期刊文献+
共找到244篇文章
< 1 2 13 >
每页显示 20 50 100
基于改进EEMD-MB1DCNN的船用柴油机缸套-活塞环故障诊断 被引量:2
1
作者 王永坚 范金宇 +2 位作者 蔡杭溪 赵凯 吴怡婷 《船海工程》 北大核心 2024年第1期30-35,共6页
针对船用中高速柴油机缸套-活塞环振动信号非线性非平稳性以及同类型不同损伤程度故障发生时振动信号时频域特征相似、故障难以识别等问题,利用振动信号辨识故障,提出一种基于改进集成经验模态分解方法和多模块一维卷积神经网络端到端缸... 针对船用中高速柴油机缸套-活塞环振动信号非线性非平稳性以及同类型不同损伤程度故障发生时振动信号时频域特征相似、故障难以识别等问题,利用振动信号辨识故障,提出一种基于改进集成经验模态分解方法和多模块一维卷积神经网络端到端缸套-活塞环故障诊断方法,通过设计固有模态分量IMF信息质量筛选准则对EEMD分解出的IMFs进行重新排序,获得包含更多凸显故障特征成分的重构信号,输入到上述神经网络模型,通过振动信号分析并与现有方法比较,评估所设计IMF信息质量筛选准则与所搭建模型的性能,试验结果显示该方法能准确、有效地识别缸套-活塞环故障类型。在判断该易损件同类型不同磨损程度故障诊断中有较高的准确率,能对故障状况进行有效的特征提取与故障分类。 展开更多
关键词 船用柴油机 缸套与活塞环 EEMD 1dcnn 故障诊断
下载PDF
基于1DCNN和D-S多信息融合的光伏系统直流母线串联电弧故障检测 被引量:1
2
作者 李岩 刘鑫月 +2 位作者 乔俊杰 王毛桃 王鹏 《电工电能新技术》 CSCD 北大核心 2024年第5期58-67,共10页
直流母线是光伏系统输出能源的主干道,由于长期曝晒、风化等作用,电缆、连接器等组件劣化,光伏系统直流母线中发生电弧的可能性急剧上升,极易引发火灾、触电等事故。在光伏系统中,串联电弧故障将使回路电流下降,传统的过流保护无法识别... 直流母线是光伏系统输出能源的主干道,由于长期曝晒、风化等作用,电缆、连接器等组件劣化,光伏系统直流母线中发生电弧的可能性急剧上升,极易引发火灾、触电等事故。在光伏系统中,串联电弧故障将使回路电流下降,传统的过流保护无法识别。因此,本文提出基于深度学习和证据理论(D-S)的方法来识别串联电弧故障,该方法基于并联电容器电流和电压信号,采用一维卷积神经网络(1DCNN)对检测数据进行电弧识别;在此基础上将基于单个传感数据的识别结果作为证据,运用D-S多信息合成法则计算得到信度分配,最后利用决策规则判断是否发生串联电弧故障。搭建多参数可调模型获取数据进行测试,结果表明:使用1DCNN识别方法,基于并联电容器电流和电压信号的串联电弧识别准确率分别为97.19%和94.98%,而基于1DCNN和D-S多信息融合的光伏系统直流串联电弧故障检测的识别准确率可提升至99%以上。 展开更多
关键词 光伏系统 1dcnn 串联电弧故障 D-S多元信息融合 故障检测
下载PDF
基于1DCNN-BiLSTM的航空发动机故障分类研究
3
作者 孔令刚 康时嘉 +3 位作者 吴家菊 左洪福 杨永辉 程铮 《现代电子技术》 北大核心 2024年第20期129-135,共7页
随着航空发动机运行状态的变化,其故障模式也会发生变化。针对航空发动机的运行退化趋势,提出一种基于1DCNN-BiLSTM的航空发动机故障分类模型。该模型可以直接用于原始监测数据,不需要其他算法提取故障退化特征,并且能充分利用1DCNN提... 随着航空发动机运行状态的变化,其故障模式也会发生变化。针对航空发动机的运行退化趋势,提出一种基于1DCNN-BiLSTM的航空发动机故障分类模型。该模型可以直接用于原始监测数据,不需要其他算法提取故障退化特征,并且能充分利用1DCNN提取时间维度局部特征的优势,以及BiLSTM处理非线性时间序列及利用双向上下文信息的特点,最后连接全连接层来学习双向时序依赖的特征信息,并使用softmax函数来诊断故障类别。在美国航空航天局公开的CMAPSS数据集上进行验证,将故障模式分为无故障、HPC故障(单一故障)、HPC&Fan故障(混合故障)三种类型。实验结果表明,与其他模型对比,所提模型具有较高的分类精度,这对提高航空发动机运行可靠性和进一步进行剩余使用寿命预测有一定的实用价值。 展开更多
关键词 航空发动机 发动机故障 故障分类 1dcnn BiLSTM 非线性时间序列
下载PDF
基于1DCNN-LSTM尾矿坝浸润线预测
