.The La_(4)NiLiO_(8)coating layer can prevent cathodes from electrolyte assault and facilitate Li+diffusion kinetics.Moreover,B-doping can effectively restrain the pernicious H_(2)-H_(3) phase transition and adjust the orientation of primary particles to a radial alignment,which is obstructive to the arise of microcracks induced by the change of anisotropic volume.Specifically,when tested in pouch cells,the BL-1 cathode exhibits outstanding capacity retention of 93.49%after 500 cycles at 1 C.This dual-modification strategy dramatically enhances the stability of the structure and interface for Ni-rich cathode materials,consequently accelerating the commercialization process of high-energy–density LIBs.展开更多
Aiming at the improvement of the cyclic stability of La-Mg-Ni system (PuNi3-type) hydrogen storage alloy, Ni in the alloy was partly substituted by Fe. The electrode alloys of La0.7Mg0.3Co0.45Ni255-xFex (x=0, 0.1, ...Aiming at the improvement of the cyclic stability of La-Mg-Ni system (PuNi3-type) hydrogen storage alloy, Ni in the alloy was partly substituted by Fe. The electrode alloys of La0.7Mg0.3Co0.45Ni255-xFex (x=0, 0.1, 0.2, 0.3, 0.4) were prepared by casting and rapid quenching. The influence of the quenching on cyclic stability as well as structure of the alloys was investigated in detail. The results of electrochemical measurement indicated that rapid quenching significantly improved cyclic stability. When the quenching rate rose from 0 (As-cast was defined as a quenching rate of 0 m/s) to 30 m/s, the cyclic life of Fe-free alloy (x=-0) increased from 81 to 105 cycles, and for alloy containing Fe(x=0.4), it grew from 106 to 166 cycles at a current density of 600 mA/g. The results obtained by XRD, TEM and SEM revealed that the as-cast and quenched alloys had multiphase structures, including two major phases (La, Mg)Ni3 and LaNi5 as well as an imptLrity phase LaNi2. Rapid quenching helped the formation of an amorphous-like structure in Fe containing alloys.展开更多
A series of layered LiNi0.8?xCo0.1Mn0.1LaxO2(x=0,0.01,0.03)cathode materials were synthesized by combining co-precipitation and high temperature solid state reaction to investigate the effect of La-doping on LiNi0.8Co...A series of layered LiNi0.8?xCo0.1Mn0.1LaxO2(x=0,0.01,0.03)cathode materials were synthesized by combining co-precipitation and high temperature solid state reaction to investigate the effect of La-doping on LiNi0.8Co0.1Mn0.1O2.A new phase La2Li0.5Co0.5O4was observed by XRD,and the content of the new phase could be determined by Retiveld refinement and calculation.The cycle stability of the material is obviously increased from74.3%to95.2%after La-doping,while the initial capacity exhibits a decline trend from202mA·h/g to192mA·h/g.The enhanced cycle stability comes from both of the decrease of impurity and the protection of newly formed La2Li0.5Co0.5O4,which prevents the electrolytic corrosion to the active material.The CV measurement confirms that La-doped material exhibits better reversibility compared with the pristine material.展开更多
Cycle stability and thermal safety are critical to the commercialization of nickel-rich layered materials,yet whether there is a potential correlation between these two factors is still controversial. Herein, the rela...Cycle stability and thermal safety are critical to the commercialization of nickel-rich layered materials,yet whether there is a potential correlation between these two factors is still controversial. Herein, the relationship between the cycle stability and thermal stability of nickel-rich cathode materials have been systematically studied through five different calcination temperatures of Li[NiCoMn]O(NCM83) cathode materials. The research results confirm that the cycle stability and thermal safety of nickel-rich cathode materials do not necessarily show a positive correlation. Actually, with the calcination temperature elevated, the thermal stability of the NCM83 is enhanced, while the cycle stability is degraded. This opposite correlation is not commonly reported in previous literatures. In this work, systematical characterizations demonstrate that under the experimental conditions, the capacity retention of NCM83 is mainly determined by the Li/Ni cation disorder and H2-H3 irreversible phase transition,which is optimal at lower calcination temperature. Meanwhile, the thermal stability is mainly impacted by thermal expansion characteristics and interfacial stability of cathode material, and it is dramatically improved by the mechanical strength of the secondary particles reinforced at high calcinated temperature. This study provides some new insights on understanding and designing of the high-energy cathode materials with long cycle-life and superior safety.展开更多
La-Mg-Ni system (PuNi3-type) hydrogen storage alloys La0.7Mg0.3Ni2.55-xCo0.45Mx (M=Fe, Cu, Al; x=0, 0.1) were prepared by casting and rapid quenching. Aiming to improve the cycle stabilities of the alloys, Ni in the a...La-Mg-Ni system (PuNi3-type) hydrogen storage alloys La0.7Mg0.3Ni2.55-xCo0.45Mx (M=Fe, Cu, Al; x=0, 0.1) were prepared by casting and rapid quenching. Aiming to improve the cycle stabilities of the alloys, Ni in the alloy was partly substituted by Fe, Cu and Al. The effects of the substitution of Fe, Cu and Al for Ni and the rapid quenching on the microstructures and electrochemical properties of the alloys were investigated in detail. The results obtained by XRD, SEM and TEM indicate that the element substitution has no influence on the phase compositions of the alloys, but it changes the phase abundances of the alloys. Particularly, the substitution of Al and Cu obviously increases the amount of the LaNi2 phase. The substitution of Al and Fe leads to a great refinement of the as-quenched alloy′s grains. The substitution of Al strongly restrains the formation of the amorphous in the as-quenched alloy, but the substitution of Fe and Cu is quite helpful for the formation of an amorphous phase. The effects of the substitution of Fe, Cu and Al on the cycle stabilities of the as-cast and quenched alloys are different. The positive impact of the substitution elements on the cycle stabilities of the as-cast alloys is ranked in proper order Al>Fe>Cu, and for as-quenched alloys, the order is Fe>Al>Cu. Rapid quenching engenders an unconscious influence on the phase composition, but it markedly enhances the cycle stabilities of the alloys.展开更多
