This paper introduces the characteristics of VSC and MMC-MTDC and discusses the effects of different kinds of faults in HVDC systems. Special attention is given to the comparison between a pole-to-pole fault and a pol...This paper introduces the characteristics of VSC and MMC-MTDC and discusses the effects of different kinds of faults in HVDC systems. Special attention is given to the comparison between a pole-to-pole fault and a pole-to-ground fault occurring in the middle of the line or at the terminal of a VSC. Simulations using MATLAB are provided in this article which show the difference effects clearly when faults occur in a VSC-MTDC system or in a MMC-MTDC system. Understanding of such fault characteristics and the influence of the control system on them are important prerequisites on the way to MTDC systems.展开更多
Fault current suppression is the key technology to ensure the safe operation of the DC power distribution system. In order to realize the parameter collabora-tive configuration of the DC circuit breaker and the DC cur...Fault current suppression is the key technology to ensure the safe operation of the DC power distribution system. In order to realize the parameter collabora-tive configuration of the DC circuit breaker and the DC current limiter and improve the fault current suppression capability, the fault current suppression mechanism of the DC power distribution system is revealed based on the circuit model. Then, based on the mathematical model of the DC breaker, the characteristic parameters of DC breaking are extracted, and then the influence of different characteristic parameters on the breaking characteristics of fault current is studied. Finally, the mathematical model of the collaborative process between DC circuit breaker and DC current limiter is established. The charac-teristic parameters of fault current collaborative suppression are extracted. The coupling effects of different characteristic parameters on the fault current col-laborative suppression are studied. The principle of collaborative configuration of DC circuit breaker and DC current limiter is proposed, and the collaborative suppression ability of DC circuit breaker and DC current limiter to fault current is fully exploited to ensure the safe and reliable operation of the DC power distribution system.展开更多
DC fault protection is the key technique for the development of the DC distribution and transmission system. This paper analyzes the transient characteristics of DC faults in a modular multilevel converter(MMC) based ...DC fault protection is the key technique for the development of the DC distribution and transmission system. This paper analyzes the transient characteristics of DC faults in a modular multilevel converter(MMC) based DC system combining with the numerical method. Meanwhile,lots of simulation tests based on MATLAB/Simulink are carried out to verify the correctness of the theoretical analysis. Finally, the technological difficulties of and requirements for the protection and isolation are discussed to provide the theoretical foundation for the design of dc fault protection strategy.展开更多
Full-Bridge Modular Multilevel Converter(FBMMC) has strong ability to ride through serious DC faults,thus it is very suitable for multi-terminal flexible HVDC applications.However,no references have reported the locat...Full-Bridge Modular Multilevel Converter(FBMMC) has strong ability to ride through serious DC faults,thus it is very suitable for multi-terminal flexible HVDC applications.However,no references have reported the locating and isolating of DC faults and corresponding DC faults ride-through capability evaluation index.This paper introduces the topology mechanism of FBMMC and its loss reduction operation mode,theoretically certifies that the universal decoupled control strategy of Voltage Source Converter(VSC) and the similar modulation strategies of Half-Bridge MMC(HBMMC) can be applied to FBMMC for constructing complete closed-loop control system.On the basis of the existing DC faults locating and isolating schemes of 2-level VSC based Multi-Terminal HVDC(VSC-MTDC) system and the particularity of FBMMC,this paper proposes the DC faults wire selection "handshaking" method of the FBMMC-MTDC system,and proposes the DC Fault Ride-Through Capability Index(DFRTI) for evaluating the DC faults suppressing capability of the VSC-MTDC systems,including FBMMC-MTDC.Simulations of FBMMC-MTDC in PSCAD/EMTDC validate the correctness and effectiveness of the proposed control strategy and evaluation index.展开更多
High voltage direct current (HVDC) transmission is an economical option for transmitting a large amount of power over long distances. Initially, HVDC was developed using thyristor-based current source converters (CSC)...High voltage direct current (HVDC) transmission is an economical option for transmitting a large amount of power over long distances. Initially, HVDC was developed using thyristor-based current source converters (CSC). With the development of semiconductor devices, a voltage source converter (VSC)-based HVDC system was introduced, and has been widely applied to integrate large-scale renewables and network interconnection. However, the VSC-based HVDC system is vulnerable to DC faults and its protection becomes ever more important with the fast growth in number of installations. In this paper, detailed characteristics of DC faults in the VSC-HVDC system are presented. The DC fault current has a large peak and steady values within a few milliseconds and thus high-speed fault detection and isolation methods are required in an HVDC grid. Therefore, development of the protection scheme for a multi-terminal VSC-based HVDC system is challenging. Various methods have been developed and this paper presents a comprehensive review of the different techniques for DC fault detection, location and isolation in both CSC and VSC-based HVDC transmission systems in two-terminal and multi-terminal network configurations.展开更多