4
作者 杨玉好 杨斌 +2 位作者 胡军 董文宇 金实 《有色金属工程》 CAS 北大核心 2024年第7期138-146,共9页
准确预测浸润线位置变化对尾矿坝的稳定性和安全性至关重要,为充分挖掘浸润线数据提供的空间特征和时序信息,提出将一维卷积神经网络(1DCNN)和长短期记忆神经网络(LSTM)相结合方法预测浸润线。以辽宁省齐大山风水沟尾矿库主坝为例,使用... 准确预测浸润线位置变化对尾矿坝的稳定性和安全性至关重要,为充分挖掘浸润线数据提供的空间特征和时序信息,提出将一维卷积神经网络(1DCNN)和长短期记忆神经网络(LSTM)相结合方法预测浸润线。以辽宁省齐大山风水沟尾矿库主坝为例,使用历史浸润线、库水位、坝体内外部位移、干滩长度5个主要因素作为模型输入数据,预测未来1 d和未来3 d的浸润线位置。将1DCNN-LSTM模型与经典的LSTM和反向传播神经网络(BP)进行对比研究。结果表明,1DCNN-LSTM浸润线预测的决定系数(R^(2))均在0.9以上,未来1 d的浸润线预测误差均值绝对值为0.004 m,最大误差绝对值为0.06 m,未来3 d的浸润线预测误差均值绝对值为0.003 m,最大误差绝对值为0.065 m,优于经典模型。这为短期浸润线预测提供一定的参考依据。 展开更多
关键词 1dcnn网络 LSTM网络 浸润线 尾矿坝 预测
下载PDF
基于EMD与DCNN混合智能煤岩识别方法研究 被引量:1
5
作者 李雄 沈良 +5 位作者 田亚锋 尹家宽 王立阳 杨东晨 慕礼洋 朱益军 《煤矿机械》 2024年第1期58-60,共3页
针对现有煤岩识别模型和方法准确率低、稳定性差、难以在工程实践中获得应用的问题,提出了基于经验模式分解(EMD)与深度卷积神经网络(DCNN)的混合智能识别方法。首先,应用EMD对采煤过程中的振动信号进行分解,得到一系列的本征模式分量(I... 针对现有煤岩识别模型和方法准确率低、稳定性差、难以在工程实践中获得应用的问题,提出了基于经验模式分解(EMD)与深度卷积神经网络(DCNN)的混合智能识别方法。首先,应用EMD对采煤过程中的振动信号进行分解,得到一系列的本征模式分量(IMF)。然后利用DCNN进行IMF信息的融合,并自动提取特征信息。最后使用Softmax实现煤岩分界的智能识别。工程应用试验数据表明,该方法能够有效、准确地实现煤岩分界的识别,并具有良好的稳定性。 展开更多
关键词 煤岩识别 EMD dcnn 煤炭开采
下载PDF
Acoustic emission signal identification of different rocks based on SE-1DCNN-BLSTM network model
6
作者 WANG Weihua WANG Tingting 《Global Geology》 2024年第1期43-55,共13页
In order to study fracture mechanism of rocks in different brittle mineral contents,this study pro-poses a method to identify the acoustic emission signal released by rock fracture under different brittle miner-al con... In order to study fracture mechanism of rocks in different brittle mineral contents,this study pro-poses a method to identify the acoustic emission signal released by rock fracture under different brittle miner-al content(BMC),and then determine the content of brittle matter in rock.To understand related interference such as the noises in the acoustic emission signals released by the rock mass rupture,a 1DCNN-BLSTM network model with SE module