Steel-concrete composite structures(SCCS)have been widely used as primary load-bearing components in large-scale civil infrastructures.As the basis of the co-working ability of steel plate and concrete,the bonding sta...Steel-concrete composite structures(SCCS)have been widely used as primary load-bearing components in large-scale civil infrastructures.As the basis of the co-working ability of steel plate and concrete,the bonding status plays an essential role in guaranteeing the structural performance of SCCS.Accordingly,efficient non-destructive testing(NDT)on interfacial debondings in SCCS has become a prominent research area.Multi-channel analysis of surface waves(MASW)has been validated as an effective NDT technique for interfacial debonding detection for SCCS.However,the feasibility of MASW must be validated using experimental measurements.This study establishes a high-frequency data synchronous acquisition system with 32 channels to perform comparative verification experiments in depth.First,the current sensing approaches for high-frequency vibration and stress waves are summarized.Secondly,three types of contact sensors,namely,piezoelectric lead-zirconate-titanate(PZT)patches,accelerometers,and ultrasonic transducers,are selected for MASW measurement.Then,the selection and optimization of the force hammer head are performed.Comparative experiments are carried out for the optimal selection of ultrasonic transducers,PZT patches,and accelerometers for MASW measurement.In addition,the influence of different pasting methods on the output signal of the sensor array is discussed.Experimental results indicate that optimized PZT patches,acceleration sensors,and ultrasonic transducers can provide efficient data acquisition for MASW-based non-destructive experiments.The research findings in this study lay a solid foundation for analyzing the recognition accuracy of contact MASW measurement using different sensor arrays.展开更多
This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mecha...This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mechanical equations for the bending problem of micro/nanoscale plates are given by the Kirchhoff theory of thin plates,incorporating the Gurtin-Murdoch surface elasticity theory.For two typical cases of constant bending moment and uniform shear force in the debonded segment,the associated problems are reduced to two mixed boundary value problems.By solving the resulting mixed boundary value problems using the Fourier integral transform,a new type of singular integral equation with two Cauchy kernels is obtained for each case,and the exact solutions in terms of the fundamental functions are determined using the PoincareBertrand formula.Asymptotic elastic fields near the debonded tips including the bending moment,effective shear force,and bulk stress components exhibit the oscillatory singularity.The dependence relations among the singular fields,the material constants,and the plate's thickness are analyzed for partially debonded cantilever micro-plates.If surface energy is neglected,these results reduce the bending fracture of a macroscale partially debonded cantilever plate,which has not been previously reported.展开更多
Curvature method was used to measure the residual stress and substrate straining tensile test was carried out to study the debonding behavior of TiO2 nanotube film. The results indicate that the internal residual stre...Curvature method was used to measure the residual stress and substrate straining tensile test was carried out to study the debonding behavior of TiO2 nanotube film. The results indicate that the internal residual stress is -54 MPa. The strains of debonding initiation of TiO2 nanotube films without annealing, with 250 °C annealing and with 400 °C annealing are 2.6%, 5.1% and 8.6%, respectively, and the average radii of the debonding patches with debonding initiation are 27.5, 17.1 and 19.4 μm, respectively. The true critical debonding stresses of TiO2 nanotube films without annealing, with 250 °C annealing and with 400 °C annealing can be estimated as 220.4, 394.5 and 627.9 MPa, respectively. Interfacial shear lag model is modified and polynomial fitting equation of the interfacial shear strength of TiO2 nanotube film is demonstrated under debonding conditions. The modification and polynomial fitting are reliable since good agreement of the interfacial shear strengths after fitting is obtained compared with those results from the crack density analysis.展开更多
This paper introduced a novel microstructure-based constitutive model designed to comprehensively characterize the intricate mechanical behavior of anisotropic clay rocks under the influence of water saturation.The pr...This paper introduced a novel microstructure-based constitutive model designed to comprehensively characterize the intricate mechanical behavior of anisotropic clay rocks under the influence of water saturation.The proposed model encompasses elastoplastic deformation,time-dependent behavior,and induced damage.A two-step homogenization process incorporates mineral compositions and porosity to determine the macroscopic elastic tensor and plastic yield criterion.The model also considers interfacial debonding between the matrix and inclusions to capture rock damage.The application of the proposed model is demonstrated through an analysis of Callovo-Oxfordian clayey rocks,specifically in the context of radioactive waste disposal in France.Model parameters are determined,followed by numerical simulations of various laboratory tests including lateral decompression tests with constant mean stress,triaxial compression tests under different water saturation conditions,and creep tests.The numerical results are compared with corresponding experimental data to assess the efficacy of the proposed model.展开更多