The hybrid modular multilevel converter(MMC)based on half-bridge sub-modules(HBSMs)and full-bridge submodules(FBSMs)can operate at low DC voltages and clear DC side fault currents.However,the costs and power losses ar...The hybrid modular multilevel converter(MMC)based on half-bridge sub-modules(HBSMs)and full-bridge submodules(FBSMs)can operate at low DC voltages and clear DC side fault currents.However,the costs and power losses are much higher in hybrid converters.An auxiliary full-bridge converter(AFC)is designed to reconstruct the converter structure in the arm level,and the HBSMs output capacitor voltage through the AFC can attain similar capabilities to hybrid MMCs.The operational principle of the auxiliary full-bridge converter is discussed,and the low voltage operation and non-blocking fault ride through control are verified in a two-terminal DC network simulation.Through economic analysis,the power loss of the AFC is similar to a HBSM MMC but the total investment is lower than a hybrid MMC,making the AFC a promising solution to improve the existing HBSM converter with more controllability.展开更多
The modular multilevel converter(MMC)based DC grid is considered as a future solution for bulk renewable energy integration and transmission.However,the high probability of DC faults and their rapid propagation speed ...The modular multilevel converter(MMC)based DC grid is considered as a future solution for bulk renewable energy integration and transmission.However,the high probability of DC faults and their rapid propagation speed are the main challenges in the development of DC grids.Existing research primarily focuses on the DC fault clearance methods,while the fault current suppression methods are still barely researched.Additionally,the coordination method of fault current suppression and clearance needs to be optimized.In this paper,the technical characteristics of the current suppression methods are studied,and the coordinated methods of fault current suppression and clearance are proposed.At last,a cost comparison of these methods is presented.The research results show that the proposed strategies can reduce the cost of the protection equipment.展开更多
This paper presents a three-phase integrated power electronic transformer(PET)topology with the capability of DC fault clearance based on the investigation of PET topology.The proposed PET has three ports of high-volt...This paper presents a three-phase integrated power electronic transformer(PET)topology with the capability of DC fault clearance based on the investigation of PET topology.The proposed PET has three ports of high-voltage AC,high-voltage DC and low-voltage DC,which can achieve the flexible access of distributed energy resources・The power unit of the PET adopts a three-phase integrated topology,and the single-phase fluctuating power in the DC-link capacitor is reduced by a 4-port DC/DC converter,thereby reducing the capacitance of the DC-link capacitor;Meanwhile,the power unit uses the clamp double sub-module(CDSM)to allow for self-clearing of the short-circuit fault on the high-voltage DC side.Finally,this paper verifies the proposed PET through an EMT simulation and experimental prototype.展开更多
This paper proposes a novel hybrid multilevel converter with DC fault-blocking capability, i.e., the neutral-point clamped hybrid multilevel converter(NHMC).By employing two types of unipolar full-bridge submodules al...This paper proposes a novel hybrid multilevel converter with DC fault-blocking capability, i.e., the neutral-point clamped hybrid multilevel converter(NHMC).By employing two types of unipolar full-bridge submodules along with director switches, which are composed of seriesconnected insulated-gate bipolar transistors, the NHMC combines the features and advantages of the neutral-point clamped converter and the modular multilevel converter.The basic topology, operating principles, modulation scheme, and energy-balancing scheme of the NHMC are presented. The DC fault-blocking capability of the NHMC is investigated. The number of power electronic devices used by the NHMC is calculated and compared with other multilevel converters, showing that the proposed NHMC can be an economical and feasible option for medium-voltage DC transmission with overhead lines. Simulation results demonstrate the features and operating scheme of the proposed NHMC.展开更多
In view of the DC fault current isolation deficiency for the conventional half-bridge sub-module(HBSM)based modular multilevel converter(MMC),this paper presents an improved MMC topology.Both quasi reverse blocking su...In view of the DC fault current isolation deficiency for the conventional half-bridge sub-module(HBSM)based modular multilevel converter(MMC),this paper presents an improved MMC topology.Both quasi reverse blocking submodules(QRBSMs)and current limit modules(CLMs)are employed to improve the DC fault handling capability for HVDC applications.This paper analyzes such a new converter configuration and operation principles.Then the DC pole-to-pole short circuit fault is taken into consideration for further study,as well as the fault current blocking mechanism and quantitative relationship between system electrical stress and key parameters.To validate the feasibility of the proposed topology and fault protection theory,extensive simulation results are demonstrated.It is concluded that the QRB-MMC can effectively block the fault current under DC fault condition.In addition,CLMs play an important role in further accelerating fault current attenuation.Moreover,QRB-MMC employs the original control and modulation strategies under normal operation conditions;thus,it further reduces the complexity of industry design.展开更多
