Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock ph...Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs.展开更多
The objective and constraint functions related to structural optimization designs are classified into economic and performance indexes in this paper.The influences of their different roles in model construction of str...The objective and constraint functions related to structural optimization designs are classified into economic and performance indexes in this paper.The influences of their different roles in model construction of structural topology optimization are also discussed.Furthermore,two structural topology optimization models,optimizing a performance index under the limitation of an economic index,represented by the minimum compliance with a volume constraint(MCVC)model,and optimizing an economic index under the limitation of a performance index,represented by the minimum weight with a displacement constraint(MWDC)model,are presented.Based on a comparison of numerical example results,the conclusions can be summarized as follows:(1)under the same external loading and displacement performance conditions,the results of the MWDC model are almost equal to those of the MCVC model;(2)the MWDC model overcomes the difficulties and shortcomings of the MCVC model;this makes the MWDC model more feasible in model construction;(3)constructing a model of minimizing an economic index under the limitations of performance indexes is better at meeting the needs of practical engineering problems and completely satisfies safety and economic requirements in mechanical engineering,which have remained unchanged since the early days of mechanical engineering.展开更多
In this research, the residential environment index system and evaluation model were established by means of subjective and objective methods. The methodology for establishing the evaluation system for residential env...In this research, the residential environment index system and evaluation model were established by means of subjective and objective methods. The methodology for establishing the evaluation system for residential environment was first analyzed; then the subjective evaluation data-base was established by questionnaire survey; and at the same time, the objective evaluation data-base was constructed by Geographic Information System (GIS); and then the related equation system between subjective and objective system was developed by multiple regression analysis. This research could benefit evaluation of the residential environment quality for various purposes, and also provide important rudimentary data-base for the development and improvement of residential environment for officials. Furthermore, the index system and evaluation model established in this research could construct a strong relation between subjective evaluation and objective data; and thus could provide a comprehensive, efficient and effective methodology for the evaluation of residential environment.展开更多
To accurately estimate winter wheat yields and analyze the uncertainty in crop model data assimilations, winter wheat yield estimates were obtained by assimilating measured or remotely sensed leaf area index (LAI) v...To accurately estimate winter wheat yields and analyze the uncertainty in crop model data assimilations, winter wheat yield estimates were obtained by assimilating measured or remotely sensed leaf area index (LAI) values. The performances of the calibrated crop environment resource synthesis for wheat (CERES-Wheat) model for two different assimilation scenarios were compared by employing ensemble Kalman filter (EnKF)-based strategies. The uncertainty factors of the crop model data assimilation was analyzed by considering the observation errors, assimilation stages and temporal-spatial scales. Overalll the results indicated a better yield estimate performance when the EnKF-based strategy was used to comprehen- sively consider several factors in the initial conditions and observations. When using this strategy, an adjusted coefficients of determination (R2) of 0.84, a root mean square error (RMSE) of 323 kg ha-1, and a relative errors (RE) of 4.15% were obtained at the field plot scale and an R2 of 0.81, an RMSE of 362 kg ha-1, and an RE of 4.52% were obtained at the pixel scale of 30 mx30 m. With increasing observation errors, the accuracy of the yield estimates obviously decreased, but an acceptable estimate was observed when the observation errors were within 20%. Winter wheat yield estimates could be improved significantly by assimilating observations from the middle to the end of the crop growing seasons. With decreasing assimilation frequency and pixel resolution, the accuracy of the crop yield estimates decreased; however, the computation time decreased. It is important to consider reasonable temporal-spatial scales and assimilation stages to obtain tradeoffs between accuracy and computation time, especially in operational systems used for regional crop yield estimates.展开更多
Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predic...Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.展开更多
Weighting values for different habitat variables used in multi-factor habitat suitability index (HSI) modeling reflect the relative influences of different variables on distribution of fish species. Using the winter-s...Weighting values for different habitat variables used in multi-factor habitat suitability index (HSI) modeling reflect the relative influences of different variables on distribution of fish species. Using the winter-spring cohort of neon flying squid (Ommastrephes bartramii) in the Northwestern Pacific Ocean as an example, we evaluated the impact of different weighting schemes on the HSI models based on sea surface temperature, gradient of sea surface temperature and sea surface height. We compared differences in predicted fishing effort and HSI values resulting from different weighting. The weighting for different habitat variables could greatly influence HSI modeling and should be carefully done based on their relative importance in influencing the resource spatial distribution. Weighting in a multi-factor HSI model should be further studied and optimization methods should be developed to improve forecasting squid spatial distributions.展开更多
Layered leaf area index (LAIk) is one of the major determinants for rice canopy. The objective of this study is to attain rice LAI k using morphological traits especially leaf traits that affected plant type. A theo...Layered leaf area index (LAIk) is one of the major determinants for rice canopy. The objective of this study is to attain rice LAI k using morphological traits especially leaf traits that affected plant type. A theoretical model based on rice geometrical structure was established to describe LAI k of rice with leaf length (Li), width (Wi), angle (Ai), and space (Si), and plant pole height (H) at booting and heading stages. In correlation with traditional manual measurement, the model was performed by high R2-values (0.95-0.89, n=24) for four rice hybrids (Liangyoupeijiu, Liangyou E32, Liangyou Y06, and Shanyou 63) with various plant types and four densities (3 750, 2 812, 1 875, and 1 125 plants per 100 m2) of a particular hybrid (Liangyoupeijiu). The analysis of leaf length, width, angle, and space on LAI k for two hybrids (Liangyoupeijiu and Shanyou 63) showed that leaves length and space exhibited greater effects on the change of rice LAI k . The radiation intensity showed a significantly negative exponential relation to the accumulation of LAI k , which agreed to the coefficient of light extinction (K). Our results suggest that plant type regulates radiation distribution through changing LAI k . The present model would be helpful to acquire leaf distribution and judge canopy structure of rice field by computer system after a simple and less-invasive measurement of leaf length, width, angle (by photo), and space at field with non-dilapidation of plants.展开更多
Real coded Accelerating Genetic Algorithm (RAGA), Chaos Algorithm (CA) were used to solve the sensitivity index of Jensen model which is one of models of crop water production function. After comparing with the ou...Real coded Accelerating Genetic Algorithm (RAGA), Chaos Algorithm (CA) were used to solve the sensitivity index of Jensen model which is one of models of crop water production function. After comparing with the outcome of Least Square Regression (LSR), the result showed that RAGA not only had high accuracy and more effective, but also saved calculating time. The authors provides new effective methods for calculating index of crop water production function.展开更多
The eastern fall cohort of the neon flying squid, Ommastrephes bartramii, has been commercially exploited by the Chinese squid jigging fleet in the central North Pacific Ocean since the late 1990s. To understand and i...The eastern fall cohort of the neon flying squid, Ommastrephes bartramii, has been commercially exploited by the Chinese squid jigging fleet in the central North Pacific Ocean since the late 1990s. To understand and identify their optimal habitat, we have developed a habitat suitability index (HSI) model using two potential important environmental variables -- sea surface temperature (SST) and sea surface height anomaly (SSHA) -- and fishery data from the main fishing ground (165°-180°E) during June and July of 1999-2003. A geometric mean model (GMM), minimum model (MM) and arithmetic weighted model (AWM) with different weights were compared and the best HSI model was selected using Akaike's information criterion (AIC). The performance of the developed HSI model was evaluated using fishery data for 2004. This study suggests that the highest catch per unit effort (CPUE) and fishing effort are closely related to SST and SSHA. The best SST- and SSHA-based suitability index (SI) regression models were SISST-based = 0.7SIeffort-SST + 0.3 SICPUE-SST, and SISSHA-based =0.5Sleffort-SSHA + 0.5SICPUE-SSHA, respectively, showing that fishing effort is more important than CPUE in the estimation of SI. The best HSI model was the AWM, defined as HSI=0.3SISSHA-based+ 0.7SISSHA-based, indicating that SSHA is more important than SST in estimating the HSI of squid. In 2004, monthly HSI values greater than 0.6 coincided with the distribution of productive fishing ground and high CPUE in June and July, suggesting that the models perform well. The proposed model provides an important tool in our efforts to develop forecasting capacity of squid spatial dynamics.展开更多