The interfacial debonding between the active layer and the current collector has been recognized as a critical mechanism for battery fading,and thus has attracted great efforts focused on the related analyses.However,...The interfacial debonding between the active layer and the current collector has been recognized as a critical mechanism for battery fading,and thus has attracted great efforts focused on the related analyses.However,much still remains to be studied regarding practical methods for suppressing electrode debonding,especially from the perspective of mechanics.In this paper,a pre-strain strategy of current collectors to alleviate electrode debonding is proposed.An analytical model for a symmetric electrode with a deformable and limited-thickness current collector is developed to analyze the debonding behavior involving both a pre-strain of the current collector and an eigen-strain of the active layers.The results reveal that the well-designed pre-strain can significantly delay the debonding onset(by up to 100%)and considerably reduce the debonding size.The critical values of the pre-strain are identified,and the pre-strain design principles are also provided.Based on these findings,this work sheds light on the mechanical design to suppress electrode degradation.展开更多
Strain hardening cement-based composites(SHCC)beam externally bonded with glass fiber-reinforced polymer(FRP)plate was examined under three-point flexural test.The effects of the type of substrate used(plain cement mo...Strain hardening cement-based composites(SHCC)beam externally bonded with glass fiber-reinforced polymer(FRP)plate was examined under three-point flexural test.The effects of the type of substrate used(plain cement mortar vs.SHCC),the use or not of a FRP plate to strengthen the SHCC beam,and the thickness of the FRP plate on the flexural performances were studied.Results show that the ultimate load of SHCC beams strengthened with FRP plate has improved greatly in comparison with plain SHCC beams.The deformation capacity of beams makes little change with an increase in the thickness of FRP plates.The formation of multiple flexural-shear cracks(MFSC)is the unique feature of SHCC beams bonded with FRP plates under three-point bending.The debonding of the FRP plate is initiated from MFSC.The initiated debonding area(IDA)is formed by the joint points of the flexural-shear cracks with the FRP plate.Then the debonding strain is represented using the average strain of FRP plate within IDA,which decreases with an increase of FRP plate thickness.The experimental values of the debonding strain of SHCC beam reinforced with FRP plate are close to those predicted by the JSCE’s equation.展开更多
The mechanisms of interfacial debonding of particle reinforcedrheological materials are studied. Based on an energy criterion, asimple formula of local critical stress for interfacial debonding isderived and expressed...The mechanisms of interfacial debonding of particle reinforcedrheological materials are studied. Based on an energy criterion, asimple formula of local critical stress for interfacial debonding isderived and expressed in terms of the interfacial energy. Theparticle size effect on interface debond- ing can then be analyzedeasily owing to the fact that critical stress is inverselyproportional to the square root of particle radius. By takingPP/CaCO_3 system as an example, the present energy criterion iscompared with the mechanical debonding criterion, and it is foundthat under the condition that bond strength is equal to matrixstrength and particle radius not over 0.2μm, the mechanicaldebonding cri- terion can be automatically satisfied if the energycirterion is satisfied.展开更多
A new degradation function of the friction coefficient is used.Based on the double shear-lag model and Paris formula,the interracial damage of coated- fiber-reinforced composites under tension-tension cyclic loading i...A new degradation function of the friction coefficient is used.Based on the double shear-lag model and Paris formula,the interracial damage of coated- fiber-reinforced composites under tension-tension cyclic loading is studied.The effects of strength and thickness of the coating materials on the debond stress,debond rate as well as debond length are simulated.展开更多
The sufficient bond between concrete and rock is an important prerequisite to ensure the effect of shotcrete support. However, in cold regions engineering protection system, the bond condition of rock and concrete sur...The sufficient bond between concrete and rock is an important prerequisite to ensure the effect of shotcrete support. However, in cold regions engineering protection system, the bond condition of rock and concrete surface is easily affected by freeze-thaw cycles, resulting in interface damage, debonding and even supporting failure. Understanding the micromechanisms of the damage and debonding of the rock-concrete interface is essential for improving the interface protection.Therefore, the micromorphology, micromechanical properties, and microdebonding evolution of the sandstone-concrete interface transition zone(ITZ) under varying freeze-thaw cycles(0, 5, 10, 15, 20) were studied using scanning electron microscope, stereoscopic microscope, and nano-indentation. Furthermore, the distribution range and evolution process of ITZ affected by freeze-thaw cycles were defined. Major findings of this study are as follows:(1) The microdamage evolution law of the ITZ under increasing freeze-thaw cycles is clarified, and the relationship between the number of cracks in the ITZ and freeze-thaw cycles is established;(2) As the number of freeze-thaw cycles increases, the ITZ's micromechanical strength decreases, and its development width tends to increase;(3) The damage and debonding evolution mechanisms of sandstone-concrete ITZ under freeze-thaw cycles is revealed, and its micromechanical evolution model induced by freeze-thaw cycles is proposed.展开更多
With the increasingly use of FRC (fiber-reinforced composite) in urban lifelines, me-chanical properties investigation is very important for disaster resistance, especiallythe investigation of fatigue properties. Base...With the increasingly use of FRC (fiber-reinforced composite) in urban lifelines, me-chanical properties investigation is very important for disaster resistance, especiallythe investigation of fatigue properties. Based on the shear-lag model, an usual com-posite model under cyclic loading is established. According to the Paris formula, therelationship between interfacial fatigue parameters and the number of cycles is ob-tained under the cyclic loading. Interfocial fatigue properties of this model and thegrowth of the interfacial fatigue crack are analyzed. And the Poisson ratio is consid-ered also.展开更多