is constructed in this study.The signal data is processed through the 1DCNN and BLSTM networks to fully extract the time-series correlation features of the signals,the non-correlated features of the local space and the weak periodicity law.Furthermore,the processed signals data is input into the fully connected layers.Finally,softmax function is used to accurately identify the acoustic emission signals released by different rocks,and then determine the content of brittle minerals contained in rocks.Through experimental comparison and analysis,1DCNN-BLSTM model embedded with SE module has good anti-noise performance,and the recognition accuracy can reach more than 90 percent,which is better than the traditional deep network models and provides a new way of thinking for rock acoustic emission re-search. 展开更多
关键词 BRITTLENESS acoustic emission signal 1dcnn BLSTM SENet
下载PDF
基于1DCNN的张力辊速度超差检测
7
作者 刘真甫 牛锐祥 《山西冶金》 CAS 2024年第5期22-24,共3页
速度超差是冷轧连续退火机组张力辊组最常见的问题,甚至造成诸多废降次产品,影响产品质量管控。以某连续退火机组多次发生速度超差异常的出口段张力辊为例,为提高张力辊速度超差检测效率,提出基于一维卷积神经网络(1DCNN)的张力辊速度... 速度超差是冷轧连续退火机组张力辊组最常见的问题,甚至造成诸多废降次产品,影响产品质量管控。以某连续退火机组多次发生速度超差异常的出口段张力辊为例,为提高张力辊速度超差检测效率,提出基于一维卷积神经网络(1DCNN)的张力辊速度超差故障检测方法,实验验证表明,该方法具有较高的检测效率,可准确判断速度超差发生的时间和位置,为张力辊的周期性维护计划提供指导,同时为张力辊设备的健康管理提供新方法。 展开更多
关键词 1dcnn 张力辊 速度超差 故障检测
下载PDF
基于3DCNN的动作识别机器人
8
作者 卞玮 李居尚 +3 位作者 曹炳楠 王彬 乔国森 暴晓宁 《电子制作》 2024年第8期41-44,29,共5页
随着科技的不断进步,人工智能应用领域随之拓展。本文设计并实现了基于3DCNN卷积神经网络的动作识别机器人,同时对机器人的硬件设计、软件设计、总体调试、拓展功能等方面进行了详细阐述。本设计根据仿生运动原理,实现了四足机械臂的运... 随着科技的不断进步,人工智能应用领域随之拓展。本文设计并实现了基于3DCNN卷积神经网络的动作识别机器人,同时对机器人的硬件设计、软件设计、总体调试、拓展功能等方面进行了详细阐述。本设计根据仿生运动原理,实现了四足机械臂的运动及抓取,该机器人拥有4个自由度的机械臂,和12个自由度的姿态变换,利用STM32F407的FreeRTOS实时操作系统控制,该系统具有低功耗、响应快、效率高等优点,能够准确完成动作指令。本设计在动作识别控制领域,取得了长足进展。 展开更多
关键词 3dcnn STM32F4 动作识别机器人
下载PDF
基于1DCNN-BiLSTM-BiGRU的电能质量扰动分类方法
9
作者 王立辉 柯泳 苏如开 《电气技术》 2024年第5期51-56,64,共7页