The development of lithium-sulfur(Li-S) battery as one of the most attractive energy storage systems among lithium metal batteries is seriously hindered by low sulfur utilization, poor cycle stability and uneven redep...The development of lithium-sulfur(Li-S) battery as one of the most attractive energy storage systems among lithium metal batteries is seriously hindered by low sulfur utilization, poor cycle stability and uneven redeposition of Li anode. It is necessary to propose strategies to address the problems as well as improve the electrochemical performance. One of the effective solutions is to improve the sulfiphilicity of sulfur cathode and the lithiophilicity of the Li anode. Herein, we reported that a synergistic functional separator(graphene quantum dots(GQDs)-polyacrylonitrile(PAN) @polypropylene(PP) separator)improved the electrochemical activity of sulfur cathode as well as the stability of Li anode. GQDs induced uniform Li^(+)nucleation and deposition, which slowed down the passivation of Li anode and avoided shortcircuit. Further, three-dimensional network constructed by electrospinning nanofibers and the polar functional groups of GQDs could both effectively inhibit the shuttle of LiPSs and improve the sulfur utilization. The stability of Li-S battery was improved by the synergistic effect. In addition, GQDs and electrospinning nanofibers protector increased lifetime of separators. Benefiting from the unique design strategy, Li//Li symmetric battery with GQDs-PAN@PP separators exhibited stably cycling for over 600 h. More importantly, the Li-S full batteries based GQDs-PAN@PP separators enabled high stability and desirable sulfur electrochemistry, including high reversibility of 558.09 mA h g^(-1)for 200 cycles and durable life with a low fading rate of 0.075% per cycle after 500 cycles at 0.5 C. Moreover, an impressive areal capacity of 3.23 mA h cm^(-2)was maintained under high sulfur loading of 5.10 mg cm^(-2). This work provides a new insight for modification separator to improve the electrochemical performance of Li-S/Li metal batteries.展开更多
In this study, we report the influences of oxidation potential and holding time on the electrochromic(EC) stability of poly(3-methylthiophene)(P3MT) film during the electrochemical reaction. The cycle stability and tr...In this study, we report the influences of oxidation potential and holding time on the electrochromic(EC) stability of poly(3-methylthiophene)(P3MT) film during the electrochemical reaction. The cycle stability and transmittance changes of the film were investigated by optimizing the oxidation potential, and its chemical compositions were measured by x-ray photoelectron spectra after multiple electrochemical cycles. High oxidation potentials can increase the P3MT film color contrast and decrease its cycle stability because of accelerating chemical decomposition. Moreover, the holding time with potential pulsing was analyzed by using the optical memory of P3MT at an optimized oxidation potential, which revealed the reduced voltage duration saved energy consumption by 11.6% and improved the EC cycle stability without changing in color contrast.展开更多
Hybrid power sources have attracted much attention in the electric vehicle area. Particularly, electric-electric hybrid powertrain system consisting of supercapacitor modules and lithium-ion batteries has been widely ...Hybrid power sources have attracted much attention in the electric vehicle area. Particularly, electric-electric hybrid powertrain system consisting of supercapacitor modules and lithium-ion batteries has been widely applied because of the high power density of supercapacitors. In this study, we design a hybrid powertrain system containing two porous carbon electrode-based supercapacitor modules in parallel and one lithium ion battery pack. With the construction of the testing station, the performance and stability of the used supercapacitor modules are investigated in correlation with the structure of the supercapacitor and the nature of the electrode materials applied. It has been shown that the responding time for voltage vibration from 20 V to 48.5 V during charging or discharging process decreases from about 490 s to 94 s with the increase in applied current from 20 A to 100 A. The capacitance of the capacitor modules is nearly independent on the applied current. With the designed setup, the energy efficiency can reach as high as 0.99. The results described here provide a guidance for material selection of supercapacitors and optimized controlling strategy for hybrid power system applied in electric vehicles.展开更多
High-voltage lithium-ion batteries(HVLIBs) are considered as promising devices of energy storage for electric vehicle, hybrid electric vehicle, and other high-power equipment. HVLIBs require their own platform voltage...High-voltage lithium-ion batteries(HVLIBs) are considered as promising devices of energy storage for electric vehicle, hybrid electric vehicle, and other high-power equipment. HVLIBs require their own platform voltages to be higher than 4.5 V on charge. Lithium nickel manganese spinel LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode is the most promising candidate among the 5 V cathode materials for HVLIBs due to its flat plateau at 4.7 V. However, the degradation of cyclic performance is very serious when LNMO cathode operates over 4.2 V. In this review, we summarize some methods for enhancing the cycling stability of LNMO cathodes in lithium-ion batteries, including doping, cathode surface coating,electrolyte modifying, and other methods. We also discuss the advantages and disadvantages of different methods.展开更多