The axial loading in rockbolts changes due to stress redistribution and rheology in the country rock mass.Such a change may lead to debonding at rockbolt to grout interface or rupture of the rockbolt.In this study,bas...The axial loading in rockbolts changes due to stress redistribution and rheology in the country rock mass.Such a change may lead to debonding at rockbolt to grout interface or rupture of the rockbolt.In this study,based on laboratory experiments,ultrasonic guided wave propagation in fully grouted rockbolt under different pull-out loads was investigated in order to examine the resultant debonding of rockbolt.The signals obtained from the ultrasonic monitoring during the pull-out test were processed using wavelet multi-scale analysis and frequency spectrum analysis,the signal amplitude and the amplitude ratio(Q)of low frequency to high frequency were defined to quantify the debonding of rockbolt.In addition to the laboratory test,numerical simulation on the effect of the embedment lengths on ultrasonic guided wave propagation in rockbolt was conducted by using a damage-based model,and the debonding between rockbolt and cement mortar was numerically examined.It was confirmed that the ultrasonic guided wave propagation in rockbolt was very sensitive to the debonding because of pull-out load,therefore,the critical bond length could be calculated based on the propagation of guided wave in the grouted rockbolt.In time domain,the signal amplitude in rockbolt increased with pull-out load from 0 to 100 kN until the completely debonding,thus quantifying the debonding under the different pull-out loads.In the frequency domain,as the Q value increased,the debonding length of rockbolt decreased exponentially.The numerical results confirmed that the guided wave propagation in the fully grouted rockbolt was effective in detecting and quantifying the debonding of rockbolt under pull-out load.展开更多
External bonding of fiber reinforced polymer (FRP) composites on the concrete structures has been proved to be an effective and efficient way to strengthen concrete structures. For a FRP strengthened concrete beam, ...External bonding of fiber reinforced polymer (FRP) composites on the concrete structures has been proved to be an effective and efficient way to strengthen concrete structures. For a FRP strengthened concrete beam, it is usually observed that the failure occurs in the concrete and a thin layer of concrete is attached on the surface of the debonded FRP plate. To study the debond behavior between concrete and FRP composites, an analytical model based on the three-parameter model is developed to study the debonding behavior for the FRP-to-concrete joint under pure shearing. Then, nonlinear FEM analysis is conducted to verify the PrOposed analytical model. The FEM results shows good agreement with the results from the model. Finally, with the analytical model, sensitivity analyses are performed to study the effect of the interracial parameters or the ~eometric parameters on the debondin~ behavior.展开更多
Bused on the generalized self-consistent finite element iterative averaging method.this paper studied the effects of the fiber-end debonding on the axially tensile elasto- plastic properties of SiC whiskers reinforced...Bused on the generalized self-consistent finite element iterative averaging method.this paper studied the effects of the fiber-end debonding on the axially tensile elasto- plastic properties of SiC whiskers reinforced Aluminium matrix composite for variouscases of different.fiber's fiber's aspect ratios and volume fractions Compared with the casesof perfect interface.it could be concluded that the effects of fiber-end debonding willbecome weaker with the fiber aspect ratio increasing and greater as the fiber volumefraction increases.展开更多
The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical ...The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical simulations,the eigenvalue analysis and Riks analysis are combined,in which the Hashin failure criterion and fracture energy stiffness degradation model are used to simulate the progressive failure of composites,and the“infinite”boundary conditions are applied to eliminate the boundary effects.As for the hydrostatic pressure tests,RTP specimens were placed in a hydrostatic chamber after filled with water.It has been observed that the cross-section of the middle part collapses when it reaches the maximum pressure.The collapse pressure obtained from the numerical simulations agrees well with that in the experiment.Meanwhile,the applicability of NASA SP-8007 formula on the collapse pressure prediction was also discussed.It has a relatively greater difference because of the ignorance of the progressive failure of composites.For the parametric study,it is found that RTPs have much higher first-ply-failure pressure when the winding angles are between 50°and 70°.Besides,the effect of debonding and initial ovality,and the contribution of the liner and coating are also discussed.展开更多
Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of ne...Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of new generations of the NEPE propellant with better mechanical properties. Therefore,understanding the effects of NPBA on the deformation and damage evolution of the NEPE propellant is fundamental to material design and applications. This paper studies the uniaxial tensile and stress relaxation responses of the NEPE propellant with different amounts of NPBA. The damage evolution in terms of interface debonding is further investigated using a cohesive-zone model(CZM). Experimental results show that the initial modulus and strength of the NEPE propellant increase with the increasing amount of NPBA while the elongation decreases. Meanwhile, the relaxation rate slows down and a higher long-term equilibrium modulus is reached. Experimental and numerical analyses indicate that interface debonding and crack propagation along filler-matrix interface are the dominant damage mechanism for the samples with a low amount of NPBA, while damage localization and crack advancement through the matrix are predominant for the ones with a high amount of NPBA. Finally, crosslinking density tests and simulation results also show that the effect of the bonding agent is interfacial rather than due to the overall crosslinking density change of the binder.展开更多