It is difficult to detect and extinguish direct current(DC)arc in power electronics systems,and the arc could easily lead to a fire and cause great damage to surrounding equipment.A DC arc generation simulation unit i...It is difficult to detect and extinguish direct current(DC)arc in power electronics systems,and the arc could easily lead to a fire and cause great damage to surrounding equipment.A DC arc generation simulation unit is established,in which DC series arcs are generated by dragging the moving electrode away from the fixed one with the help of the stepper motor.In addition,a ferrite rod antenna is used to receive the electromagnetic radiation signals induced by the arcs.Based on experiments using the unit,the general characteristics of DC arc,including the pulse characteristics of arc current and source output in corresponding time window,and the frequency-domain characteristics of arc current,are studied.With discussion on three detection methods,it is concluded that the variation of current and voltage of arc,the spectrum of the arc current during the discontinuous intervals and the radiating electromagnetic signal are all features that can be adopted for detecting DC series arc.Therefore,a synthetic judgment method is suggested for further study.展开更多
DC short-circuit faults pose a hazard to the operation of a modular multilevel converter(MMC)-based high voltage direct current(HVDC)system,necessitating reliable fault clearing solutions with rapid reaction.However,b...DC short-circuit faults pose a hazard to the operation of a modular multilevel converter(MMC)-based high voltage direct current(HVDC)system,necessitating reliable fault clearing solutions with rapid reaction.However,because the parasitic capacitances of the main equipment oscillate with the lumped inductances of the HVDC system,strong electromagnetic oscillations with multiple frequencies occur during clearance transients.These oscillations will disturb the HVDC system’s protection and control systems.Therefore,this paper focuses on the modeling of these oscillations.First,an equivalent circuit for the MMC-based HVDC system is proposed,taking into account the parasitic capacitances of the system’s major components,such as DC reactors,connecting cables,and DC circuit breakers(DCCBs).Second,four distinct oscillation stages are postulated based on action coordination of MMCs and DCCBs,and the associated analytical equations for the oscillation frequencies are derived.Third,a 200 kV MMC-based DC converter station is subjected to an 6ms/6kA pole-to-pole(PTP)short-circuit test.Electromagnetic oscillations have a frequency range of several kHz to several hundreds of kHz.The measured waveforms correspond well with simulated results,including the parasitic characteristics.Additionally,the relative errors between the simulated and measured frequencies are less than 5%.展开更多
柔性直流输电系统中,直流故障的分析与判别是柔直系统中亟待解决的重要问题。为了更好地分析故障特征,推导出一种多端柔性直流输电网(modular multilevel converter-high voltage direct current,MMC-MTDC)的母线侧简化电路故障计算方法...柔性直流输电系统中,直流故障的分析与判别是柔直系统中亟待解决的重要问题。为了更好地分析故障特征,推导出一种多端柔性直流输电网(modular multilevel converter-high voltage direct current,MMC-MTDC)的母线侧简化电路故障计算方法,并分析了母线侧单极接地故障和极间短路故障的故障特征,在此基础上设计了一种适用于多端柔性直流输电网的故障判别方案和保护措施。该判别方案通过故障启动判据、故障区域判别和故障类型判别3个模块进行故障判定,采用了故障电压瞬时跌落值与系统电压之差及故障线路电流值作故障特征量,整套判别方案不受其他元件参数、故障位置等因素的影响,将Spearman相关性分析与传统电气故障区域判别相结合,准确判定系统区内外故障的同时,解决了故障区域判别中受线路各参数干扰导致误判的问题,仿真测试验证了本保护方案的可行性。展开更多
Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC g...Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC grid.In order to suppress the rising speed of the fault current and reduce the current interruption requirements of the main breaker(MB),a fault current limiting hybrid DC circuit breaker(FCL-HCB)has been proposed in this paper,and it has the capability of bidirectional fault current limiting and fault current interruption.After the occurrence of the overcurrent in the HVDC grid,the current limiting circuit(CLC)of FCL-HCB is put into operation immediately,and whether the protected line is cut off or resumed to normal operation is decided according to the fault detection result.Compared with the traditional hybrid DC circuit breaker(HCB),the required number of semiconductor switches and the peak value of fault current after fault occurs are greatly reduced by adopting the proposed device.Extensive simulations also verify the effectiveness of the proposed FCL-HCB.展开更多
文摘This paper introduces the characteristics of VSC and MMC-MTDC and discusses the effects of different kinds of faults in HVDC systems. Special attention is given to the comparison between a pole-to-pole fault and a pole-to-ground fault occurring in the middle of the line or at the terminal of a VSC. Simulations using MATLAB are provided in this article which show the difference effects clearly when faults occur in a VSC-MTDC system or in a MMC-MTDC system. Understanding of such fault characteristics and the influence of the control system on them are important prerequisites on the way to MTDC systems.