BACKGROUND Perihilar cholangiocarcinoma(pCCA)has a poor prognosis and urgently needs a better predictive method.The predictive value of the age-adjusted Charlson comorbidity index(ACCI)for the long-term prognosis of p...BACKGROUND Perihilar cholangiocarcinoma(pCCA)has a poor prognosis and urgently needs a better predictive method.The predictive value of the age-adjusted Charlson comorbidity index(ACCI)for the long-term prognosis of patients with multiple malignancies was recently reported.However,pCCA is one of the most surgically difficult gastrointestinal tumors with the poorest prognosis,and the value of the ACCI for the prognosis of pCCA patients after curative resection is unclear.AIM To evaluate the prognostic value of the ACCI and to design an online clinical model for pCCA patients.METHODS Consecutive pCCA patients after curative resection between 2010 and 2019 were enrolled from a multicenter database.The patients were randomly assigned 3:1 to training and validation cohorts.In the training and validation cohorts,all patients were divided into low-,moderate-,and high-ACCI groups.Kaplan-Meier curves were used to determine the impact of the ACCI on overall survival(OS)for pCCA patients,and multivariate Cox regression analysis was used to determine the independent risk factors affecting OS.An online clinical model based on the ACCI was developed and validated.The concordance index(C-index),calibration curve,and receiver operating characteristic(ROC)curve were used to evaluate the predictive performance and fit of this model.RESULTS A total of 325 patients were included.There were 244 patients in the training cohort and 81 patients in the validation cohort.In the training cohort,116,91 and 37 patients were classified into the low-,moderate-and high-ACCI groups.The Kaplan-Meier curves showed that patients in the moderate-and high-ACCI groups had worse survival rates than those in the low-ACCI group.Multivariable analysis revealed that moderate and high ACCI scores were independently associated with OS in pCCA patients after curative resection.In addition,an online clinical model was developed that had ideal C-indexes of 0.725 and 0.675 for predicting OS in the training and validation cohorts.The calibration curve and ROC curve indicated that the model had a good fit and prediction performance.CONCLUSION A high ACCI score may predict poor long-term survival in pCCA patients after curative resection.High-risk patients screened by the ACCI-based model should be given more clinical attention in terms of the management of comorbidities and postoperative follow-up.展开更多
An effective model(image to wrinkle, ITW) for garment fitting evaluation is presented. The proposed model is to improve the accuracy of garment fitting evaluation based on dressing image. The ITW model is an objective...An effective model(image to wrinkle, ITW) for garment fitting evaluation is presented. The proposed model is to improve the accuracy of garment fitting evaluation based on dressing image. The ITW model is an objective evaluation model of fitting based on the wrinkle index of dressing image. The ITW model consists of two main steps, the gray curve-fitting(GCF) threshold segmentation algorithm and Canny edge detection algorithm. In the ITW model, three types of wrinkle trends are defined. And the network dressing image is evaluated and simulated by three quantitative indexes: wrinkle number, wrinkle regularity and wrinkle unevenness. Finally, the fitness of three kinds of dress effects(tight, fit and loose) is quantified by objective fitting evaluation model.展开更多
Grey heron (Ardea cimerca) is one kind of the great birds which are often seen in the northeast marsh area of P.R.China, and there are many grey herons to reproduce in Zhalong Nature Reserve from March to August annua...Grey heron (Ardea cimerca) is one kind of the great birds which are often seen in the northeast marsh area of P.R.China, and there are many grey herons to reproduce in Zhalong Nature Reserve from March to August annually. In this paper, through the inveingation of the grey herons nesting habitat and according to the water depth, vegetation type, cover density and plan heigh of the nesting place, the grey heron’s nesting habitat suitability index medes are established. The main model is s=(s1xs2xs3xs4)1/4,where s1 is the water depth suitability index, s2 is the vegetation type suitability index, s3 is the cover density index, sa is the plant height suitability index. These models provide a kind of reliable method for evaluating the habitat quality of the grey heron’s nesting.展开更多