The success of hydraulic fracturing for shale gas recovery has motivated much research interest in understanding the underlying mechanisms (1-3)When hydraulic fractures (HFs) expand, multiple cracks and crack branches...The success of hydraulic fracturing for shale gas recovery has motivated much research interest in understanding the underlying mechanisms (1-3)When hydraulic fractures (HFs) expand, multiple cracks and crack branches can result in complex damage zones and are generally considered to be a stimulated reservoir volume (SRV).展开更多
This paper investigates the particle fracture and debonding during machining of metal matrix composite (MMC) due to developed stress and strain, and interaction with moving tool by finite element analysis. The machi...This paper investigates the particle fracture and debonding during machining of metal matrix composite (MMC) due to developed stress and strain, and interaction with moving tool by finite element analysis. The machining zone was divided into three regions: primary, secondary and tertiary deformation zones. The tendency of particles to fracture in each deformation zone was investigated. The findings of this study were also discussed with respect to the experimental results available in the literature. It was found that particles at the cutting path inthe tertiary deformation zone fractured as it interacted with tool. In the secondary deformation zone, particles interacted with other particles as well as cutting tool. This caused debonding and fracture of huge number of particles as those were moving up along the rake face with the chips. No particle fracture was noted at the primary deformation zone. The results obtained from finite element analysis were very similar to those obtained from experimental studies.展开更多
Cortical bone consists of osteons embedded in interstitial bone tissue and there is a thin amorphous interface, named cement line, between osteon and interstitial bone. Due to fatigue and cyclic loading, the pullout o...Cortical bone consists of osteons embedded in interstitial bone tissue and there is a thin amorphous interface, named cement line, between osteon and interstitial bone. Due to fatigue and cyclic loading, the pullout or debonding phenomenon often occurs in osteonal and interstitial tissue bone. The study aims to construct a fiber-reinforced composite material debonding model for cortical bone, in which the bonding condition along the osteon, cement line and interstitial tissue bone are assumed to be imperfect. In the study, we used the complex variable method to obtain series representations for stress fields in the osteon, cement line and the interstitial tissue bone with a radial crack. The effects of material properties of osteon and cement line, crack position, and varying degrees of debonding on the fracture behavior were investigated by computing the stress intensity factor (SIF) in the vicinity of the microcrack tips. The investigation results indicated that the cement line was important for controlling the fracture toughening mechanisms and that the level of imperfect bonding among osteon, cement line and interstitial tissue bone had a pronounced effect on the crack behavior and should not be ignored.展开更多
An analytical methodology was developed to investigate the effect of fiber/matrix interface debonding on matrix multicracking evolution of fiber-reinforced CMCs(ceramic-matrix composites).The Budiansky-Hutchinson-Evan...An analytical methodology was developed to investigate the effect of fiber/matrix interface debonding on matrix multicracking evolution of fiber-reinforced CMCs(ceramic-matrix composites).The Budiansky-Hutchinson-Evans shear-lag model was adopted to analyse the micro-stress field of the damaged composites.The critical matrix strain energy criterion,which presupposes the existence of an ultimate or critical matrix strain energy with matrix,was obtained to simulate the matrix multicracking evolution of CMCs.With the increase of the applied stress,the matrix multicracking and fiber/matrix interface debonding occurred to dissipate the additional energy entered into the composites.The fiber/matrix interface debonded length under matrix multicracking evolution was obtained by treating the interface debonding as a particular crack propagation problem.The conditions for no-debonding and debonding during the evolution of matrix multicracking were discussed in terms of two interfacial properties,i.e.,the interface shear stress and interface debonded toughness.When the fiber/matrix interface was bonded,the matrix multicracking evolution was much more intense compared with the interface debonding;when the fiber/matrix interface was debonded,the matrix crack density increased with the increasing of interface shear stress and interface debonded energy.The theoretical results were compared with experimental data of unidirectional SiC/CAS(calcium alumina silicate),SiC/CAS-Ⅱand SiC/borosilicate composites.展开更多
This paper presents an experimental and numerical study of short-fiber-reinforced rubber matrix sealing composites(SFRC). The transverse tensile stress-strain curves of SFRC are obtained by experiments. Based on the g...This paper presents an experimental and numerical study of short-fiber-reinforced rubber matrix sealing composites(SFRC). The transverse tensile stress-strain curves of SFRC are obtained by experiments. Based on the generalized self-consistent method, a representative volume element(RVE) model is established, and the cohesive zone model is employed to investigate the interfacial failure behavior. The effect of interphase properties on the interfacial debonding behavior of SFRC is numerically investigated. The results indicate that an interphase thickness of 0.3 μm and an interphase elastic modulus of about 502 MPa are optimal to restrain the initiation of the interfacial debonding. The interfacial debonding of SFRC mainly occurs between the matrix/interphase interface,which agrees well with results by scanning electron microscope(SEM).展开更多
