期刊文献+
共找到1,280篇文章
< 1 2 64 >
每页显示 20 50 100
Growth and inhibition of zinc anode dendrites in Zn-air batteries:Model and experiment
1
作者 Cuiping He Qingyi Gou +6 位作者 Yanqing Hou Jianguo Wang Xiang You Ni Yang Lin Tian Gang Xie Yuanliang Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期268-281,共14页
Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active mate... Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active material Zn.However,the Zn anode also leads to many challenges,including dendrite growth,deformation,and hydrogen precipitation self-corrosion.In this context,Zn dendrite growth has a greater impact on the cycle lives.In this dissertation,a dendrite growth model for a Zn-air battery was established based on electrochemical phase field theory,and the effects of the charging time,anisotropy strength,and electrolyte temperature on the morphology and growth height of Zn dendrites were studied.A series of experiments was designed with different gradient influencing factors in subsequent experiments to verify the theoretical simulations,including elevated electrolyte temperatures,flowing electrolytes,and pulsed charging.The simulation results show that the growth of Zn dendrites is controlled mainly by diffusion and mass transfer processes,whereas the electrolyte temperature,flow rate,and interfacial energy anisotropy intensity are the main factors.The experimental results show that an optimal electrolyte temperature of 343.15 K,an optimal electrolyte flow rate of 40 ml·min^(-1),and an effective pulse charging mode. 展开更多
关键词 Zn-air battery Zinc anode Zinc dendrite Simulated dendrite growth Inhibit dendrite growth Phase-field model
下载PDF
Overdischarge-induced evolution of Cu dendrites and degradation of mechanical properties in lithium-ion batteries 被引量:3
2
作者 Zixin Guo Siguo Yang +5 位作者 Wenyang Zhao Shenghui Wang Jiong Liu Zhichao Ma Hongwei Zhao Luquan Ren 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期497-506,I0014,共11页
The degradation of mechanical properties of overdischarge battery materials manifests as a significant effect on the energy density,safety,and cycle life of the batteries.However,establishing the correlation between d... The degradation of mechanical properties of overdischarge battery materials manifests as a significant effect on the energy density,safety,and cycle life of the batteries.However,establishing the correlation between depth of overdischarge and mechanical properties is still a significant challenge.Studying the correlation between depth of overdischarge and mechanical properties is of great significance to improving the energy density and the ability to resist abuse of the batteries.In this paper,the mechanical properties of the battery materials during the whole process of overdischarge from discharge to complete failure were studied.The effects of depth of overdischarge on the elastic modulus and hardness of the cathode of the battery,the tensile strength and the thermal shrinkage rate of the separator,and the performance of binder were investigated.The precipitation of Cu dendrites on the separator and cathode after dissolution of anode copper foil is a key factor affecting the performance of battery materials.The Cu dendrites attached to the cathode penetrate the separator,causing irreversible damage to the coating and base film of the separator,which leads to a sharp decline in the tensile strength,thermal shrinkage rate and other properties of the separator.In addition,the Cu dendrites wrapping the cathode active particles reduce the adhesion of the active particles binder.Meanwhile,the active particles are damaged,resulting in a significant decrease in the elastic modulus and hardness of the cathode. 展开更多
关键词 Overdischarge Cu dendrites Mechanical properties NANOINDENTATION Micron scratch
下载PDF
Motor neuron-specific RhoA knockout delays degeneration and promotes regeneration of dendrites in spinal ventral horn after brachial plexus injury 被引量:1
3
作者 Mi Li Jiawei Xu +10 位作者 Ying Zou Jialing Lu Aiyue Ou Xinrui Ma Jiaqi Zhang Yizhou Xu Lanya Fu Jingmin Liu Xianghai Wang Libing Zhou Jiasong Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2757-2761,共5页
Dendrites play irreplaceable roles in the nerve conduction pathway and are vulnerable to various insults.Peripheral axotomy of motor neurons results in the retraction of dendritic arbors,and the dendritic arbor can be... Dendrites play irreplaceable roles in the nerve conduction pathway and are vulnerable to various insults.Peripheral axotomy of motor neurons results in the retraction of dendritic arbors,and the dendritic arbor can be re-expanded when reinnervation is allowed.RhoA is a target that regulates the cytoskeleton and promotes neuronal survival and axon regeneration.However,the role of RhoA in dendrite degeneration and regeneration is unknown.In this study,we explored the potential role of RhoA in dendrites.A line of motor neuronal conditional knockout mice was developed by crossbreeding HB9~(Cre+)mice with RhoA~(flox/flox)mice.We established two models for assaying dendrite degeneration and regeneration,in which the brachial plexus was transection or crush injured,respectively.We found that at 28 days after brachial plexus transection,the density,complexity,and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice were slightly decreased compared with that in Cre mice.Dendrites underwent degeneration at 7 and 14 days after brachial plexus transection and recovered at 28–56 days.The density,complexity,and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice recovered compared with results in Cre mice.These findings suggest that RhoA knockout in motor neurons attenuates dendrite degeneration and promotes dendrite regeneration after peripheral nerve injury. 展开更多