为了应对电能质量扰动(PQD)识别中噪声干扰导致的识别率下降问题,本文提出一种基于一维卷积神经网络(1DCNN)-双向长短期记忆(BiLSTM)网络-双向门控循环单元(BiGRU)的PQD分类方法。该方法首先借助1DCNN有效地提取原始信号的浅层局部特征... 为了应对电能质量扰动(PQD)识别中噪声干扰导致的识别率下降问题,本文提出一种基于一维卷积神经网络(1DCNN)-双向长短期记忆(BiLSTM)网络-双向门控循环单元(BiGRU)的PQD分类方法。该方法首先借助1DCNN有效地提取原始信号的浅层局部特征,然后通过BiLSTM和BiGRU组合模块对时序信息和上下文关系进行深入处理,从而实现深层时序特征的提取。最后,将所提取的特征经分类模块用于PQD识别。仿真结果表明,与传统方法相比,本文所提方法在准确性方面更具优势,且抗噪声能力更强。 展开更多
关键词 电能质量 一维卷积神经网络(1dcnn) 双向长短期记忆(BiLSTM)网络 双向门控循环单元(BiGRU)
下载PDF
基于1DCNN-GRU的启闭机液压系统故障诊断
10
作者 刘英杰 董詠依 +1 位作者 刘鹏鹏 葛孟伟 《现代制造技术与装备》 2024年第4期169-173,共5页
由于启闭机液压系统内部结构复杂,故障信号不易采集,使用AMESim软件搭建启闭机液压系统仿真模型,构建6种典型故障数据集。基于这些数据集,提出一维卷积神经网络(1 Dimensional Convolutional Neural Network,1DCNN)与门控循环单元(Gated... 由于启闭机液压系统内部结构复杂,故障信号不易采集,使用AMESim软件搭建启闭机液压系统仿真模型,构建6种典型故障数据集。基于这些数据集,提出一维卷积神经网络(1 Dimensional Convolutional Neural Network,1DCNN)与门控循环单元(Gated Recurrent Unit,GRU)相结合的故障诊断方法,利用1DCNN提取信号数据的空间特征和GRU提取信号数据的时间特征,实现对信号数据空间及时间特征的融合,并对融合特征进行分类识别。 展开更多
关键词 启闭机 液压系统 一维卷积神经网络(1dcnn) 门控循环单元(GRU) 特征融合 故障诊断
下载PDF
基于多特征融合嵌入与DCNN的临床命名实体识别模型研究
11
作者 杨旭 梁志剑 《中北大学学报(自然科学版)》 CAS 2024年第3期265-273,共9页
针对目前最先进的临床命名实体识别(Cinical Named Entity Recognition,CNER)模型未能充分挖掘文本的全局信息和语义特征,以及未能解决文本中的字符替换等问题,改进了传统的单词嵌入模型,并在此基础上提出了一种结合深度卷积神经网络和... 针对目前最先进的临床命名实体识别(Cinical Named Entity Recognition,CNER)模型未能充分挖掘文本的全局信息和语义特征,以及未能解决文本中的字符替换等问题,改进了传统的单词嵌入模型,并在此基础上提出了一种结合深度卷积神经网络和双向短时记忆条件随机场(DCNN-BiLSTM-CRF)的临床文本命名实体识别方法。改进的单词嵌入模型融合词根、拼音和字符本身意义,使用了来自Transformers的双向编码器表示,使单词嵌入向量具有汉字和临床文本的特点,该方法通过在临床命名实体识别任务中引入深度卷积神经网络(Deep Convolutional Neural Networks,DCNN),解决了CNN预测时丢失部分信息无法找回的问题。通过使用DCNN,本文模型能够更有效地捕获全局信息、获取字符之间的权重关系和多层次语义特征信息,从而提高了临床命名实体识别的准确性。在数据集CCKS2017和CCKS2018上分别进行实验,实验结果表明,与基准模型相比,该模型F1值分别改善了0.48%,0.68%,0.6%,0.58%,0.04%和1.43%,2.36%,3.31%,1.11%,0.17%。为了进一步验证本文的模型,进行了两种消融实验。结果表明,在两个数据集CCKS2017和CCKS2018上本文模型对比变体模型M1,F1值分别改善了0.79%和0.84%;对比变体模型M2,F1值分别改善了0.53%和0.64%。这些实验结果证明了本文所提算法的可行性。 展开更多
关键词 临床命名实体识别 多特征融合嵌入 深度卷积神经网络 BLSTM-CRF BERT
下载PDF
基于DCNN网络及Self-Attention-BiGRU机制的轴承剩余寿命预测
12
作者 刘森 刘美 +2 位作者 贺银超 韩惠子 孟亚男 《机电工程》 CAS 北大核心 2024年第5期786-796,共11页