基金National Natural Science Foundation of China under Grant (Nos.52192662,52020105005,51908320)the Beijing Nova Program under Grant No.20220484012+1 种基金the Interdisciplinary Research Project for Young Teachers of USTB (Fundamental Research Funds for the Central Universities,FRF-IDRY-22-013)the Key Laboratory for Intelligent Infrastructure and Monitoring of Fujian Province (Huaqiao University,IIM-01-05)。
文摘Steel-concrete composite structures(SCCS)have been widely used as primary load-bearing components in large-scale civil infrastructures.As the basis of the co-working ability of steel plate and concrete,the bonding status plays an essential role in guaranteeing the structural performance of SCCS.Accordingly,efficient non-destructive testing(NDT)on interfacial debondings in SCCS has become a prominent research area.Multi-channel analysis of surface waves(MASW)has been validated as an effective NDT technique for interfacial debonding detection for SCCS.However,the feasibility of MASW must be validated using experimental measurements.This study establishes a high-frequency data synchronous acquisition system with 32 channels to perform comparative verification experiments in depth.First,the current sensing approaches for high-frequency vibration and stress waves are summarized.Secondly,three types of contact sensors,namely,piezoelectric lead-zirconate-titanate(PZT)patches,accelerometers,and ultrasonic transducers,are selected for MASW measurement.Then,the selection and optimization of the force hammer head are performed.Comparative experiments are carried out for the optimal selection of ultrasonic transducers,PZT patches,and accelerometers for MASW measurement.In addition,the influence of different pasting methods on the output signal of the sensor array is discussed.Experimental results indicate that optimized PZT patches,acceleration sensors,and ultrasonic transducers can provide efficient data acquisition for MASW-based non-destructive experiments.The research findings in this study lay a solid foundation for analyzing the recognition accuracy of contact MASW measurement using different sensor arrays.
基金Project supported by the National Natural Science Foundation of China(Nos.12372086,12072374,and 12102485)。
文摘This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mechanical equations for the bending problem of micro/nanoscale plates are given by the Kirchhoff theory of thin plates,incorporating the Gurtin-Murdoch surface elasticity theory.For two typical cases of constant bending moment and uniform shear force in the debonded segment,the associated problems are reduced to two mixed boundary value problems.By solving the resulting mixed boundary value problems using the Fourier integral transform,a new type of singular integral equation with two Cauchy kernels is obtained for each case,and the exact solutions in terms of the fundamental functions are determined using the PoincareBertrand formula.Asymptotic elastic fields near the debonded tips including the bending moment,effective shear force,and bulk stress components exhibit the oscillatory singularity.The dependence relations among the singular fields,the material constants,and the plate's thickness are analyzed for partially debonded cantilever micro-plates.If surface energy is neglected,these results reduce the bending fracture of a macroscale partially debonded cantilever plate,which has not been previously reported.
基金Project (51274248) supported by the National Natural Science Foundation of ChinaProject (20110946Z) supported by the State Key Laboratory of Powder Metallurgy, China
文摘Curvature method was used to measure the residual stress and substrate straining tensile test was carried out to study the debonding behavior of TiO2 nanotube film. The results indicate that the internal residual stress is -54 MPa. The strains of debonding initiation of TiO2 nanotube films without annealing, with 250 °C annealing and with 400 °C annealing are 2.6%, 5.1% and 8.6%, respectively, and the average radii of the debonding patches with debonding initiation are 27.5, 17.1 and 19.4 μm, respectively. The true critical debonding stresses of TiO2 nanotube films without annealing, with 250 °C annealing and with 400 °C annealing can be estimated as 220.4, 394.5 and 627.9 MPa, respectively. Interfacial shear lag model is modified and polynomial fitting equation of the interfacial shear strength of TiO2 nanotube film is demonstrated under debonding conditions. The modification and polynomial fitting are reliable since good agreement of the interfacial shear strengths after fitting is obtained compared with those results from the crack density analysis.
文摘This paper introduced a novel microstructure-based constitutive model designed to comprehensively characterize the intricate mechanical behavior of anisotropic clay rocks under the influence of water saturation.The proposed model encompasses elastoplastic deformation,time-dependent behavior,and induced damage.A two-step homogenization process incorporates mineral compositions and porosity to determine the macroscopic elastic tensor and plastic yield criterion.The model also considers interfacial debonding between the matrix and inclusions to capture rock damage.The application of the proposed model is demonstrated through an analysis of Callovo-Oxfordian clayey rocks,specifically in the context of radioactive waste disposal in France.Model parameters are determined,followed by numerical simulations of various laboratory tests including lateral decompression tests with constant mean stress,triaxial compression tests under different water saturation conditions,and creep tests.The numerical results are compared with corresponding experimental data to assess the efficacy of the proposed model.