By analyzing the correlation between the occurrence area of grasshopper and 74 characteristic indexes of atmospheric circulation in western Aletai from 1991 to 2008,the atmospheric circulation factors which had the si...By analyzing the correlation between the occurrence area of grasshopper and 74 characteristic indexes of atmospheric circulation in western Aletai from 1991 to 2008,the atmospheric circulation factors which had the significant relationship with the occurrence area of grasshopper in different counties were screened.The prediction models for the occurrence area of grasshopper in different counties were established by stepwise regression method,and the models obtained were also tested.These models were subsequently utilized to carry out extended prediction on the occurrence area of grasshopper in different counties of western Aletai from 2009 to 2010.Meanwhile,the relationship between the atmospheric circulation factors and the occurrence area of grasshopper were analyzed.The results provided the theoretical basis for the prediction on grasshopper plague.展开更多
The accuracy of predicting the Producer Price Index(PPI)plays an indispensable role in government economic work.However,it is difficult to forecast the PPI.In our research,we first propose an unprecedented hybrid mode...The accuracy of predicting the Producer Price Index(PPI)plays an indispensable role in government economic work.However,it is difficult to forecast the PPI.In our research,we first propose an unprecedented hybrid model based on fuzzy information granulation that integrates the GA-SVR and ARIMA(Autoregressive Integrated Moving Average Model)models.The fuzzy-information-granulation-based GA-SVR-ARIMA hybrid model is intended to deal with the problem of imprecision in PPI estimation.The proposed model adopts the fuzzy information-granulation algorithm to pre-classification-process monthly training samples of the PPI,and produced three different sequences of fuzzy information granules,whose Support Vector Regression(SVR)machine forecast models were separately established for their Genetic Algorithm(GA)optimization parameters.Finally,the residual errors of the GA-SVR model were rectified through ARIMA modeling,and the PPI estimate was reached.Research shows that the PPI value predicted by this hybrid model is more accurate than that predicted by other models,including ARIMA,GRNN,and GA-SVR,following several comparative experiments.Research also indicates the precision and validation of the PPI prediction of the hybrid model and demonstrates that the model has consistent ability to leverage the forecasting advantage of GA-SVR in non-linear space and of ARIMA in linear space.展开更多
The flood hazard management is one of the major challenges in the floodplain regions worldwide.With the rise in population growth and the spread of infrastructural development,the level of risk has increased over time...The flood hazard management is one of the major challenges in the floodplain regions worldwide.With the rise in population growth and the spread of infrastructural development,the level of risk has increased over time.Therefore,the prediction of flood susceptible area is a key challenge for the adoption of management plans.Flood susceptibility modeling is technically a common work,but it is still a very tough job to validate flood susceptible models in a very rigorous and scientific manner.Therefore,the present work in the Atreyee River Basin of India and Bangladesh was planned to establish artificial neural network(ANN),radial basis function(RBF),random forest(RF)and their ensemble-based flood susceptibility models.The flood susceptible models were constructed based on nine flood conditioning parameters.The flood susceptibility models were validated in a conventional way using the receiver operating curve(ROC).To validate the flood-susceptible models,a two dimensional(2D)hydraulic flood simulation model was developed.Also,the index of flood vulnerability model was developed and applied for validating the flood susceptible models,which was a very unique way to validate the predictive models.Friedman test and Wilcoxon Signed rank test were employed to compare the generated flood susceptible models.Results showed that 11.95%-12.99%of the entire basin area(10188.4 km^(2))comes under very high flood-susceptible zones.Accuracy evaluation results have shown that the performance of ensemble flood susceptible models outperforms other standalone machine learning models.The flood simulation model and IFV model were also spatially adjusted with the flood susceptibility models.Therefore,the present study recommended for the ensemble flood susceptibility prediction and IFV based validation along with conventional ways.展开更多
基金supported by the National 973 project(Nos.2014CB239006 and 2011CB202402)the National Natural Science Foundation of China(Nos.41104069 and 41274124)+1 种基金Sinopec project(No.KJWX2014-05)the Fundamental Research Funds for the Central Universities(No.R1401005A)
文摘Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs.