关键词 brachial plexus conditional knockout DEGENERATION dendrites motor neuron peripheral nerve injury REGENERATION RHOA spinal cord ventral horn
下载PDF
Simulation of inclined dendrites under natural convection by KKS phase field model based on CUDA 被引量:1
4
作者 Chang-sheng Zhu Tian-yu Li +2 位作者 Bo-rui Zhao Cang-long Wang Zi-hao Gao 《China Foundry》 SCIE CAS CSCD 2023年第5期432-442,共11页
In this work,Al-4.5wt.%Cu was selected as the research object,and a phase field-lattice Boltzmann method(PF-LBM)model based on compute unified device architecture(CUDA)was established to solve the problem of low seria... In this work,Al-4.5wt.%Cu was selected as the research object,and a phase field-lattice Boltzmann method(PF-LBM)model based on compute unified device architecture(CUDA)was established to solve the problem of low serial computing efficiency of a traditional CPU and achieve significant acceleration.This model was used to explore the evolution of dendrite growth under natural convection.Through the study of the tip velocities,it is found that the growth of the dendrite arms at the bottom is inhibited while the growth of the dendrite arms at the top is promoted by natural convection.In addition,research on the inclined dendrite under natural convection was conducted.It is observed that there is a deviation between the actual growth direction and the preferred angle of the inclined dendrite.With the increase of the preferred angle of the seed,the difference between the actual growth direction and the initial preferred angle of the inclined dendrite shows a trend of increasing at first and then decreasing.In the simulation area,the relative deflection directions of the primary dendrite arms in the top right corner and the bottom left corner of the same dendrite are almost counterclockwise,while the relative deflection directions of the other two primary dendrite arms are clockwise. 展开更多
关键词 PF-LBM natural convection inclined dendrites CUDA
下载PDF
The mechanism of external pressure suppressing dendrites growth in Li metal batteries 被引量:2
5
作者 Genming Lai Yunxing Zuo +8 位作者 Junyu Jiao Chi Fang Qinghua Liu Fan Zhang Yao Jiang Liyuan Sheng Bo Xu Chuying Ouyang Jiaxin Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期489-494,共6页
Li metal is considered an ideal anode material for application in the next-generation secondary batteries.However,the commercial application of Li metal batteries has not yet been achieved due to the safety concern ca... Li metal is considered an ideal anode material for application in the next-generation secondary batteries.However,the commercial application of Li metal batteries has not yet been achieved due to the safety concern caused by Li dendrites growth.Despite the fact that many recent experimental studies found that external pressure suppresses the Li dendrites growth,the mechanism of the external pressure effect on Li dendrites remains poorly understood on the atomic scale.Herein,the large-scale molecular dynamics simulations of Li dendrites growth under different external pressure were performed with a machine learning potential,which has the quantum-mechanical accuracy.The simulation results reveal that the external pressure promotes the process of Li self-healing.With the increase of external pressure,the hole defects and Li dendrites would gradually fuse and disappear.This work provides a new perspective for understanding the mechanism for the impact of external pressure on Li dendrites. 展开更多
关键词 Li metal Machine learning potential Molecular dynamic simulation DENDRITE External pressure
下载PDF
Effects of direct current electric field on corrosion behaviour of copper, Cl- ion migration behaviour and dendrites growth under thin electrolyte layer 被引量:11
6
作者 黄华良 潘志权 +1 位作者 郭兴蓬 邱于兵 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期285-291,共7页
Effect of direct current electric field (DCEF) on corrosion behaviour of copper printed circuit board (PCB-Cu), Cl-ion migration behaviour, dendrites growth under thin electrolyte layer was investigated using pote... Effect of direct current electric field (DCEF) on corrosion behaviour of copper printed circuit board (PCB-Cu), Cl-ion migration behaviour, dendrites growth under thin electrolyte layer was investigated using potentiodynamic polarization and scanning electron microscopy (SEM) with energy dispersive spectrometer (EDS). Results indicate that DCEF decreases the corrosion of PCB-Cu;Cl-ions directionally migrate from the negative pole to the positive pole, and enrich on the surface of the positive pole, which causes serious localized corrosion; dendrites grow on the surface of the negative pole, and the rate and scale of dendrite growth become faster and greater with the increase of external voltage and exposure time, respectively. 展开更多
关键词 COPPER dendrites MIGRATION direct current electric field thin electrolyte layer copper printed circuit board