基金Project supported by the National Natural Science Foundation of China(Nos.12072183,11872236,12172205)the Key Research Project of Zhejiang Laboratory of China(No.2021PE0AC02)。
文摘The interfacial debonding between the active layer and the current collector has been recognized as a critical mechanism for battery fading,and thus has attracted great efforts focused on the related analyses.However,much still remains to be studied regarding practical methods for suppressing electrode debonding,especially from the perspective of mechanics.In this paper,a pre-strain strategy of current collectors to alleviate electrode debonding is proposed.An analytical model for a symmetric electrode with a deformable and limited-thickness current collector is developed to analyze the debonding behavior involving both a pre-strain of the current collector and an eigen-strain of the active layers.The results reveal that the well-designed pre-strain can significantly delay the debonding onset(by up to 100%)and considerably reduce the debonding size.The critical values of the pre-strain are identified,and the pre-strain design principles are also provided.Based on these findings,this work sheds light on the mechanical design to suppress electrode degradation.
基金This work is supported by National Natural Science Foundation of China(51608406)the Fundamental Research Funds for the Central Universities(201114013).
文摘Strain hardening cement-based composites(SHCC)beam externally bonded with glass fiber-reinforced polymer(FRP)plate was examined under three-point flexural test.The effects of the type of substrate used(plain cement mortar vs.SHCC),the use or not of a FRP plate to strengthen the SHCC beam,and the thickness of the FRP plate on the flexural performances were studied.Results show that the ultimate load of SHCC beams strengthened with FRP plate has improved greatly in comparison with plain SHCC beams.The deformation capacity of beams makes little change with an increase in the thickness of FRP plates.The formation of multiple flexural-shear cracks(MFSC)is the unique feature of SHCC beams bonded with FRP plates under three-point bending.The debonding of the FRP plate is initiated from MFSC.The initiated debonding area(IDA)is formed by the joint points of the flexural-shear cracks with the FRP plate.Then the debonding strain is represented using the average strain of FRP plate within IDA,which decreases with an increase of FRP plate thickness.The experimental values of the debonding strain of SHCC beam reinforced with FRP plate are close to those predicted by the JSCE’s equation.
基金the Nationai Natural Science Foundation of China(19632030 and 19872007)Natural Science Foundation of Jiangsu Province
文摘The mechanisms of interfacial debonding of particle reinforcedrheological materials are studied. Based on an energy criterion, asimple formula of local critical stress for interfacial debonding isderived and expressed in terms of the interfacial energy. Theparticle size effect on interface debond- ing can then be analyzedeasily owing to the fact that critical stress is inverselyproportional to the square root of particle radius. By takingPP/CaCO_3 system as an example, the present energy criterion iscompared with the mechanical debonding criterion, and it is foundthat under the condition that bond strength is equal to matrixstrength and particle radius not over 0.2μm, the mechanicaldebonding cri- terion can be automatically satisfied if the energycirterion is satisfied.
基金The subject supported by the National Natural Science Foundation of China(No.59778034)Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOEChina and The Hong Kong Polytechnic University(G-S737)
文摘A new degradation function of the friction coefficient is used.Based on the double shear-lag model and Paris formula,the interracial damage of coated- fiber-reinforced composites under tension-tension cyclic loading is studied.The effects of strength and thickness of the coating materials on the debond stress,debond rate as well as debond length are simulated.
基金supported by the National Natural Science Foundation of China (Grant No.41772333)the National Natural Science Foundation of Shaanxi Province, China (Grant No.2018JQ5124)the New-Star Talents Promotion Project of Science and Technology of Shaanxi Province, China (Grant No.2019KJXX049)。
文摘The sufficient bond between concrete and rock is an important prerequisite to ensure the effect of shotcrete support. However, in cold regions engineering protection system, the bond condition of rock and concrete surface is easily affected by freeze-thaw cycles, resulting in interface damage, debonding and even supporting failure. Understanding the micromechanisms of the damage and debonding of the rock-concrete interface is essential for improving the interface protection.Therefore, the micromorphology, micromechanical properties, and microdebonding evolution of the sandstone-concrete interface transition zone(ITZ) under varying freeze-thaw cycles(0, 5, 10, 15, 20) were studied using scanning electron microscope, stereoscopic microscope, and nano-indentation. Furthermore, the distribution range and evolution process of ITZ affected by freeze-thaw cycles were defined. Major findings of this study are as follows:(1) The microdamage evolution law of the ITZ under increasing freeze-thaw cycles is clarified, and the relationship between the number of cracks in the ITZ and freeze-thaw cycles is established;(2) As the number of freeze-thaw cycles increases, the ITZ's micromechanical strength decreases, and its development width tends to increase;(3) The damage and debonding evolution mechanisms of sandstone-concrete ITZ under freeze-thaw cycles is revealed, and its micromechanical evolution model induced by freeze-thaw cycles is proposed.