基金supported by the National Natural Science Foundation of China(Grant 11172013)
文摘The objective and constraint functions related to structural optimization designs are classified into economic and performance indexes in this paper.The influences of their different roles in model construction of structural topology optimization are also discussed.Furthermore,two structural topology optimization models,optimizing a performance index under the limitation of an economic index,represented by the minimum compliance with a volume constraint(MCVC)model,and optimizing an economic index under the limitation of a performance index,represented by the minimum weight with a displacement constraint(MWDC)model,are presented.Based on a comparison of numerical example results,the conclusions can be summarized as follows:(1)under the same external loading and displacement performance conditions,the results of the MWDC model are almost equal to those of the MCVC model;(2)the MWDC model overcomes the difficulties and shortcomings of the MCVC model;this makes the MWDC model more feasible in model construction;(3)constructing a model of minimizing an economic index under the limitations of performance indexes is better at meeting the needs of practical engineering problems and completely satisfies safety and economic requirements in mechanical engineering,which have remained unchanged since the early days of mechanical engineering.
文摘In this research, the residential environment index system and evaluation model were established by means of subjective and objective methods. The methodology for establishing the evaluation system for residential environment was first analyzed; then the subjective evaluation data-base was established by questionnaire survey; and at the same time, the objective evaluation data-base was constructed by Geographic Information System (GIS); and then the related equation system between subjective and objective system was developed by multiple regression analysis. This research could benefit evaluation of the residential environment quality for various purposes, and also provide important rudimentary data-base for the development and improvement of residential environment for officials. Furthermore, the index system and evaluation model established in this research could construct a strong relation between subjective evaluation and objective data; and thus could provide a comprehensive, efficient and effective methodology for the evaluation of residential environment.
基金supported by the National Natural Science Foundation of China (41401491,41371396,41301457,41471364)the Introduction of International Advanced Agricultural Science and Technology,Ministry of Agriculture,China (948 Program,2016-X38)+1 种基金the Agricultural Scientific Research Fund of Outstanding Talentsthe Open Fund for the Key Laboratory of Agri-informatics,Ministry of Agriculture,China (2013009)
文摘To accurately estimate winter wheat yields and analyze the uncertainty in crop model data assimilations, winter wheat yield estimates were obtained by assimilating measured or remotely sensed leaf area index (LAI) values. The performances of the calibrated crop environment resource synthesis for wheat (CERES-Wheat) model for two different assimilation scenarios were compared by employing ensemble Kalman filter (EnKF)-based strategies. The uncertainty factors of the crop model data assimilation was analyzed by considering the observation errors, assimilation stages and temporal-spatial scales. Overalll the results indicated a better yield estimate performance when the EnKF-based strategy was used to comprehen- sively consider several factors in the initial conditions and observations. When using this strategy, an adjusted coefficients of determination (R2) of 0.84, a root mean square error (RMSE) of 323 kg ha-1, and a relative errors (RE) of 4.15% were obtained at the field plot scale and an R2 of 0.81, an RMSE of 362 kg ha-1, and an RE of 4.52% were obtained at the pixel scale of 30 mx30 m. With increasing observation errors, the accuracy of the yield estimates obviously decreased, but an acceptable estimate was observed when the observation errors were within 20%. Winter wheat yield estimates could be improved significantly by assimilating observations from the middle to the end of the crop growing seasons. With decreasing assimilation frequency and pixel resolution, the accuracy of the crop yield estimates decreased; however, the computation time decreased. It is important to consider reasonable temporal-spatial scales and assimilation stages to obtain tradeoffs between accuracy and computation time, especially in operational systems used for regional crop yield estimates.
基金Funding from The Scientific and Technological Research Council of Turkey(Project No:2130026)is gratefully acknowledged
文摘Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.