下载PDF
Kinetic nucleation of primary α(Al) dendrites in Al-7%Si-Mg cast alloys with Ce and Sr additions 被引量:3
7
作者 陈忠伟 郝小雷 +1 位作者 赵静 马翠英 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3561-3567,共7页
Nucleation of dendritic primaryα(Al) phase with addition of element Ce and Sr in hypoeutectic Al-7%Si-Mg cast alloy was investigated by using differential scanning calorimetry (DSC) and scanning electron microsco... Nucleation of dendritic primaryα(Al) phase with addition of element Ce and Sr in hypoeutectic Al-7%Si-Mg cast alloy was investigated by using differential scanning calorimetry (DSC) and scanning electron microscopy. DSC results were used to calculate the activation energy and nucleation work of primaryα(Al) phase. The results show that the values of activation energy and nucleation work are decreased and the nucleation frequency is increased with the additions of Ce and Sr to the alloys. Moreover, the grain size of dendriticα(Al) phase is well refined, and the nucleation temperatures of primaryα(Al) dendrites are decreased with the additions of Ce and Sr. The effects of elements Ce and Sr additions on kinetic nucleation of primary α(Al) phases were also discussed in hypoeutectic Al-7%Si-Mg cast alloy. 展开更多
关键词 aluminium alloy primaryαdendrite NUCLEATION grain refinement activation energy nucleation work CE SR
下载PDF
Directional growth behavior of a(Al) dendrites during concentration-gradientcontrolled solidification process in static magnetic field 被引量:2
8
作者 李磊 徐博 +6 位作者 佟伟平 何立子 班春燕 张辉 左玉波 朱庆丰 崔建忠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2438-2445,共8页
The large and small sized Cu(solid)/Al(liquid) couples were prepared to investigate the directional growth behavior of primary a(Al) phase during a concentration-gradient-controlled solidification process under ... The large and small sized Cu(solid)/Al(liquid) couples were prepared to investigate the directional growth behavior of primary a(Al) phase during a concentration-gradient-controlled solidification process under various static magnetic fields(SMFs).The results show that in the large couples,the α(Al) dendrites reveal a directional growth character whether without or with the SMF.However,the 12 T magnetic field induces regular growth,consistent deflection and the decrease of secondary arm spacing of the dendrites.In the small couples,the α(Al) dendrites still reveal a directional growth character to some extent with a SMF of ≤5 T.However,an 8.8 T SMF destroys the directional growth and induces severe random deflections of the dendrites.When the SMF increases to 12 T,the a(Al) dendrites become quite regular despite of the consistent deflection.The directional growth arises from the continuous long-range concentration gradient field built in the melt.The morphological modification is mainly related to the suppression of natural convections and the induction of thermoelectric magnetic convection by the SMF. 展开更多
关键词 α(Al) dendrite diffusion couple concentration gradient field static magnetic field directional growth thermoelectric magnetic convection
下载PDF
The dynamic evolution of aggregated lithium dendrites in lithium metal batteries 被引量:4
9
作者 Xin Shen Rui Zhang +6 位作者 Shuhao Wang Xiang Chen Chuan Zhao Elena Kuzmina Elena Karaseva Vladimir Kolosnitsyn Qiang Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第9期137-143,共7页
Lithium(Li)metal anodes promise an ultrahigh theoretical energy density and low redox potential,thus being the critical energy material for next-generation batteries.Unfortunately,the formation of Li dendrites in Li m... Lithium(Li)metal anodes promise an ultrahigh theoretical energy density and low redox potential,thus being the critical energy material for next-generation batteries.Unfortunately,the formation of Li dendrites in Li metal anodes remarkably hinders the practical applications of Li metal anodes.Herein,the dynamic evolution of discrete Li dendrites and aggregated Li dendrites with increasing current densities is visualized by in-situ optical microscopy in conjunction with ex-situ scanning electron microscopy.As revealed by the phase field simulations,the formation of aggregated Li dendrites under high current density is attributed to the locally concentrated electric field rather than the depletion of Li ions.More specifically,the locally concentrated electric field stems from the spatial inhomogeneity on the Li metal surface and will be further enhanced with increasing current densities.Adjusting the above two factors with the help of the constructed phase field model is able to regulate the electrodeposited morphology from aggregated Li dendrites to discrete Li dendrites,and ultimately columnar Li morphology.The methodology and mechanistic understanding established herein give a significant step toward the practical applications of Li metal anodes. 展开更多
关键词 ELECTROCHEMISTRY Li dendrites Rechargeable Li batteries In-situ optical microscopy Phase field model Electrochemical engineering
下载PDF
Suppressing Li Dendrites via Electrolyte Engineering by Crown Ethers for Lithium Metal Batteries 被引量:4
10
作者 Shanqing Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第11期226-228,共3页