文摘Fault current suppression is the key technology to ensure the safe operation of the DC power distribution system. In order to realize the parameter collabora-tive configuration of the DC circuit breaker and the DC current limiter and improve the fault current suppression capability, the fault current suppression mechanism of the DC power distribution system is revealed based on the circuit model. Then, based on the mathematical model of the DC breaker, the characteristic parameters of DC breaking are extracted, and then the influence of different characteristic parameters on the breaking characteristics of fault current is studied. Finally, the mathematical model of the collaborative process between DC circuit breaker and DC current limiter is established. The charac-teristic parameters of fault current collaborative suppression are extracted. The coupling effects of different characteristic parameters on the fault current col-laborative suppression are studied. The principle of collaborative configuration of DC circuit breaker and DC current limiter is proposed, and the collaborative suppression ability of DC circuit breaker and DC current limiter to fault current is fully exploited to ensure the safe and reliable operation of the DC power distribution system.
基金supported by the National High Technology Research and Development Program of China(863 Program)(No.2015AA050101)the National Science Fund for Excellent Young Scholars(No.51422703)
文摘DC fault protection is the key technique for the development of the DC distribution and transmission system. This paper analyzes the transient characteristics of DC faults in a modular multilevel converter(MMC) based DC system combining with the numerical method. Meanwhile,lots of simulation tests based on MATLAB/Simulink are carried out to verify the correctness of the theoretical analysis. Finally, the technological difficulties of and requirements for the protection and isolation are discussed to provide the theoretical foundation for the design of dc fault protection strategy.
基金supported by the National Natural Science Foundation of China (Grant No. 51177042)the Key Project of the National Twelfth FiveYear Research Program of China (Grant No. 2010BAA01B01)
文摘Full-Bridge Modular Multilevel Converter(FBMMC) has strong ability to ride through serious DC faults,thus it is very suitable for multi-terminal flexible HVDC applications.However,no references have reported the locating and isolating of DC faults and corresponding DC faults ride-through capability evaluation index.This paper introduces the topology mechanism of FBMMC and its loss reduction operation mode,theoretically certifies that the universal decoupled control strategy of Voltage Source Converter(VSC) and the similar modulation strategies of Half-Bridge MMC(HBMMC) can be applied to FBMMC for constructing complete closed-loop control system.On the basis of the existing DC faults locating and isolating schemes of 2-level VSC based Multi-Terminal HVDC(VSC-MTDC) system and the particularity of FBMMC,this paper proposes the DC faults wire selection "handshaking" method of the FBMMC-MTDC system,and proposes the DC Fault Ride-Through Capability Index(DFRTI) for evaluating the DC faults suppressing capability of the VSC-MTDC systems,including FBMMC-MTDC.Simulations of FBMMC-MTDC in PSCAD/EMTDC validate the correctness and effectiveness of the proposed control strategy and evaluation index.
文摘High voltage direct current (HVDC) transmission is an economical option for transmitting a large amount of power over long distances. Initially, HVDC was developed using thyristor-based current source converters (CSC). With the development of semiconductor devices, a voltage source converter (VSC)-based HVDC system was introduced, and has been widely applied to integrate large-scale renewables and network interconnection. However, the VSC-based HVDC system is vulnerable to DC faults and its protection becomes ever more important with the fast growth in number of installations. In this paper, detailed characteristics of DC faults in the VSC-HVDC system are presented. The DC fault current has a large peak and steady values within a few milliseconds and thus high-speed fault detection and isolation methods are required in an HVDC grid. Therefore, development of the protection scheme for a multi-terminal VSC-based HVDC system is challenging. Various methods have been developed and this paper presents a comprehensive review of the different techniques for DC fault detection, location and isolation in both CSC and VSC-based HVDC transmission systems in two-terminal and multi-terminal network configurations.