基金supported by the National 863 project (2007AA092201 2007AA092202)+4 种基金National Development and Reform Commission Project (2060403)"Shu Guang" Project (08GG14) from Shanghai Municipal Education CommissionShanghai Leading Academic Discipline Project (Project S30702)supported by the National Distantwater Fisheries Engineering Research Center, and Scientific Observing and Experimental Station of Oceanic Fishery Resources, Ministry of Agriculture, ChinaYong Chen’s involvement in the project was supported by the Shanghai Dongfang Scholar Program
文摘Weighting values for different habitat variables used in multi-factor habitat suitability index (HSI) modeling reflect the relative influences of different variables on distribution of fish species. Using the winter-spring cohort of neon flying squid (Ommastrephes bartramii) in the Northwestern Pacific Ocean as an example, we evaluated the impact of different weighting schemes on the HSI models based on sea surface temperature, gradient of sea surface temperature and sea surface height. We compared differences in predicted fishing effort and HSI values resulting from different weighting. The weighting for different habitat variables could greatly influence HSI modeling and should be carefully done based on their relative importance in influencing the resource spatial distribution. Weighting in a multi-factor HSI model should be further studied and optimization methods should be developed to improve forecasting squid spatial distributions.
基金supported by the National Natural Science Foundation of China (NSFC,30871479)
文摘Layered leaf area index (LAIk) is one of the major determinants for rice canopy. The objective of this study is to attain rice LAI k using morphological traits especially leaf traits that affected plant type. A theoretical model based on rice geometrical structure was established to describe LAI k of rice with leaf length (Li), width (Wi), angle (Ai), and space (Si), and plant pole height (H) at booting and heading stages. In correlation with traditional manual measurement, the model was performed by high R2-values (0.95-0.89, n=24) for four rice hybrids (Liangyoupeijiu, Liangyou E32, Liangyou Y06, and Shanyou 63) with various plant types and four densities (3 750, 2 812, 1 875, and 1 125 plants per 100 m2) of a particular hybrid (Liangyoupeijiu). The analysis of leaf length, width, angle, and space on LAI k for two hybrids (Liangyoupeijiu and Shanyou 63) showed that leaves length and space exhibited greater effects on the change of rice LAI k . The radiation intensity showed a significantly negative exponential relation to the accumulation of LAI k , which agreed to the coefficient of light extinction (K). Our results suggest that plant type regulates radiation distribution through changing LAI k . The present model would be helpful to acquire leaf distribution and judge canopy structure of rice field by computer system after a simple and less-invasive measurement of leaf length, width, angle (by photo), and space at field with non-dilapidation of plants.
基金Supported by Science and Technology Research Program of Heilongjiang Province(GB06B106-7)
文摘Real coded Accelerating Genetic Algorithm (RAGA), Chaos Algorithm (CA) were used to solve the sensitivity index of Jensen model which is one of models of crop water production function. After comparing with the outcome of Least Square Regression (LSR), the result showed that RAGA not only had high accuracy and more effective, but also saved calculating time. The authors provides new effective methods for calculating index of crop water production function.
基金Supported by the PhD Programs Foundation of Ministry of Education of China (No. 20093104110002)the National High Technology Research and Development Program of China (863 Program) (Nos. 2007AA092201, 2007AA092202)+2 种基金the National Natural Science Foundation (No. NSFC40876090)the Shanghai Leading Academic Discipline Project (No. S30702)Y. Chen's involvement in the project was partially supported by the Shanghai Dongfang Scholar Program
文摘The eastern fall cohort of the neon flying squid, Ommastrephes bartramii, has been commercially exploited by the Chinese squid jigging fleet in the central North Pacific Ocean since the late 1990s. To understand and identify their optimal habitat, we have developed a habitat suitability index (HSI) model using two potential important environmental variables -- sea surface temperature (SST) and sea surface height anomaly (SSHA) -- and fishery data from the main fishing ground (165°-180°E) during June and July of 1999-2003. A geometric mean model (GMM), minimum model (MM) and arithmetic weighted model (AWM) with different weights were compared and the best HSI model was selected using Akaike's information criterion (AIC). The performance of the developed HSI model was evaluated using fishery data for 2004. This study suggests that the highest catch per unit effort (CPUE) and fishing effort are closely related to SST and SSHA. The best SST- and SSHA-based suitability index (SI) regression models were SISST-based = 0.7SIeffort-SST + 0.3 SICPUE-SST, and SISSHA-based =0.5Sleffort-SSHA + 0.5SICPUE-SSHA, respectively, showing that fishing effort is more important than CPUE in the estimation of SI. The best HSI model was the AWM, defined as HSI=0.3SISSHA-based+ 0.7SISSHA-based, indicating that SSHA is more important than SST in estimating the HSI of squid. In 2004, monthly HSI values greater than 0.6 coincided with the distribution of productive fishing ground and high CPUE in June and July, suggesting that the models perform well. The proposed model provides an important tool in our efforts to develop forecasting capacity of squid spatial dynamics.