深度神经网络在剩余寿命预测(RUL)领域得到了广泛的应用。传统的滚动轴承寿命预测模型存在预测精确度较低、鲁棒性较弱的问题。为了进一步提升预测模型的精确度以及鲁棒性,提出了一种融合深度卷积神经网络(DCNN)、双向门控循环单元(BiG... 深度神经网络在剩余寿命预测(RUL)领域得到了广泛的应用。传统的滚动轴承寿命预测模型存在预测精确度较低、鲁棒性较弱的问题。为了进一步提升预测模型的精确度以及鲁棒性,提出了一种融合深度卷积神经网络(DCNN)、双向门控循环单元(BiGRU)以及自注意力机制(Self-Attention)三种模块的滚动轴承剩余使用寿命预测模型。首先,利用DCNN网络对原始振动信号的时域特征、频域特征进行了提取;然后,使用不确定量化的方法对提取到的特征进行了评价和筛选,利用筛选过后的特征构建了新的替代特征集;最后,利用Self-Attention-BiGRU网络对轴承的剩余使用寿命进行了预测,并在IEEE PHM2012数据集上进行了验证。实验结果表明:相较于BiGRU、GRU和BiLSTM三种模型的预测结果,基于DCNN及Self-Attention-BiGRU方法的预测结果最优,两项误差值:平均绝对误差(MAE)、均方根误差(RMSE)最低,其中工况一的一号轴承RUL预测的MAE值相较于BiGRU、GRU以及BiLSTM网络分别下降了7.0%、7.4%和6.5%,RMSE值相较于其他三种模型分别下降了7.6%、8.4%和6.9%,预测的Score值最高,分值为0.985。通过不同数据集的划分,证明了该方法在轴承RUL预测时的强鲁棒性。实验结果验证了基于DCNN网络及Self-Attention-BiGRU模型在轴承剩余使用寿命预测中的有效性。 展开更多
关键词 滚动轴承 剩余使用寿命 双向门控循环单元 不确定量化 自注意力机制 深度卷积神经网络 预测与健康管理
下载PDF
基于1DCNN-BiGRU-MLR组合算法的小水电发电负荷预测
13
作者 熊会林 《中文科技期刊数据库(全文版)工程技术》 2023年第6期45-50,共6页
针对小水电发电负荷随机波动性大、不确定性强导致的模型预测精度不高的问题,提出一种一维卷积神经网络(1D Couvolutioual Neural Networks,1DCNN)、双向门控循环单元(bidirectional gatedrecurrent unit, BiGRU)和多元线性回归(Multipl... 针对小水电发电负荷随机波动性大、不确定性强导致的模型预测精度不高的问题,提出一种一维卷积神经网络(1D Couvolutioual Neural Networks,1DCNN)、双向门控循环单元(bidirectional gatedrecurrent unit, BiGRU)和多元线性回归(Multiple Linear Regression, MLR)组合算法的小水电发电负荷预测模型。首先将历史负荷数据通过集合经验模态分解(Ensemble Empirical Mode Decomposition, EEMD)算法分解为高频分量和低频分量,再运用1DCNN提取高频分量中蕴含的数据特征,并构造成BiGRU神经网络的输入,进行高频分量的预测;低频分量则采用MLR方法进行预测;最后,将各分量的预测结果叠加即可得到最终预测结果。仿真结果表明,本文所提模型预测精度,与单一的预测模型、一般的组合预测模型,均有着较大的提升。 展开更多
关键词 小水电 EEMD 1dcnn BiGRU MLR 负荷预测
下载PDF
基于3DCNN-TCN的农作物产量预测 被引量:1
14
作者 张凯 龚龙庆 +1 位作者 贺兆 霍鹏程 《微电子学与计算机》 2023年第10期83-89,共7页
得益于遥感技术与相关监测技术的快速发展及应用,通过遥感图像挖掘出波段信息以来进行农作物产量预测在近些年这一领域受到更多的青睐.然而,影响农作物生长的多种波段信息受限于空间大小、时间差异会被各种降维技术处理,从而没有充分利... 得益于遥感技术与相关监测技术的快速发展及应用,通过遥感图像挖掘出波段信息以来进行农作物产量预测在近些年这一领域受到更多的青睐.然而,影响农作物生长的多种波段信息受限于空间大小、时间差异会被各种降维技术处理,从而没有充分利用数据的时空、波段特性.因此提出了一种用于农作物产量预测的深度学习架构用以解决这些问题,该模型结合了三维卷积网络(3DCNN)和时间卷积网络(TCN)以更好的捕捉遥感图像的时空信息和波段信息.此外,在新的损失函数中,还引入一个变量,用以消除作物产量标签分布不平衡的影响.最后,通过中国的玉米的产量数据预测验证了新模型.其结果与主要使用的深度学习方法进行比较.实验结果表明,本文所提出的方法可以提供比其他竞争方法更好的预测性能. 展开更多