Lithium-selenium(Li-Se)batteries have attracted considerable attentions for next-generation energy storage systems owing to high volumetric capacity of 3265 m Ah cm^(-3) and excellent electronic conductivity(~10^(-5)S...Lithium-selenium(Li-Se)batteries have attracted considerable attentions for next-generation energy storage systems owing to high volumetric capacity of 3265 m Ah cm^(-3) and excellent electronic conductivity(~10^(-5)S cm^(-1))of selenium.However,the shuttling effect and capacity fading prevent their wide applications.Herein we report a low-cost strategy for scalable fabrication of lignin derived hierarchical porous carbon(LHPC)as a new high-loading Se host for high-capacity and long-term cycling Li-Se batteries in carbonate electrolyte.The resulting LHPC exhibits three-dimensional(3D)hierarchically porous structure,high specific surface area of 1696 m^(2) g^(-1),and hetero-atom doping(O,S),which can effectively confine the Se particles into the micropores,and meanwhile,offer effective chemical binding sites for selenides from hetero-atoms(O,S).As a result,our Li-Se batteries based on Se@LHPC demonstrate high capacity of 450 m Ah g^(-1) at 0.5 C after 500 cycles,with a low capacity fading rate of only 0.027%.The theoretical simulation confirmed the strong affinity of selenides on the O and S sites of LHPC effectively mitigating the Se losing.Therefore,our strategy of using lignin as the low-cost precursor of hierarchically porous carbon for high-loading Se host offers new opportunities for high-capacity and long-life Li-Se batteries.展开更多
The layered LiNi0.6Co0.2Mn0.2-yMgyO2-zFz(0≤y≤0.12, 0≤z≤0.08) cathode materials were synthesized by combining co-precipitation method and high temperature solid-state reaction, with the help of the ball milling, ...The layered LiNi0.6Co0.2Mn0.2-yMgyO2-zFz(0≤y≤0.12, 0≤z≤0.08) cathode materials were synthesized by combining co-precipitation method and high temperature solid-state reaction, with the help of the ball milling, to investigate the effects of F-Mg doping on LiNi0.6Co0.2Mn0.2O)2. Compared with previous studies, this doping treatment provides substantially improved electrochemical performance in terms of initial coulombic efficiency and cycle performance. The LiNi0.6Co0.2Mn0.11Mg0.09O1.96F0.04 electrode delivers an high capacity retention of 98.6% during the first cycle and a discharge capacity of 189.7 m A·h/g(2.8-4.4 V at 0.2 C), with the capacity retention of 96.3% after 100 cycles. And electrochemical impedance spectroscopy(EIS) results show that Mg-F co-doping decreases the charge-transfer resistance and enhances the reaction kinetics, which is considered to be the major factor for higher rate performance. It is demonstrated that LiNi0.6Co0.2Mn0.11Mg0.09O1.96F0.04 is a promising cathode material for lithium-ion batteries for excellent electrochemical properties.展开更多
Vanadium-based cathodes have attracted great interest in aqueous zinc ion batteries(AZIBs)due to their large capacities,good rate performance and facile synthesis in large scale.However,their practical application is ...Vanadium-based cathodes have attracted great interest in aqueous zinc ion batteries(AZIBs)due to their large capacities,good rate performance and facile synthesis in large scale.However,their practical application is greatly hampered by vanadium dissolution issue in conventional dilute electrolytes.Herein,taking a new potassium vanadate K0.486V2O5(KVO)cathode with large interlayer spacing(~0.95 nm)and high capacity as an example,we propose that the cycle life of vanadates can be greatly upgraded in AZIBs by regulating the concentration of ZnCl2 electrolyte,but with no need to approach“water-in-salt”threshold.With the optimized moderate concentration of 15 m ZnCl2 electrolyte,the KVO exhibits the best cycling stability with ~95.02% capacity retention after 1400 cycles.We further design a novel sodium carboxymethyl cellulose(CMC)-moderate concentration ZnCl2 gel electrolyte with high ionic conductivity of 10.08 mS cm^-1 for the first time and assemble a quasi-solid-state AZIB.This device is bendable with remarkable energy density(268.2 Wh kg^−1),excellent stability(97.35% after 2800 cycles),low self-discharge rate,and good environmental(temperature,pressure)suitability,and is capable of powering small electronics.The device also exhibits good electrochemical performance with high KVO mass loading(5 and 10 mg cm^-2).Our work sheds light on the feasibility of using moderately concentrated electrolyte to address the stability issue of aqueous soluble electrode materials.展开更多
Herein,N-Ti3C2@CNT microspheres are successfully synthesized by the simple spray drying method.In the preparation process,HCl-treated melamine(HTM)is selected as the sources of carbon and nitrogen.It not only realizes...Herein,N-Ti3C2@CNT microspheres are successfully synthesized by the simple spray drying method.In the preparation process,HCl-treated melamine(HTM)is selected as the sources of carbon and nitrogen.It not only realizes in situ growth of CNTs on the surface of MXene nanosheets with the catalysis of Ni,but also introduces efficient N-doping in both MXene and CNTs.Within the microsphere,MXene nanosheets interconnect with CNTs to form porous and conductive network.In addition,N-doped MXene and CNTs can provide strong chemical immobilization for polysulfides and effectively entrap them within the porous microspheres.Above-mentioned merits enable N-Ti3C2@CNT microspheres to be ideal sulfur host.When used in lithium–sulfur(Li–S)battery,the N-Ti3C2@CNT microspheres/S cathode delivers initial specific capacity of 927 mAh g−1 at 1 C and retains high capacity of 775 mAh g−1 after 1000 cycles with extremely low fading rate(FR)of 0.016%per cycle.Furthermore,the cathode still shows high cycling stability at high C-rate of 4 C(capacity of 647 mAh g−1 after 650 cycles,FR 0.027%)and high sulfur loading of 3 and 6 mg cm−2 for Li–S batteries.展开更多