基金Supported by National Natural Science Foundation of China,No. 81874211Chongqing Technology Innovation and Application Development Special Key Project,No. CSTC2021jscx-gksb-N0009
文摘BACKGROUND Perihilar cholangiocarcinoma(pCCA)has a poor prognosis and urgently needs a better predictive method.The predictive value of the age-adjusted Charlson comorbidity index(ACCI)for the long-term prognosis of patients with multiple malignancies was recently reported.However,pCCA is one of the most surgically difficult gastrointestinal tumors with the poorest prognosis,and the value of the ACCI for the prognosis of pCCA patients after curative resection is unclear.AIM To evaluate the prognostic value of the ACCI and to design an online clinical model for pCCA patients.METHODS Consecutive pCCA patients after curative resection between 2010 and 2019 were enrolled from a multicenter database.The patients were randomly assigned 3:1 to training and validation cohorts.In the training and validation cohorts,all patients were divided into low-,moderate-,and high-ACCI groups.Kaplan-Meier curves were used to determine the impact of the ACCI on overall survival(OS)for pCCA patients,and multivariate Cox regression analysis was used to determine the independent risk factors affecting OS.An online clinical model based on the ACCI was developed and validated.The concordance index(C-index),calibration curve,and receiver operating characteristic(ROC)curve were used to evaluate the predictive performance and fit of this model.RESULTS A total of 325 patients were included.There were 244 patients in the training cohort and 81 patients in the validation cohort.In the training cohort,116,91 and 37 patients were classified into the low-,moderate-and high-ACCI groups.The Kaplan-Meier curves showed that patients in the moderate-and high-ACCI groups had worse survival rates than those in the low-ACCI group.Multivariable analysis revealed that moderate and high ACCI scores were independently associated with OS in pCCA patients after curative resection.In addition,an online clinical model was developed that had ideal C-indexes of 0.725 and 0.675 for predicting OS in the training and validation cohorts.The calibration curve and ROC curve indicated that the model had a good fit and prediction performance.CONCLUSION A high ACCI score may predict poor long-term survival in pCCA patients after curative resection.High-risk patients screened by the ACCI-based model should be given more clinical attention in terms of the management of comorbidities and postoperative follow-up.
文摘An effective model(image to wrinkle, ITW) for garment fitting evaluation is presented. The proposed model is to improve the accuracy of garment fitting evaluation based on dressing image. The ITW model is an objective evaluation model of fitting based on the wrinkle index of dressing image. The ITW model consists of two main steps, the gray curve-fitting(GCF) threshold segmentation algorithm and Canny edge detection algorithm. In the ITW model, three types of wrinkle trends are defined. And the network dressing image is evaluated and simulated by three quantitative indexes: wrinkle number, wrinkle regularity and wrinkle unevenness. Finally, the fitness of three kinds of dress effects(tight, fit and loose) is quantified by objective fitting evaluation model.