基金This work was supported by the National Natural Science Foundation of China(No.59778034)the Science Foundation of Hebei province(No.03276901)
文摘With the increasingly use of FRC (fiber-reinforced composite) in urban lifelines, me-chanical properties investigation is very important for disaster resistance, especiallythe investigation of fatigue properties. Based on the shear-lag model, an usual com-posite model under cyclic loading is established. According to the Paris formula, therelationship between interfacial fatigue parameters and the number of cycles is ob-tained under the cyclic loading. Interfocial fatigue properties of this model and thegrowth of the interfacial fatigue crack are analyzed. And the Poisson ratio is consid-ered also.
基金This work is funded by the National Science Foundation of China(Grant Nos.U1906208,52104157,51904056 and 51874069)and the Fundamental Research Funds for the Central Universities of China(Grant Nos.N2101028 and N2101015).
文摘The axial loading in rockbolts changes due to stress redistribution and rheology in the country rock mass.Such a change may lead to debonding at rockbolt to grout interface or rupture of the rockbolt.In this study,based on laboratory experiments,ultrasonic guided wave propagation in fully grouted rockbolt under different pull-out loads was investigated in order to examine the resultant debonding of rockbolt.The signals obtained from the ultrasonic monitoring during the pull-out test were processed using wavelet multi-scale analysis and frequency spectrum analysis,the signal amplitude and the amplitude ratio(Q)of low frequency to high frequency were defined to quantify the debonding of rockbolt.In addition to the laboratory test,numerical simulation on the effect of the embedment lengths on ultrasonic guided wave propagation in rockbolt was conducted by using a damage-based model,and the debonding between rockbolt and cement mortar was numerically examined.It was confirmed that the ultrasonic guided wave propagation in rockbolt was very sensitive to the debonding because of pull-out load,therefore,the critical bond length could be calculated based on the propagation of guided wave in the grouted rockbolt.In time domain,the signal amplitude in rockbolt increased with pull-out load from 0 to 100 kN until the completely debonding,thus quantifying the debonding under the different pull-out loads.In the frequency domain,as the Q value increased,the debonding length of rockbolt decreased exponentially.The numerical results confirmed that the guided wave propagation in the fully grouted rockbolt was effective in detecting and quantifying the debonding of rockbolt under pull-out load.
基金the National Basic Research Program of China (973 Project) (No. 2009CB623200)National Natural Science Foundation of China (No. 50808043)+1 种基金the Doctoral Program of Higher Education of China (No. 20070286024)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘External bonding of fiber reinforced polymer (FRP) composites on the concrete structures has been proved to be an effective and efficient way to strengthen concrete structures. For a FRP strengthened concrete beam, it is usually observed that the failure occurs in the concrete and a thin layer of concrete is attached on the surface of the debonded FRP plate. To study the debond behavior between concrete and FRP composites, an analytical model based on the three-parameter model is developed to study the debonding behavior for the FRP-to-concrete joint under pure shearing. Then, nonlinear FEM analysis is conducted to verify the PrOposed analytical model. The FEM results shows good agreement with the results from the model. Finally, with the analytical model, sensitivity analyses are performed to study the effect of the interracial parameters or the ~eometric parameters on the debondin~ behavior.
文摘Bused on the generalized self-consistent finite element iterative averaging method.this paper studied the effects of the fiber-end debonding on the axially tensile elasto- plastic properties of SiC whiskers reinforced Aluminium matrix composite for variouscases of different.fiber's fiber's aspect ratios and volume fractions Compared with the casesof perfect interface.it could be concluded that the effects of fiber-end debonding willbecome weaker with the fiber aspect ratio increasing and greater as the fiber volumefraction increases.
基金financially supported by National Natural Science Foundation of China(Grant Nos.52088102,51879249)Fundamental Research Funds for the Central Universities(Grant No.202261055)。
文摘The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical simulations,the eigenvalue analysis and Riks analysis are combined,in which the Hashin failure criterion and fracture energy stiffness degradation model are used to simulate the progressive failure of composites,and the“infinite”boundary conditions are applied to eliminate the boundary effects.As for the hydrostatic pressure tests,RTP specimens were placed in a hydrostatic chamber after filled with water.It has been observed that the cross-section of the middle part collapses when it reaches the maximum pressure.The collapse pressure obtained from the numerical simulations agrees well with that in the experiment.Meanwhile,the applicability of NASA SP-8007 formula on the collapse pressure prediction was also discussed.It has a relatively greater difference because of the ignorance of the progressive failure of composites.For the parametric study,it is found that RTPs have much higher first-ply-failure pressure when the winding angles are between 50°and 70°.Besides,the effect of debonding and initial ovality,and the contribution of the liner and coating are also discussed.
基金National Natural Science Foundation of China(U22B20131)for supporting this project.
文摘Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of new generations of the NEPE propellant with better mechanical properties. Therefore,understanding the effects of NPBA on the deformation and damage evolution of the NEPE propellant is fundamental to material design and applications. This paper studies the uniaxial tensile and stress relaxation responses of the NEPE propellant with different amounts of NPBA. The damage evolution in terms of interface debonding is further investigated using a cohesive-zone model(CZM). Experimental results show that the initial modulus and strength of the NEPE propellant increase with the increasing amount of NPBA while the elongation decreases. Meanwhile, the relaxation rate slows down and a higher long-term equilibrium modulus is reached. Experimental and numerical analyses indicate that interface debonding and crack propagation along filler-matrix interface are the dominant damage mechanism for the samples with a low amount of NPBA, while damage localization and crack advancement through the matrix are predominant for the ones with a high amount of NPBA. Finally, crosslinking density tests and simulation results also show that the effect of the bonding agent is interfacial rather than due to the overall crosslinking density change of the binder.