The rapid commercialization of lithium–ion batteries has caused significant expansion of the lithium demand.Electrochemical lithium ions pump is a promising technology because of its good selectivity and friendly env...The rapid commercialization of lithium–ion batteries has caused significant expansion of the lithium demand.Electrochemical lithium ions pump is a promising technology because of its good selectivity and friendly environment.Herein,an Al_(2)O_(3)–ZrO_(2) film coating of the LiMn_(2)O_(4)(AlZr–LMO) electrode is prepared and operated for recovery of Li^(+)from brine.The Li^(+) maximum extraction capacity of AlZr–LMO reached 49.92 mg/g in one cycle.Compared with the solely LMO electrode,the AlZr–LMO demonstrated evident electrochemical stability and cycle life towards the Li^(+)recovery system.After 30 successive cycles,the extraction capacity for Li^(+)increased from 29.21%to 57.67%.The high cycle capacity of the material could be attributed to its low polarization,high active sites,and good chemical stability of the electrode surface owing to the synergy function of Al_(2)O_(3)–ZrO_(2)in the charging-discharging process.A dynamic model parameter identification method was performed to evaluate the active site of AlZr–LMO.This work may provide a way to design the AlZr–LMO electrode and develop a good method for the recovery of lithium from brine.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52301248,52271166,52071071,and 52275567)the Foundational Research Project of Shanxi Province,China(Nos.202203021222201 and 202203021212304)+1 种基金PhD Research Startup Foundation of Taiyuan University of Science and Technology(No.20222057)PhD Research Startup Foundation of Shanxi Province,China(No.20232051)。
文摘Hexagonal MnMX-based(M=Co or Ni,X=Si or Ge)alloys exhibit giant reversible barocaloric effects.However,giant volume expansion would result in the as-cast MnMX ingots fragmenting into powders,and inevitably bring the deterioration of mechanical properties and formability.Grain fragmentation can bring degradation of structural transformation entropy change during cyclic application and removal of pressure.In this paper,giant reversible barocaloric effects with high thermal cycle stability can be achieved in the epoxy bonded(MnCoGe)0.96(CuCoSn)0.04 composite.Giant reversible isothermal entropy change of 43.0 J·kg^(−1)·K^(−1) and adiabatic temperature change from barocaloric effects(ΔT_(BCE))of 15.6 K can be obtained within a wide temperature span of 30 K at 360 MPa,which is mainly attributed to the integration of the change in the transition temperature driven by pressure of−101 K·GPa^(−1) and suitable thermal hysteresis of 11.1 K.Further,the variation of reversibleΔ_(TBCE) against the applied hydrostatic pressure reaches up to 43 K·GPa^(−1),which is at the highest level among the other reported giant barocaloric compounds.More importantly,after 60 thermal cycles,the composite does not break and the calorimetric curves coincide well,demonstrating good thermal cycle stability.
基金This work was financially supported by National Natural Science Foundations of China (No.50131040)Key Technologies R & D Program of Inner Mongolia (No.20050205)College Scientific Research Project of Inner Mongolia (No.NJ05064).
文摘In order to improve the cycle stability of La-Mg-Ni-Co type alloy electrode, rapid quenching technology was employed. The effects of rapid quenching on the microstructure and cycle stability of the alloy were investigated. The obtained results show that the La2Mg(Ni0.85Co0.15)9M0.1 (M=B, Cr) alloy electrodes are composed of (La, Mg)Ni3 phase, LaNi5 phase and a small amount of the LaNi2 phase. A trace of the Ni2B phase exists in the as-cast MB alloy, and the Ni2B phase in the alloy nearly disappears after rapid quenching. Rapid quenching technology can slightly improve the cycling life of the alloy. When the quenching rate increases from 0 m·s-1 (As-cast is defined as quenching rate of 0 m·s-1) to 30 m·s-1, the cycle lives of the MB, MCr alloys enhance from 86 and 87 cycles to 106 and 119 cycles, respectively. On the other hand, the average capacity decay rates of the MB, MCr alloys decrease from 1.7172 and 1.7178 mAh·g-1·cycle-1 to 1.5751 and 1.3060 mAh·g-1·cycle-1 after 86 charge-discharges cycling, respectively.
基金National Natural Science Foundation of China,Grant/Award Numbers:51972178,52202061Hunan Provincial Nature Science Foundation,Grant/Award Number:2022JJ40068。
文摘Currently,the major challenge in terms of research on K-ion batteries is to ensure that they possess satisfactory cycle stability and specific capacity,especially in terms of the intrinsically sluggish kinetics induced by the large radius of K+ions.Here,we explore high-performance K-ion half/full batteries with high rate capability,high specific capacity,and extremely durable cycle stability based on carbon nanosheets with tailored N dopants,which can alleviate the change of volume,increase electronic conductivity,and enhance the K+ion adsorption.The as-assembled K-ion half-batteries show an excellent rate capability of 468 mA h g^(−1) at 100 mA g^(−1),which is superior to those of most carbon materials reported to date.Moreover,the as-assembled half-cells have an outstanding life span,running 40,000 cycles over 8 months with a specific capacity retention of 100%at a high current density of 2000 mA g^(−1),and the target full cells deliver a high reversible specific capacity of 146 mA h g^(−1) after 2000 cycles over 2 months,with a specific capacity retention of 113%at a high current density of 500 mA g^(−1),both of which are state of the art in the field of K-ion batteries.This study might provide some insights into and potential avenues for exploration of advanced K-ion batteries with durable stability for practical applications.
基金supported by the Natural Science Foundation of Jiangxi Province(Grant Nos.20224BAB214006,20224BAB214029,and 20212ACB203004)the Planning Project of Jiangxi Provincial Technological Innovation Guidance(Grant No.20202BDH80003)the Youth Foundation of Jiangxi Provincial Department of Education(Grant Nos.GJJ210857 and GJJ210856).
