期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
A Quantum Space Model of Cosmic Evolution: Dark Energy and the Cyclic Universe
1
作者 Carlos A. Melendres 《Journal of Modern Physics》 CAS 2022年第11期1305-1313,共9页
We present a Quantum Space Model (QSM) of cosmic evolution based on the theory that space consists of energy quanta from which our universe came about. We used the Friedmann equations to trace its history and predict ... We present a Quantum Space Model (QSM) of cosmic evolution based on the theory that space consists of energy quanta from which our universe came about. We used the Friedmann equations to trace its history and predict its ultimate fate. Results provide further support to our recent proposal that the accelerating expansion of the universe is due to a scalar space field which has become known as Dark Energy. In our model, the universe started from high energy space quanta which were triggered by quantum fluctuations that caused the Big Bang. It then expanded and cooled undergoing phase transitions to radiation, fundamental particles, and matter. Matter agglomerated and grew into stars, galaxies, etc. and was eventually consolidated by gravity into Black Holes, which finally ended in a Big Crunch in a state of deep freeze inside the Black hole at 1.380 trillion years. Fluctuations, quantum tunneling, or some other mechanisms caused a new Bang to start another cycle in its life. Our results are in good agreement with the theoretical predictions of a cyclic universe by Steinhardt and his associates, and by Penrose. Space and energy are equivalent as embodied in the Planck energy equation. They give rise to the two principal long range forces in the universe: the gravitational force and the space force. The latter may be the fifth force in the universe. The two forces could provide the clockwork mechanism operating our cyclic universe. If the Law of Conservation of Energy is universal, then the cosmos is eternal. 展开更多
关键词 Quantum Space Model Spaceons Dark Energy Gravitational Waves Cosmic Evolution Expansion of the universe Black Holes Big Bang Big Crunch cyclic universe
下载PDF
A Heuristic Approach to the Far-Future State of a Universe Dominated by Phantom Energy
2
作者 Nikolaos Kalntis 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2022年第4期948-959,共12页
This work is based on a cosmological scenario of a universe dominated by phantom energy with equation of state parameter w﹤-1 and the analysis of its asymptotic behaviour in the far-future. The author discusses wheth... This work is based on a cosmological scenario of a universe dominated by phantom energy with equation of state parameter w﹤-1 and the analysis of its asymptotic behaviour in the far-future. The author discusses whether a Big Rip singularity could be reached in the future. Working in the context of general relativity, it is argued that the Big Rip singularity could be avoided due to the gravitational Schwinger pair-production, even if no other particle-creating contribution takes place. In this model, the universe is described in its far-future by a state of a constant but large Hubble rate and energy density, as well as of a constant but low horizon entropy. Similar conditions existed at the beginning of the universe. Therefore, according to this analysis, not only the Big Rip singularity could be avoided in the far-future but also the universe could asymptotically be led to a new inflationary phase, after which more and more universes could be created. 展开更多
关键词 Dark Energy Phantom Energy Schwinger Effect cyclic universe
下载PDF
The Tension Cosmology, Largest Cosmic Structures and Explosions of Supernovae from SST
3
作者 Sylwester Kornowski 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期1029-1044,共16页
Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter lea... Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter leads to the disagreement in the galaxy clustering amplitude, quantified by the parameter S8. Within the same model we described the Hubble tension. We described also the mechanism that transforms the gravitational collapse into an explosion—it concerns the dynamics of virtual fields that lead to dark energy. Our calculations concern the Type Ia supernovae and the core-collapse supernovae. We calculated the quantized masses of the progenitors of supernovae, emitted total energy during explosion, and we calculated how much of the released energy was transferred to neutrinos. Value of the speed of sound in the strongly interacting matter measured at the LHC confirms that presented here model is correct. Our calculations show that the Universe is cyclic. 展开更多
关键词 Scale-Symmetric Theory Tension Cosmology Coupling Constants Parameters σ8 and S8 Largest Cosmic Structures Dark Energy Supernova Explosion cyclic universe
下载PDF
The Three Postulates of the Theory of Everything 被引量:1
4
作者 Ding-Yu Chung 《Journal of Modern Physics》 2016年第7期642-655,共14页
The three postulates of the posited dynamic and reversible theory of everything are: 1) the oscil-lating M-theory postulate for the oscillating matter structure, 2) the digital transitional Higgs-reversed Higgs fields... The three postulates of the posited dynamic and reversible theory of everything are: 1) the oscil-lating M-theory postulate for the oscillating matter structure, 2) the digital transitional Higgs-reversed Higgs fields postulate for the digital space structure, and 3) the reversible multiverse post-ulate for all physical laws and phenomena. The posited theory of everything based on the three postulates explains cosmology, the composition (baryonic matter, dark matter, and dark energy) in the universe, the periodic table of elementary particles (quarks, leptons, and bosons), the galaxy evolution, superconductivity, black hole, thermodynamic, and quantum mechanics. Oscillating M-theory is derived from oscillating membrane-string-particle whose space-time dimension number oscillates between 11D and 10D and between 10D and 4D. Space-time dimension number between 10 and 4 decreases with decreasing speed of light, decreasing vacuum energy, and in-creasing rest mass. The digital transitional Higgs-reversed Higgs fields are derived from digital attachment-detachment spaces which couple to particles. Under spontaneous symmetry breaking, the coupling of massless particle to zero-energy attachment space (the space for mass) produces the transitional nonzero-energy Higgs field-particle composite which