关键词 农作物产量预测 3dcnn TCN
下载PDF
结合注意力机制和特征融合1DCNN的脑电情感识别 被引量:2
15
作者 闫超 张雪英 +2 位作者 张静 陈桂军 黄丽霞 《计算机工程与应用》 CSCD 北大核心 2023年第13期171-177,共7页
针对脑电情感识别领域中处理一维数据时将其映射为二维或三维数据,然后利用2DCNN或3DCNN模型进行处理和识别时,存在参数量大且参数寻优方法费时费力的问题,提出一种基于频段和脑区注意力机制的1DCNN模型。对脑电信号提取特征并采用t检... 针对脑电情感识别领域中处理一维数据时将其映射为二维或三维数据,然后利用2DCNN或3DCNN模型进行处理和识别时,存在参数量大且参数寻优方法费时费力的问题,提出一种基于频段和脑区注意力机制的1DCNN模型。对脑电信号提取特征并采用t检验进行最优特征选择;根据提取特征的结构设计了一种新型的1DCNN情感识别模型,为模型的参数选择和卷积操作提供可解释性;最后根据左、右脑区对情感反应能力的不同,提出一种脑区注意力机制,并与频段注意力机制相结合更好地关注与情感相关的脑区与频段。提出的FBA-1DCNN模型在DEAP脑电情感数据库的效价维和唤醒维二分类实验上的平均识别率分别达到了94.01%和93.55%,在效价-唤醒维四分类实验上的平均识别率达到了89.38%,比现有的1DCNN模型分别提升了2.96、3.31和7.69个百分点。 展开更多
关键词 脑电情感识别 T检验 深度学习 一维卷积神经网络(1dcnn) 注意力机制
下载PDF
基于SW-DBA-DCNN的滚动轴承故障诊断方法
16
作者 张恒 佘博 +1 位作者 王俊 王旋 《舰船电子工程》 2023年第5期146-152,共7页
针对滚动轴承故障诊断过程中出现的数据样本量不平衡问题,论文提出一种基于Sliding Window-Dynamic Time Warping Barycentric Averaging(SW-DBA)的数据扩增方法,并构建深度卷积神经网络模型用于故障诊断。首先,通过分析传统数据扩增方... 针对滚动轴承故障诊断过程中出现的数据样本量不平衡问题,论文提出一种基于Sliding Window-Dynamic Time Warping Barycentric Averaging(SW-DBA)的数据扩增方法,并构建深度卷积神经网络模型用于故障诊断。首先,通过分析传统数据扩增方法,提出基于SW-DBA的数据扩增模型。其次,通过搭建深度卷积神经网络建立故障诊断模型,并将利用扩增的新数据序列作为非平衡样本的补充,实现非平衡样本下的故障诊断。最后,通过人为设置两组不平衡样本下数据扩增前后的对比实验,分析故障诊断准确率分别由90.32%和80.57%提升至93.33%和93.04%,验证论文提出方法能有效改善数据不平衡问题。 展开更多
关键词 故障诊断 数据扩增 DBA dcnn
下载PDF
基于DCNN技术的无人值守变电站智能监测模型优化设计 被引量:2
17
作者 林洪 文雷 +3 位作者 牛健飞 穆明亮 李金林 李昊敏 《粘接》 CAS 2023年第10期150-153,共4页
为了改善变电站监测图像峰值信噪比、结构相似性差的问题,提出基于DCNN模型的无人值守变电站监测图像超分辨率智能重建方法。通过降质退化模型分析图像劣化过程,并利用硬和软阈值结合方法去除噪声,构建8层DCNN模型结构,得到特征图,将高... 为了改善变电站监测图像峰值信噪比、结构相似性差的问题,提出基于DCNN模型的无人值守变电站监测图像超分辨率智能重建方法。通过降质退化模型分析图像劣化过程,并利用硬和软阈值结合方法去除噪声,构建8层DCNN模型结构,得到特征图,将高、低分辨率图像以图像对的形式组合,计算对应的边缘图像对,将这4个特征图用同一个稀疏表示约束,联合图像,智能重建图像。实验结果表明:重建图像的细节表现丰富,边缘信息保留完整,并且峰值信噪比为47.5 dB,结构相似性为0.97,验证了该方法具备有效性。 展开更多
关键词 dcnn技术 智能监测模型 图像超分辨率重建 无人值守 变电站