文摘Exploring cathode materials that combine excellent cycling stability and high energy density poses a challenge to aqueous Zn-ion hybrid supercapacitors(ZHSCs).Herein,polyaniline(PANI)coated boron-carbon-nitrogen(BCN)nanoarray on carbon cloth surface is prepared as advanced cathode materials via simple high-temperature calcination and electrochemical deposition methods.Because of the excellent specific capacity and conductivity of PANI,the CC@BCN@PANI core-shell nanoarrays cathode shows an excellent ion storage capability.Moreover,the 3D nanoarray structure can provide enough space for the volume expansion and contraction of PANI in the charging/discharging cycles,which effectively avoids the collapse of the microstructure and greatly improves the electrochemical stability of PANI.Therefore,the CC@BCN@PANI-based ZHSCs exhibit superior electrochemical performances showing a specific capacity of 145.8 mAh/g,a high energy density of 116.78 Wh/kg,an excellent power density of 12 kW/kg,and a capacity retention rate of 86.2%after 8000 charge/discharge cycles at a current density of 2 A/g.In addition,the flexible ZHSCs(FZHSCs)also show a capacity retention rate of 87.7%at the current density of 2 A/g after 450 cycles.
基金This work was supported by the Australian Research Council via Discovery Projects(Nos.DP200103315,DP200103332 and DP230100685)Linkage Projects(No.LP220200920).The authors acknowledge the Microscopy and Microanalysis Facility—John de Laeter Centre,Curtin University for the scientific and technical assistance of material characterizations.L.Zhao and C.Cao would like to acknowledge the PhD scholarship supported by BLACKSTONE Minerals Ltd.
文摘The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder their practical implementation.Polymer has been used extensively to improve the cathode-electrolyte interface in garnet-based all-solid-state LIBs(ASSLBs),while it introduces new concerns about thermal stability.In this study,we propose the incorporation of a multi-functional flame-retardant triphenyl phos-phate additive into poly(ethylene oxide),acting as a thin buffer layer between LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathode and garnet electro-lyte.Through electrochemical stability tests,cycling performance evaluations,interfacial thermal stability analysis and flammability tests,improved thermal stability(capacity retention of 98.5%after 100 cycles at 60℃,and 89.6%after 50 cycles at 80℃)and safety characteristics(safe and stable cycling up to 100℃)are demonstrated.Based on various materials characterizations,the mechanism for the improved thermal stability of the interface is proposed.The results highlight the potential of multi-functional flame-retardant additives to address the challenges associated with the electrode-electrolyte interface in ASSLBs at high temperature.Efficient thermal modification in ASSLBs operating at elevated temperatures is also essential for enabling large-scale energy storage with safety being the primary concern.
基金National Natural Science Foundation of China (Grant Nos. 22178125 and 21875071)。
文摘All-solid-state lithium-sulfur batteries(ASSLSBs) have become one of the most potential candidates for the next-generation high-energy systems due to their intrinsic safety and high theoretical energy density.However, PEO-based ASSLSBs face the dilemma of insufficient Coulombic efficiency and long-term stability caused by the coupling problems of dendrite growth of anode and polysulfide shuttle of cathode. In this work, 1,3,5-trioxane(TOX) is used as a functional additive to design a PEO-based composite solidstate electrolyte(denoted as TOX-CSE), which realizes the stable long-term cycle of an ASSLSB. The results show that TOX can in-situ decompose on the anode to form a composite solid electrolyte interphase(SEI) layer with rich-organic component. It yields a high average modulus of 5.0 GPa, greatly improving the mechanical stability of the SEI layer and thus inhibiting the growth of dendrites. Also,the robust SEI layer can act as a barrier to block the side reaction between polysulfides and lithium metal.As a result, a Li-Li symmetric cell assembled with a TOX-CSE exhibits prolonged cycling stability over 2000 h at 0.2 m A cm^(-2). The ASSLSB also shows a stable cycling performance of 500 cycles at 0.5 C.This work reveals the structure–activity relationship between the mechanical property of interface layer and the battery's cycling stability.
基金financially supported by the National Natural Science Foundation of China(51774051,52072323,52122211)the Science and Technology Planning Project of Hunan Province(2019RS2034)+1 种基金the Hunan High-tech Industry Science and Technology Innovation Leading Plan(2020GK2072)the Changsha City Fund for Distinguished and Innovative Young Scholars(KQ1707014)。
文摘Ni-rich layered oxides are considered promising cathodes for advanced lithium-ion batteries(LIBs)in the future,owing to their high capacity and low cost.However,the issues on structural and interfacial stability of Ni-rich cathodes still pose substantial obstacles in the practical application of advanced LIBs.Here,we employ a one-step method to synthesize a B-doped and La_(4)NiLiO_(8)-coated LiNi_(0.82)5Co_(0.115)Mn_(0.06)O_(2)(BL-1)cathode with reliable structure and interface,for the first time.The La_(4)NiLiO_(8)coating layer can prevent cathodes from electrolyte assault and facilitate Li+diffusion kinetics.Moreover,B-doping can effectively restrain the pernicious H_(2)-H_(3) phase transition and adjust the orientation of primary particles to a radial alignment,which is obstructive to the arise of microcracks induced by the change of anisotropic volume.Specifically,when tested in pouch cells,the BL-1 cathode exhibits outstanding capacity retention of 93.49%after 500 cycles at 1 C.This dual-modification strategy dramatically enhances the stability of the structure and interface for Ni-rich cathode materials,consequently accelerating the commercialization process of high-energy–density LIBs.