under spontaneous symmetry restoring produces massive particle on zero-energy attachment space with the longitudinal component. The opposite of attachment space is detachment space as the space for kinetic energy and the nonzero-energy reverse Higgs field. The combination of n units of attachment space (de-noted as 1) and n units of detachment space (denoted as 0) brings about the three digital structures: binary partition space (1)<sub>n</sub>(0)<sub>n</sub>, miscible space (1 + 0)<sub>n</sub>, and binary lattice space (1 0)<sub>n</sub> to account for quantum mechanics, special relativity, and the force fields, respectively. In the third postulate, all physical laws and phenomena are permanently reversible in the multiverse, and temporary irreversible entropy increase is allowed. Our universe is an asymmetrical dual posi-tive-energy-negative-energy universe where the positive-energy universe on attachment space absorbed the interuniversal void on detachment space to result in the combination of attachment space and detachment space, while the negative-energy universe did not absorb the interuniversal void, resulting in temporary irreversible entropy increase through reversibility breaking, sym-metry violation, and low entropy beginning. Guided by the reversible negative-energy universe, our dual universe is a globally reversible cyclic dual universe. 展开更多
关键词 The Theory of Everything M-THEORY Higgs Field Reverse Higgs Field MULTIVERSE COSMOLOGY Matter Structure Space Structure Entropy THERMODYNAMIC cyclic universe Interuniversal Void
下载PDF
We Are Living in a Computer Simulation 被引量:1
5
作者 Ding-Yu Chung 《Journal of Modern Physics》 2016年第10期1210-1227,共18页
This paper posits that we are living in a computer simulation to simulate physical reality which has the same computer simulation process as virtual reality (computer-simulated reality). The computer simulation proces... This paper posits that we are living in a computer simulation to simulate physical reality which has the same computer simulation process as virtual reality (computer-simulated reality). The computer simulation process involves the digital representation of data, the mathematical computation of the digitized data in geometric formation and transformation in space-time, and the selective retention of events in a narrative. Conventional physics cannot explain physical reality clearly, while computer-simulated physics can explain physical reality clearly by using the computer simulation process consisting of the digital representation component, the mathematical computation component, and the selective retention component. For the digital representation component, the three intrinsic data (properties) are rest mass-kinetic energy, electric charge, and spin which are represented by the digital space structure, the digital spin, and the digital electric charge, respectively. The digital representations of rest mass and kinetic energy are 1 as attachment space for the space of matter and 0 as detachment space for the zero-space of matter, respectively, to explain the Higgs field, the reverse Higgs field, quantum mechanics, special relativity, force fields, dark matter, and baryonic matter. The digital representations of the exclusive and the inclusive occupations of positions are 1/2 spin fermion and integer spin boson, respectively, to explain spatial translation by supersymmetry transformation and dark energy. The digital representations of the allowance and the disallowance of irreversible kinetic energy are integral electric charges and fractional electric charges, respectively, to explain the confinements of quarks and quasiparticles. For the mathematical computation component, the mathematical computation involves the reversible multiverse and oscillating M-theory as oscillating membrane-string-particle whose space-time dimension (D) number oscillates between 11D and 10D and between 10D and 4D to explain cosmology. For the selective retention component, gravity, the strong force, electromagnetism, and the weak force are the retained events during the reversible four-stage evolution of our universe, and are unified by the common narrative of the evolution. 展开更多
关键词 Computer Simulation Physical Reality Virtual Reality Digital Computer Computer-Simulated Physics Digital Representation Selective Retention M-THEORY Space Structure Higgs Field Reverse Higgs Field Fractional Electric Charge Spin MULTIVERSE COSMOLOGY Force Fields cyclic universe
下载PDF
Predicting the Curvature of the Cosmos, and Point of Volume Contraction in a Big Bounce Scenario
6
作者 Christopher Pilot 《International Journal of Astronomy and Astrophysics》 2021年第2期265-278,共14页
Based on the latest Planck surveys, the universe is close to being remarkably flat, and yet, within observational error, there is still room for a slight curvature. If the curvature is positive, then this would lead t... Based on the latest Planck surveys, the universe is close to being remarkably flat, and yet, within observational error, there is still room for a slight curvature. If the curvature is positive, then this would lead to a closed universe, as well as allow for a big bounce scenario. Working within these assumptions, and using a simple model, we predict that the cosmos may have a positive curvature in the amount, <span style="white-space:nowrap;"><span style="white-space:nowrap;">Ω<sub>0</sub>=1.001802</span></span>, a value within current observational bounds. For the scaling laws associated with the density parameters in Friedmann’s equations, we will assume a susceptibility model for space, where, <img src="Edit_18751d6f-dbfa-47ba-be7c-8298073a34fd.png" alt="" style="white-space:normal;" />, equals the smeared cosmic susceptibility. If we allow the <img src="Edit_18751d6f-dbfa-47ba-be7c-8298073a34fd.png" alt="" /> to <em>decrease with increasing</em> cosmic scale parameter, “<em>a</em>”, then we can predict a maximum Hubble volume, with minimum CMB temperature for the voids, before contraction begins, as well as a minimum volume, with maximum CMB temperature, when expansion starts. A specific heat engine model for the cosmos is also entertained for this model of a closed universe. 展开更多
关键词 Cosmic Curvature Closed universe cyclic universe Heat Engine Model for universe Big Bounce Susceptibility Model for universe Carnot Cycle Model for Cosmos Causal Isotropy in CMB Temperature
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部