基金supported by the National Key Research and Development Program under Grant No.2018YFB0904600the National Natural Science Foundation of China under Grant No.51777072.
文摘The hybrid modular multilevel converter(MMC)based on half-bridge sub-modules(HBSMs)and full-bridge submodules(FBSMs)can operate at low DC voltages and clear DC side fault currents.However,the costs and power losses are much higher in hybrid converters.An auxiliary full-bridge converter(AFC)is designed to reconstruct the converter structure in the arm level,and the HBSMs output capacitor voltage through the AFC can attain similar capabilities to hybrid MMCs.The operational principle of the auxiliary full-bridge converter is discussed,and the low voltage operation and non-blocking fault ride through control are verified in a two-terminal DC network simulation.Through economic analysis,the power loss of the AFC is similar to a HBSM MMC but the total investment is lower than a hybrid MMC,making the AFC a promising solution to improve the existing HBSM converter with more controllability.
基金This work was supported by National Key Research and Development Program under Grant No.2018YFB0904600the National Natural Science Foundation of China under Grant No.51777072.
文摘The modular multilevel converter(MMC)based DC grid is considered as a future solution for bulk renewable energy integration and transmission.However,the high probability of DC faults and their rapid propagation speed are the main challenges in the development of DC grids.Existing research primarily focuses on the DC fault clearance methods,while the fault current suppression methods are still barely researched.Additionally,the coordination method of fault current suppression and clearance needs to be optimized.In this paper,the technical characteristics of the current suppression methods are studied,and the coordinated methods of fault current suppression and clearance are proposed.At last,a cost comparison of these methods is presented.The research results show that the proposed strategies can reduce the cost of the protection equipment.
基金supported by National Key Research and Development Program of China(2016YFB0400505)Science and Technology Project of State Grid Corporation(SGRIGLBDTKJ[2017]676).
文摘This paper presents a three-phase integrated power electronic transformer(PET)topology with the capability of DC fault clearance based on the investigation of PET topology.The proposed PET has three ports of high-voltage AC,high-voltage DC and low-voltage DC,which can achieve the flexible access of distributed energy resources・The power unit of the PET adopts a three-phase integrated topology,and the single-phase fluctuating power in the DC-link capacitor is reduced by a 4-port DC/DC converter,thereby reducing the capacitance of the DC-link capacitor;Meanwhile,the power unit uses the clamp double sub-module(CDSM)to allow for self-clearing of the short-circuit fault on the high-voltage DC side.Finally,this paper verifies the proposed PET through an EMT simulation and experimental prototype.
基金supported by Key Science and Technology Project of China Southern Power Grid(Research on Key Technologies and Demonstration Application of Flexible Coordinated Control of Electromagnetic Loop Network in Metropolitan Power Grid with High Load Density,No.GZHKJ00000101)
文摘This paper proposes a novel hybrid multilevel converter with DC fault-blocking capability, i.e., the neutral-point clamped hybrid multilevel converter(NHMC).By employing two types of unipolar full-bridge submodules along with director switches, which are composed of seriesconnected insulated-gate bipolar transistors, the NHMC combines the features and advantages of the neutral-point clamped converter and the modular multilevel converter.The basic topology, operating principles, modulation scheme, and energy-balancing scheme of the NHMC are presented. The DC fault-blocking capability of the NHMC is investigated. The number of power electronic devices used by the NHMC is calculated and compared with other multilevel converters, showing that the proposed NHMC can be an economical and feasible option for medium-voltage DC transmission with overhead lines. Simulation results demonstrate the features and operating scheme of the proposed NHMC.
基金supported in part by the State Key Laboratory of Large Electric Drive System and Equipment Technology(No.SKLLDJ042016005)in part by Open Fund of State Key Laboratory of Operation and Control of Renewable Energy&Storage Systemsin part by the National Key Research and Development Program of China(2016YFE0131700).