基金863 Program (2006AA05Z132)the National Natural Science Foundation of China (50642033)+1 种基金Natural Science Founda-tion of Inner Mongolia, China (200711020703)Science and Technology Planned Project of Inner Mongolia, China (20050205)
文摘Aiming at the improvement of the cyclic stability of La-Mg-Ni system (PuNi3-type) hydrogen storage alloy, Ni in the alloy was partly substituted by Fe. The electrode alloys of La0.7Mg0.3Co0.45Ni255-xFex (x=0, 0.1, 0.2, 0.3, 0.4) were prepared by casting and rapid quenching. The influence of the quenching on cyclic stability as well as structure of the alloys was investigated in detail. The results of electrochemical measurement indicated that rapid quenching significantly improved cyclic stability. When the quenching rate rose from 0 (As-cast was defined as a quenching rate of 0 m/s) to 30 m/s, the cyclic life of Fe-free alloy (x=-0) increased from 81 to 105 cycles, and for alloy containing Fe(x=0.4), it grew from 106 to 166 cycles at a current density of 600 mA/g. The results obtained by XRD, TEM and SEM revealed that the as-cast and quenched alloys had multiphase structures, including two major phases (La, Mg)Ni3 and LaNi5 as well as an imptLrity phase LaNi2. Rapid quenching helped the formation of an amorphous-like structure in Fe containing alloys.
基金Project(2014CB643406)supported by the National Basic Research Program of China
文摘A series of layered LiNi0.8?xCo0.1Mn0.1LaxO2(x=0,0.01,0.03)cathode materials were synthesized by combining co-precipitation and high temperature solid state reaction to investigate the effect of La-doping on LiNi0.8Co0.1Mn0.1O2.A new phase La2Li0.5Co0.5O4was observed by XRD,and the content of the new phase could be determined by Retiveld refinement and calculation.The cycle stability of the material is obviously increased from74.3%to95.2%after La-doping,while the initial capacity exhibits a decline trend from202mA·h/g to192mA·h/g.The enhanced cycle stability comes from both of the decrease of impurity and the protection of newly formed La2Li0.5Co0.5O4,which prevents the electrolytic corrosion to the active material.The CV measurement confirms that La-doped material exhibits better reversibility compared with the pristine material.
基金financially supported by the China Postdoctoral Science Foundation(2021M700396)the National Natural Science Foundation of China(52102206)the National Research Foundation of Republic of Korea(2021K2A9A2A06044652)。
文摘Cycle stability and thermal safety are critical to the commercialization of nickel-rich layered materials,yet whether there is a potential correlation between these two factors is still controversial. Herein, the relationship between the cycle stability and thermal stability of nickel-rich cathode materials have been systematically studied through five different calcination temperatures of Li[NiCoMn]O(NCM83) cathode materials. The research results confirm that the cycle stability and thermal safety of nickel-rich cathode materials do not necessarily show a positive correlation. Actually, with the calcination temperature elevated, the thermal stability of the NCM83 is enhanced, while the cycle stability is degraded. This opposite correlation is not commonly reported in previous literatures. In this work, systematical characterizations demonstrate that under the experimental conditions, the capacity retention of NCM83 is mainly determined by the Li/Ni cation disorder and H2-H3 irreversible phase transition,which is optimal at lower calcination temperature. Meanwhile, the thermal stability is mainly impacted by thermal expansion characteristics and interfacial stability of cathode material, and it is dramatically improved by the mechanical strength of the secondary particles reinforced at high calcinated temperature. This study provides some new insights on understanding and designing of the high-energy cathode materials with long cycle-life and superior safety.
基金National Natural Science Foundation of China (50642033)Key Technologies R&D Programof Inner Mongolia ,China (20050205)Higher Education Science Research Project of In-ner Mongolia ,China (NJ05064)
文摘La-Mg-Ni system (PuNi3-type) hydrogen storage alloys La0.7Mg0.3Ni2.55-xCo0.45Mx (M=Fe, Cu, Al; x=0, 0.1) were prepared by casting and rapid quenching. Aiming to improve the cycle stabilities of the alloys, Ni in the alloy was partly substituted by Fe, Cu and Al. The effects of the substitution of Fe, Cu and Al for Ni and the rapid quenching on the microstructures and electrochemical properties of the alloys were investigated in detail. The results obtained by XRD, SEM and TEM indicate that the element substitution has no influence on the phase compositions of the alloys, but it changes the phase abundances of the alloys. Particularly, the substitution of Al and Cu obviously increases the amount of the LaNi2 phase. The substitution of Al and Fe leads to a great refinement of the as-quenched alloy′s grains. The substitution of Al strongly restrains the formation of the amorphous in the as-quenched alloy, but the substitution of Fe and Cu is quite helpful for the formation of an amorphous phase. The effects of the substitution of Fe, Cu and Al on the cycle stabilities of the as-cast and quenched alloys are different. The positive impact of the substitution elements on the cycle stabilities of the as-cast alloys is ranked in proper order Al>Fe>Cu, and for as-quenched alloys, the order is Fe>Al>Cu. Rapid quenching engenders an unconscious influence on the phase composition, but it markedly enhances the cycle stabilities of the alloys.