下载PDF
基于改进1DCNN的煤岩识别模型研究 被引量:1
18
作者 尹玉玺 周常飞 +2 位作者 许志鹏 史春祥 胡文渊 《工矿自动化》 CSCD 北大核心 2023年第1期116-122,共7页
随着煤矿智能化建设的加速推进,煤岩高效识别已成为煤炭智能化开采亟待解决的技术难题。针对复杂煤矿地质条件下现有煤岩识别方法精度低、通用性差且难以工程应用等问题,提出了一种基于改进一维卷积神经网络(1DCNN)的煤岩识别模型。以1D... 随着煤矿智能化建设的加速推进,煤岩高效识别已成为煤炭智能化开采亟待解决的技术难题。针对复杂煤矿地质条件下现有煤岩识别方法精度低、通用性差且难以工程应用等问题,提出了一种基于改进一维卷积神经网络(1DCNN)的煤岩识别模型。以1DCNN为基础,使用多个连续卷积层提取一维振动信号特征,通过全局均值池化(GAP)层代替全连接层,以减少模型训练参数,节省计算资源,同时采用带有线性热启动的余弦退火衰减方法优化学习率,以避免模型训练陷入局部极小值区域,提升训练质量。为直观描述改进1DCNN模型对煤岩截割振动数据的特征提取过程和分类能力,采用t-分布随机近邻嵌入(t-SNE)流形学习算法对模型的特征学习过程进行可视化分析,结果表明,改进1DCNN模型通过逐层特征学习,很好地实现了对煤岩截割状态的识别。以陕西某矿MG650/1590-WD型采煤机截割煤岩时的实测振动数据为样本进行模型训练,结果表明,改进1DCNN模型在训练集上的准确率为99.91%,在测试集上的准确率为99.32%,可直接用于采煤机截割煤岩时的原始振动信号分类,并能够有效识别煤岩截割状态。与传统机器学习、集成学习及未改进的1DCNN模型相比,改进1DCNN模型具有明显优势,平均识别准确率达99.56%,同时大大节约了计算成本,提高了模型识别速度。 展开更多
关键词 煤岩识别 卷积神经网络 1dcnn 振动信号 余弦退火 t-分布随机近邻嵌入
下载PDF
FPGA Optimized Accelerator of DCNN with Fast Data Readout and Multiplier Sharing Strategy 被引量:1
19
作者 Tuo Ma Zhiwei Li +3 位作者 Qingjiang Li Haijun Liu Zhongjin Zhao Yinan Wang 《Computers, Materials & Continua》 SCIE EI 2023年第12期3237-3263,共27页
With the continuous development of deep learning,Deep Convolutional Neural Network(DCNN)has attracted wide attention in the industry due to its high accuracy in image classification.Compared with other DCNN hard-ware ... With the continuous development of deep learning,Deep Convolutional Neural Network(DCNN)has attracted wide attention in the industry due to its high accuracy in image classification.Compared with other DCNN hard-ware deployment platforms,Field Programmable Gate Array(FPGA)has the advantages of being programmable,low power consumption,parallelism,and low cost.However,the enormous amount of calculation of DCNN and the limited logic capacity of FPGA restrict the energy efficiency of the DCNN accelerator.The traditional sequential sliding window method can improve the throughput of the DCNN accelerator