文摘In view of the DC fault current isolation deficiency for the conventional half-bridge sub-module(HBSM)based modular multilevel converter(MMC),this paper presents an improved MMC topology.Both quasi reverse blocking submodules(QRBSMs)and current limit modules(CLMs)are employed to improve the DC fault handling capability for HVDC applications.This paper analyzes such a new converter configuration and operation principles.Then the DC pole-to-pole short circuit fault is taken into consideration for further study,as well as the fault current blocking mechanism and quantitative relationship between system electrical stress and key parameters.To validate the feasibility of the proposed topology and fault protection theory,extensive simulation results are demonstrated.It is concluded that the QRB-MMC can effectively block the fault current under DC fault condition.In addition,CLMs play an important role in further accelerating fault current attenuation.Moreover,QRB-MMC employs the original control and modulation strategies under normal operation conditions;thus,it further reduces the complexity of industry design.
基金Project supported by International Cooperation Project in Shaanxi Province of China(2012KW-01)
文摘It is difficult to detect and extinguish direct current(DC)arc in power electronics systems,and the arc could easily lead to a fire and cause great damage to surrounding equipment.A DC arc generation simulation unit is established,in which DC series arcs are generated by dragging the moving electrode away from the fixed one with the help of the stepper motor.In addition,a ferrite rod antenna is used to receive the electromagnetic radiation signals induced by the arcs.Based on experiments using the unit,the general characteristics of DC arc,including the pulse characteristics of arc current and source output in corresponding time window,and the frequency-domain characteristics of arc current,are studied.With discussion on three detection methods,it is concluded that the variation of current and voltage of arc,the spectrum of the arc current during the discontinuous intervals and the radiating electromagnetic signal are all features that can be adopted for detecting DC series arc.Therefore,a synthetic judgment method is suggested for further study.
基金supported by the National Key Research and Development Program of China(2021YFB2400602)。
文摘DC short-circuit faults pose a hazard to the operation of a modular multilevel converter(MMC)-based high voltage direct current(HVDC)system,necessitating reliable fault clearing solutions with rapid reaction.However,because the parasitic capacitances of the main equipment oscillate with the lumped inductances of the HVDC system,strong electromagnetic oscillations with multiple frequencies occur during clearance transients.These oscillations will disturb the HVDC system’s protection and control systems.Therefore,this paper focuses on the modeling of these oscillations.First,an equivalent circuit for the MMC-based HVDC system is proposed,taking into account the parasitic capacitances of the system’s major components,such as DC reactors,connecting cables,and DC circuit breakers(DCCBs).Second,four distinct oscillation stages are postulated based on action coordination of MMCs and DCCBs,and the associated analytical equations for the oscillation frequencies are derived.Third,a 200 kV MMC-based DC converter station is subjected to an 6ms/6kA pole-to-pole(PTP)short-circuit test.Electromagnetic oscillations have a frequency range of several kHz to several hundreds of kHz.The measured waveforms correspond well with simulated results,including the parasitic characteristics.Additionally,the relative errors between the simulated and measured frequencies are less than 5%.
文摘柔性直流输电系统中,直流故障的分析与判别是柔直系统中亟待解决的重要问题。为了更好地分析故障特征,推导出一种多端柔性直流输电网(modular multilevel converter-high voltage direct current,MMC-MTDC)的母线侧简化电路故障计算方法,并分析了母线侧单极接地故障和极间短路故障的故障特征,在此基础上设计了一种适用于多端柔性直流输电网的故障判别方案和保护措施。该判别方案通过故障启动判据、故障区域判别和故障类型判别3个模块进行故障判定,采用了故障电压瞬时跌落值与系统电压之差及故障线路电流值作故障特征量,整套判别方案不受其他元件参数、故障位置等因素的影响,将Spearman相关性分析与传统电气故障区域判别相结合,准确判定系统区内外故障的同时,解决了故障区域判别中受线路各参数干扰导致误判的问题,仿真测试验证了本保护方案的可行性。
基金This project is funded by the Dongying Science Development Fund Project(DJ2021013).
文摘Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC grid.In order to suppress the rising speed of the fault current and reduce the current interruption requirements of the main breaker(MB),a fault current limiting hybrid DC circuit breaker(FCL-HCB)has been proposed in this paper,and it has the capability of bidirectional fault current limiting and fault current interruption.After the occurrence of the overcurrent in the HVDC grid,the current limiting circuit(CLC)of FCL-HCB is put into operation immediately,and whether the protected line is cut off or resumed to normal operation is decided according to the fault detection result.Compared with the traditional hybrid DC circuit breaker(HCB),the required number of semiconductor switches and the peak value of fault current after fault occurs are greatly reduced by adopting the proposed device.Extensive simulations also verify the effectiveness of the proposed FCL-HCB.