基金supported by Key Program (U20A20235) funded by National Natural Science Foundation of Chinathe National Natural Science Foundation of China (52171127, 51974242)+2 种基金Regional Innovation Capability Guidance Program of Shaanxi Provincial Government (2022QFY10-06)Key R&D Program of Xianyang Science and Technology Bureau (2021ZDYF-GY-0029)Doctoral dissertation innovation fund (310-252072201) by Xi’an University of Technology。
文摘The development of lithium-sulfur(Li-S) battery as one of the most attractive energy storage systems among lithium metal batteries is seriously hindered by low sulfur utilization, poor cycle stability and uneven redeposition of Li anode. It is necessary to propose strategies to address the problems as well as improve the electrochemical performance. One of the effective solutions is to improve the sulfiphilicity of sulfur cathode and the lithiophilicity of the Li anode. Herein, we reported that a synergistic functional separator(graphene quantum dots(GQDs)-polyacrylonitrile(PAN) @polypropylene(PP) separator)improved the electrochemical activity of sulfur cathode as well as the stability of Li anode. GQDs induced uniform Li^(+)nucleation and deposition, which slowed down the passivation of Li anode and avoided shortcircuit. Further, three-dimensional network constructed by electrospinning nanofibers and the polar functional groups of GQDs could both effectively inhibit the shuttle of LiPSs and improve the sulfur utilization. The stability of Li-S battery was improved by the synergistic effect. In addition, GQDs and electrospinning nanofibers protector increased lifetime of separators. Benefiting from the unique design strategy, Li//Li symmetric battery with GQDs-PAN@PP separators exhibited stably cycling for over 600 h. More importantly, the Li-S full batteries based GQDs-PAN@PP separators enabled high stability and desirable sulfur electrochemistry, including high reversibility of 558.09 mA h g^(-1)for 200 cycles and durable life with a low fading rate of 0.075% per cycle after 500 cycles at 0.5 C. Moreover, an impressive areal capacity of 3.23 mA h cm^(-2)was maintained under high sulfur loading of 5.10 mg cm^(-2). This work provides a new insight for modification separator to improve the electrochemical performance of Li-S/Li metal batteries.
基金Project supported by the National Natural Science Foundation of China(Grant No.51403102)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20140811)
文摘In this study, we report the influences of oxidation potential and holding time on the electrochromic(EC) stability of poly(3-methylthiophene)(P3MT) film during the electrochemical reaction. The cycle stability and transmittance changes of the film were investigated by optimizing the oxidation potential, and its chemical compositions were measured by x-ray photoelectron spectra after multiple electrochemical cycles. High oxidation potentials can increase the P3MT film color contrast and decrease its cycle stability because of accelerating chemical decomposition. Moreover, the holding time with potential pulsing was analyzed by using the optical memory of P3MT at an optimized oxidation potential, which revealed the reduced voltage duration saved energy consumption by 11.6% and improved the EC cycle stability without changing in color contrast.
基金Funded by the National Key Basic Research Development Program of China(973 Plan)(No.2013CB632505)the National Natural Science Foundation of China(51477125)the Scientific Research Foundation for the Returned Overseas Chinese Scholars
文摘Hybrid power sources have attracted much attention in the electric vehicle area. Particularly, electric-electric hybrid powertrain system consisting of supercapacitor modules and lithium-ion batteries has been widely applied because of the high power density of supercapacitors. In this study, we design a hybrid powertrain system containing two porous carbon electrode-based supercapacitor modules in parallel and one lithium ion battery pack. With the construction of the testing station, the performance and stability of the used supercapacitor modules are investigated in correlation with the structure of the supercapacitor and the nature of the electrode materials applied. It has been shown that the responding time for voltage vibration from 20 V to 48.5 V during charging or discharging process decreases from about 490 s to 94 s with the increase in applied current from 20 A to 100 A. The capacitance of the capacitor modules is nearly independent on the applied current. With the designed setup, the energy efficiency can reach as high as 0.99. The results described here provide a guidance for material selection of supercapacitors and optimized controlling strategy for hybrid power system applied in electric vehicles.
基金supported by the foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal Institutions and Science and Technology Foundation(ykj-2016-00161)partly supported by International Research Promotion Program(IRPR)of Osaka University
文摘High-voltage lithium-ion batteries(HVLIBs) are considered as promising devices of energy storage for electric vehicle, hybrid electric vehicle, and other high-power equipment. HVLIBs require their own platform voltages to be higher than 4.5 V on charge. Lithium nickel manganese spinel LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode is the most promising candidate among the 5 V cathode materials for HVLIBs due to its flat plateau at 4.7 V. However, the degradation of cyclic performance is very serious when LNMO cathode operates over 4.2 V. In this review, we summarize some methods for enhancing the cycling stability of LNMO cathodes in lithium-ion batteries, including doping, cathode surface coating,electrolyte modifying, and other methods. We also discuss the advantages and disadvantages of different methods.
基金financially supported by the National Key R&D Program of China(Grants 2016YBF0100100,2016YFA0200200)the National Natural Science Foundation of China(Grants 51872283,21805273)+1 种基金the Liaoning Bai Qian Wan Talents Program,Natural Science Foundation of Liaoning Province,Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science(Grant 20180510038)the Liao Ning Revitalization Talents Program(Grant XLYC1807153),DICP(DICP ZZBS201708,DICP ZZBS201802,DICP I202032),DNL Cooperation Fund,CAS(DNL180310,DNL180308,DNL201912,and DNL201915),DICP&QIBEBT(Grant DICP&QIBEBT UN201702)。
文摘Lithium-selenium(Li-Se)batteries have attracted considerable attentions for next-generation energy storage systems owing to high volumetric capacity of 3265 m Ah cm^(-3) and excellent electronic conductivity(~10^(-5)S cm^(-1))of selenium.However,the shuttling effect and capacity fading prevent their wide applications.Herein we report a low-cost strategy for scalable fabrication of lignin derived hierarchical porous carbon(LHPC)as a new high-loading Se host for high-capacity and long-term cycling Li-Se batteries in carbonate electrolyte.The resulting LHPC exhibits three-dimensional(3D)hierarchically porous structure,high specific surface area of 1696 m^(2) g^(-1),and hetero-atom doping(O,S),which can effectively confine the Se particles into the micropores,and meanwhile,offer effective chemical binding sites for selenides from hetero-atoms(O,S).As a result,our Li-Se batteries based on Se@LHPC demonstrate high capacity of 450 m Ah g^(-1) at 0.5 C after 500 cycles,with a low capacity fading rate of only 0.027%.The theoretical simulation confirmed the strong affinity of selenides on the O and S sites of LHPC effectively mitigating the Se losing.Therefore,our strategy of using lignin as the low-cost precursor of hierarchically porous carbon for high-loading Se host offers new opportunities for high-capacity and long-life Li-Se batteries.