基金supported by the National Natural Science Foundation of China(Grant No.11532008)the Special Research Grant for Doctor Discipline by Ministry of Education,China(Grant No.20120002110075)
文摘The success of hydraulic fracturing for shale gas recovery has motivated much research interest in understanding the underlying mechanisms (1-3)When hydraulic fractures (HFs) expand, multiple cracks and crack branches can result in complex damage zones and are generally considered to be a stimulated reservoir volume (SRV).
文摘This paper investigates the particle fracture and debonding during machining of metal matrix composite (MMC) due to developed stress and strain, and interaction with moving tool by finite element analysis. The machining zone was divided into three regions: primary, secondary and tertiary deformation zones. The tendency of particles to fracture in each deformation zone was investigated. The findings of this study were also discussed with respect to the experimental results available in the literature. It was found that particles at the cutting path inthe tertiary deformation zone fractured as it interacted with tool. In the secondary deformation zone, particles interacted with other particles as well as cutting tool. This caused debonding and fracture of huge number of particles as those were moving up along the rake face with the chips. No particle fracture was noted at the primary deformation zone. The results obtained from finite element analysis were very similar to those obtained from experimental studies.
文摘Cortical bone consists of osteons embedded in interstitial bone tissue and there is a thin amorphous interface, named cement line, between osteon and interstitial bone. Due to fatigue and cyclic loading, the pullout or debonding phenomenon often occurs in osteonal and interstitial tissue bone. The study aims to construct a fiber-reinforced composite material debonding model for cortical bone, in which the bonding condition along the osteon, cement line and interstitial tissue bone are assumed to be imperfect. In the study, we used the complex variable method to obtain series representations for stress fields in the osteon, cement line and the interstitial tissue bone with a radial crack. The effects of material properties of osteon and cement line, crack position, and varying degrees of debonding on the fracture behavior were investigated by computing the stress intensity factor (SIF) in the vicinity of the microcrack tips. The investigation results indicated that the cement line was important for controlling the fracture toughening mechanisms and that the level of imperfect bonding among osteon, cement line and interstitial tissue bone had a pronounced effect on the crack behavior and should not be ignored.
基金Supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20140813)Postdoctoral Science Foundation of China(Grant No.2012M511274)Introduction of Talents Scientific Research Foundation of Nanjing University of Aeronautics and Astronautics(Grant No.56YAH12034)
文摘An analytical methodology was developed to investigate the effect of fiber/matrix interface debonding on matrix multicracking evolution of fiber-reinforced CMCs(ceramic-matrix composites).The Budiansky-Hutchinson-Evans shear-lag model was adopted to analyse the micro-stress field of the damaged composites.The critical matrix strain energy criterion,which presupposes the existence of an ultimate or critical matrix strain energy with matrix,was obtained to simulate the matrix multicracking evolution of CMCs.With the increase of the applied stress,the matrix multicracking and fiber/matrix interface debonding occurred to dissipate the additional energy entered into the composites.The fiber/matrix interface debonded length under matrix multicracking evolution was obtained by treating the interface debonding as a particular crack propagation problem.The conditions for no-debonding and debonding during the evolution of matrix multicracking were discussed in terms of two interfacial properties,i.e.,the interface shear stress and interface debonded toughness.When the fiber/matrix interface was bonded,the matrix multicracking evolution was much more intense compared with the interface debonding;when the fiber/matrix interface was debonded,the matrix crack density increased with the increasing of interface shear stress and interface debonded energy.The theoretical results were compared with experimental data of unidirectional SiC/CAS(calcium alumina silicate),SiC/CAS-Ⅱand SiC/borosilicate composites.
基金the National Natural Science Foundation of China(No.51375223)Open Research Fund by Jiangsu Key Laboratory of Recycling and Reuse Technology for Mechanical and Electronic Products(No.RRME-KF1611)Scientific Research Foundation for Advanced Talents(No.XZ1517)
文摘This paper presents an experimental and numerical study of short-fiber-reinforced rubber matrix sealing composites(SFRC). The transverse tensile stress-strain curves of SFRC are obtained by experiments. Based on the generalized self-consistent method, a representative volume element(RVE) model is established, and the cohesive zone model is employed to investigate the interfacial failure behavior. The effect of interphase properties on the interfacial debonding behavior of SFRC is numerically investigated. The results indicate that an interphase thickness of 0.3 μm and an interphase elastic modulus of about 502 MPa are optimal to restrain the initiation of the interfacial debonding. The interfacial debonding of SFRC mainly occurs between the matrix/interphase interface,which agrees well with results by scanning electron microscope(SEM).