文摘Grey heron (Ardea cimerca) is one kind of the great birds which are often seen in the northeast marsh area of P.R.China, and there are many grey herons to reproduce in Zhalong Nature Reserve from March to August annually. In this paper, through the inveingation of the grey herons nesting habitat and according to the water depth, vegetation type, cover density and plan heigh of the nesting place, the grey heron’s nesting habitat suitability index medes are established. The main model is s=(s1xs2xs3xs4)1/4,where s1 is the water depth suitability index, s2 is the vegetation type suitability index, s3 is the cover density index, sa is the plant height suitability index. These models provide a kind of reliable method for evaluating the habitat quality of the grey heron’s nesting.
基金Supported by Youth Fund Project of Meteorological Bureau in Xinjiang Uygur Autonomous Region(201040)~~
文摘By analyzing the correlation between the occurrence area of grasshopper and 74 characteristic indexes of atmospheric circulation in western Aletai from 1991 to 2008,the atmospheric circulation factors which had the significant relationship with the occurrence area of grasshopper in different counties were screened.The prediction models for the occurrence area of grasshopper in different counties were established by stepwise regression method,and the models obtained were also tested.These models were subsequently utilized to carry out extended prediction on the occurrence area of grasshopper in different counties of western Aletai from 2009 to 2010.Meanwhile,the relationship between the atmospheric circulation factors and the occurrence area of grasshopper were analyzed.The results provided the theoretical basis for the prediction on grasshopper plague.
基金This work was supported by Hainan Provincial Natural Science Foundation of China[2018CXTD333,617048]The National Natural Science Foundation of China[61762033,61702539]+1 种基金Hainan University Doctor Start Fund Project[kyqd1328]Hainan University Youth Fund Project[qnjj1444].
文摘The accuracy of predicting the Producer Price Index(PPI)plays an indispensable role in government economic work.However,it is difficult to forecast the PPI.In our research,we first propose an unprecedented hybrid model based on fuzzy information granulation that integrates the GA-SVR and ARIMA(Autoregressive Integrated Moving Average Model)models.The fuzzy-information-granulation-based GA-SVR-ARIMA hybrid model is intended to deal with the problem of imprecision in PPI estimation.The proposed model adopts the fuzzy information-granulation algorithm to pre-classification-process monthly training samples of the PPI,and produced three different sequences of fuzzy information granules,whose Support Vector Regression(SVR)machine forecast models were separately established for their Genetic Algorithm(GA)optimization parameters.Finally,the residual errors of the GA-SVR model were rectified through ARIMA modeling,and the PPI estimate was reached.Research shows that the PPI value predicted by this hybrid model is more accurate than that predicted by other models,including ARIMA,GRNN,and GA-SVR,following several comparative experiments.Research also indicates the precision and validation of the PPI prediction of the hybrid model and demonstrates that the model has consistent ability to leverage the forecasting advantage of GA-SVR in non-linear space and of ARIMA in linear space.
文摘The flood hazard management is one of the major challenges in the floodplain regions worldwide.With the rise in population growth and the spread of infrastructural development,the level of risk has increased over time.Therefore,the prediction of flood susceptible area is a key challenge for the adoption of management plans.Flood susceptibility modeling is technically a common work,but it is still a very tough job to validate flood susceptible models in a very rigorous and scientific manner.Therefore,the present work in the Atreyee River Basin of India and Bangladesh was planned to establish artificial neural network(ANN),radial basis function(RBF),random forest(RF)and their ensemble-based flood susceptibility models.The flood susceptible models were constructed based on nine flood conditioning parameters.The flood susceptibility models were validated in a conventional way using the receiver operating curve(ROC).To validate the flood-susceptible models,a two dimensional(2D)hydraulic flood simulation model was developed.Also,the index of flood vulnerability model was developed and applied for validating the flood susceptible models,which was a very unique way to validate the predictive models.Friedman test and Wilcoxon Signed rank test were employed to compare the generated flood susceptible models.Results showed that 11.95%-12.99%of the entire basin area(10188.4 km^(2))comes under very high flood-susceptible zones.Accuracy evaluation results have shown that the performance of ensemble flood susceptible models outperforms other standalone machine learning models.The flood simulation model and IFV model were also spatially adjusted with the flood susceptibility models.Therefore,the present study recommended for the ensemble flood susceptibility prediction and IFV based validation along with conventional ways.