基金Project(1114022-15) supported by the Major Science and Technology Research Projects of Guangxi Province,China
文摘The layered LiNi0.6Co0.2Mn0.2-yMgyO2-zFz(0≤y≤0.12, 0≤z≤0.08) cathode materials were synthesized by combining co-precipitation method and high temperature solid-state reaction, with the help of the ball milling, to investigate the effects of F-Mg doping on LiNi0.6Co0.2Mn0.2O)2. Compared with previous studies, this doping treatment provides substantially improved electrochemical performance in terms of initial coulombic efficiency and cycle performance. The LiNi0.6Co0.2Mn0.11Mg0.09O1.96F0.04 electrode delivers an high capacity retention of 98.6% during the first cycle and a discharge capacity of 189.7 m A·h/g(2.8-4.4 V at 0.2 C), with the capacity retention of 96.3% after 100 cycles. And electrochemical impedance spectroscopy(EIS) results show that Mg-F co-doping decreases the charge-transfer resistance and enhances the reaction kinetics, which is considered to be the major factor for higher rate performance. It is demonstrated that LiNi0.6Co0.2Mn0.11Mg0.09O1.96F0.04 is a promising cathode material for lithium-ion batteries for excellent electrochemical properties.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.51872104,51972257 and 51672205)the National Key R&D Program of China(Grant No.2016YFA0202602)the Natural Science Foundation of Hubei Province(2018CFB581).
文摘Vanadium-based cathodes have attracted great interest in aqueous zinc ion batteries(AZIBs)due to their large capacities,good rate performance and facile synthesis in large scale.However,their practical application is greatly hampered by vanadium dissolution issue in conventional dilute electrolytes.Herein,taking a new potassium vanadate K0.486V2O5(KVO)cathode with large interlayer spacing(~0.95 nm)and high capacity as an example,we propose that the cycle life of vanadates can be greatly upgraded in AZIBs by regulating the concentration of ZnCl2 electrolyte,but with no need to approach“water-in-salt”threshold.With the optimized moderate concentration of 15 m ZnCl2 electrolyte,the KVO exhibits the best cycling stability with ~95.02% capacity retention after 1400 cycles.We further design a novel sodium carboxymethyl cellulose(CMC)-moderate concentration ZnCl2 gel electrolyte with high ionic conductivity of 10.08 mS cm^-1 for the first time and assemble a quasi-solid-state AZIB.This device is bendable with remarkable energy density(268.2 Wh kg^−1),excellent stability(97.35% after 2800 cycles),low self-discharge rate,and good environmental(temperature,pressure)suitability,and is capable of powering small electronics.The device also exhibits good electrochemical performance with high KVO mass loading(5 and 10 mg cm^-2).Our work sheds light on the feasibility of using moderately concentrated electrolyte to address the stability issue of aqueous soluble electrode materials.
文摘Herein,N-Ti3C2@CNT microspheres are successfully synthesized by the simple spray drying method.In the preparation process,HCl-treated melamine(HTM)is selected as the sources of carbon and nitrogen.It not only realizes in situ growth of CNTs on the surface of MXene nanosheets with the catalysis of Ni,but also introduces efficient N-doping in both MXene and CNTs.Within the microsphere,MXene nanosheets interconnect with CNTs to form porous and conductive network.In addition,N-doped MXene and CNTs can provide strong chemical immobilization for polysulfides and effectively entrap them within the porous microspheres.Above-mentioned merits enable N-Ti3C2@CNT microspheres to be ideal sulfur host.When used in lithium–sulfur(Li–S)battery,the N-Ti3C2@CNT microspheres/S cathode delivers initial specific capacity of 927 mAh g−1 at 1 C and retains high capacity of 775 mAh g−1 after 1000 cycles with extremely low fading rate(FR)of 0.016%per cycle.Furthermore,the cathode still shows high cycling stability at high C-rate of 4 C(capacity of 647 mAh g−1 after 650 cycles,FR 0.027%)and high sulfur loading of 3 and 6 mg cm−2 for Li–S batteries.
基金supported by the National Natural Science Foundation of China (21878133, 21908082, 22178154)the Natural Science Foundation of Jiangsu Province (BK20190854)+1 种基金the China Postdoctoral Science Foundation (2020M671364, 2021M701472)the Science & Technology Foundation of Zhenjiang (GY2020027)。
文摘The rapid commercialization of lithium–ion batteries has caused significant expansion of the lithium demand.Electrochemical lithium ions pump is a promising technology because of its good selectivity and friendly environment.Herein,an Al_(2)O_(3)–ZrO_(2) film coating of the LiMn_(2)O_(4)(AlZr–LMO) electrode is prepared and operated for recovery of Li^(+)from brine.The Li^(+) maximum extraction capacity of AlZr–LMO reached 49.92 mg/g in one cycle.Compared with the solely LMO electrode,the AlZr–LMO demonstrated evident electrochemical stability and cycle life towards the Li^(+)recovery system.After 30 successive cycles,the extraction capacity for Li^(+)increased from 29.21%to 57.67%.The high cycle capacity of the material could be attributed to its low polarization,high active sites,and good chemical stability of the electrode surface owing to the synergy function of Al_(2)O_(3)–ZrO_(2)in the charging-discharging process.A dynamic model parameter identification method was performed to evaluate the active site of AlZr–LMO.This work may provide a way to design the AlZr–LMO electrode and develop a good method for the recovery of lithium from brine.