by data multiplexing,but this method’s data multiplexing rate is low because it repeatedly reads the data between rows.This paper proposes a fast data readout strategy via the circular sliding window data reading method,it can improve the multiplexing rate of data between rows by optimizing the memory access order of input data.In addition,the multiplication bit width of the DCNN accelerator is much smaller than that of the Digital Signal Processing(DSP)on the FPGA,which means that there will be a waste of resources if a multiplication uses a single DSP.A multiplier sharing strategy is proposed,the multiplier of the accelerator is customized so that a single DSP block can complete multiple groups of 4,6,and 8-bit signed multiplication in parallel.Finally,based on two strategies of appeal,an FPGA optimized accelerator is proposed.The accelerator is customized by Verilog language and deployed on Xilinx VCU118.When the accelerator recognizes the CIRFAR-10 dataset,its energy efficiency is 39.98 GOPS/W,which provides 1.73×speedup energy efficiency over previous DCNN FPGA accelerators.When the accelerator recognizes the IMAGENET dataset,its energy efficiency is 41.12 GOPS/W,which shows 1.28×−3.14×energy efficiency compared with others. 展开更多
关键词 FPGA ACCELERATOR dcnn fast data readout strategy multiplier sharing strategy network quantization energy efficient
下载PDF
基于DCNN的输电线路隐患区域图像识别方法 被引量:1
20
作者 居一峰 高弋淞 +2 位作者 陈俊安 陈蔚卓 滕启韬 《电子设计工程》 2023年第19期182-185,190,共5页
针对线路隐患区域图像识别效果较差以及识别时间上升等问题,提出一种基于DCNN的输电线路隐患区域图像识别方法。通过改进的维纳滤波算法进行图像去噪,借助像质评价函数,建立图像标记工具,手工标记和类型划分数据集中没有训练过的数据,... 针对线路隐患区域图像识别效果较差以及识别时间上升等问题,提出一种基于DCNN的输电线路隐患区域图像识别方法。通过改进的维纳滤波算法进行图像去噪,借助像质评价函数,建立图像标记工具,手工标记和类型划分数据集中没有训练过的数据,将分类结果输入到深度卷积神经(DCNN)中进行训练,联合改进的SVM分类器,建立输电线路图像分类模型,完成输电线路隐患区域图像分类与识别。实验测试证明,所提方法能够有效降低识别时间,获取更加满意的识别效果,为输电线路隐患识别提供保障。 展开更多
关键词 dcnn 输电线路 隐患区域 图像识别
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部