Electrolyte engineering is considered as an effective strategy to establish stable solid electrolyte interface(SEI),and thus to suppress the growth of lithium dendrites.In a recent study reported in Advanced Functiona... Electrolyte engineering is considered as an effective strategy to establish stable solid electrolyte interface(SEI),and thus to suppress the growth of lithium dendrites.In a recent study reported in Advanced Functional Materials by Ma group,discovered that strong coordination force could be founded between 15-Crown-5 ether(15-C-5) and Li+,which facilitates the crown ether(15-C-1) to participate in the solvation structure of Li+ in the electrolyte for the same purpose.Such a novel strategy might impact the design of highperformance and safe lithium metal batteries(LMB s). 展开更多
关键词 Li dendrites Crown ethers Lithium metal batteries ELECTROLYTE
下载PDF
Structural changes in pyramidal cell dendrites and synapses in the unaffected side of the sensorimotor cortex following transcranial magnetic stimulation and rehabilitation training in a rat model of focal cerebral infarct 被引量:2
11
作者 Chuanyu Liu Surong Zhou +3 位作者 Xuwen Sun Zhuli Liu Hongliang Wu Yuanwu Mei 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第9期676-680,共5页
Very little is known about the effects of transcranial magnetic stimulation and rehabilitation training on pyramidal cell dendrites and synapses of the contralateral, unaffected sensorimotor cortex in a rat model of f... Very little is known about the effects of transcranial magnetic stimulation and rehabilitation training on pyramidal cell dendrites and synapses of the contralateral, unaffected sensorimotor cortex in a rat model of focal cerebral infarct. The present study was designed to explore the mechanisms underlying improved motor function via transcranial magnetic stimulation and rehabilitation training following cerebral infarction. Results showed that rehabilitation training or transcranial magnetic stimulation alone reduced neurological impairment in rats following cerebral infarction, as well as significantly increased synaptic curvatures and post-synaptic density in the non-injured cerebral hemisphere sensorimotor cortex and narrowed the synapse cleft width. In addition, the percentage of perforated synapses increased. The combination of transcranial magnetic stimulation and rehabilitation resulted in significantly increased total dendritic length, dendritic branching points, and dendritic density in layer V pyramidal cells of the non-injured cerebral hemisphere motor cortex. These results demonstrated that transcranial magnetic stimulation and rehabilitation training altered structural parameters of pyramidal cell dendrites and synapses in the non-injured cerebral hemisphere sensorimotor cortex, thereby improving the ability to compensate for neurological functions in rats following cerebral infarction. 展开更多
关键词 cerebral infarction transcranial magnetic stimulation rehabilitation training sensorimotor cortex pyramidal cell dendrites SYNAPSE neural regeneration
下载PDF
Growth and microstructure of AlN whiskers and dendrites
12
作者 YingDai CewenNan 《Journal of University of Science and Technology Beijing》 CSCD 2002年第2期118-120,共3页
AlN whiskers or dendrites were synthesized with asublimation-recrystallization method by using Al, AlN powders and some additives as raw materials.Whiskers with different sizes that featured high purity and good cryst... AlN whiskers or dendrites were synthesized with asublimation-recrystallization method by using Al, AlN powders and some additives as raw materials.Whiskers with different sizes that featured high purity and good crystallinity were obtained bycontrolling temperature and gas supersaturation in the reaction container. The whiskers weredescribed as long and straight single crystals of approximately 1-30 mu m in diameter by thecentimeter range in length. However, AlN dendrites were about 1mm in diameter by 0.5cm in length,and showed an obviously preferential growth orientation, i.e., perpendicular to [21-bar1-bar1] and[101-bar1] planes. It is concluded that the whiskers or dendrites grow via the vapor-solidmechanism. 展开更多
关键词 aluminum nitride WHISKERS dendrites sublimation-recrystallizationmethod
下载PDF
Formation of twinned dendrites during unidirectional solidification of Al-32%Zn alloy 被引量:3
13
作者 Zhong-wei CHEN Jian-ping GAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第4期802-811,共10页
The present study focused on the formation and crystallographic orientation of twinned dendrites coexisting with equiaxed grains in unidirectional solidification of Al-32%Zn(mass fraction)alloy.The morphology was inve... The present study focused on the formation and crystallographic orientation of twinned dendrites coexisting with equiaxed grains in unidirectional solidification of Al-32%Zn(mass fraction)alloy.The morphology was investigated by optical metallograph and electron back-scattered diffraction technique.Results showed that the macrostructure of the alloy exhibited a typical feathery and fan-like structure while the microstructures were elongated lamellas,which were separated by coherent and incoherent twin boundaries.Both the primary trunk and all lateral arms of twinned dendrites grew along〈110〉directions,unlike regular〈100〉α(Al)dendrites.The facet growth of crystals at solid/liquid interface was responsible for the origin of twinned dendrites during the weak local convection,and high thermal gradient and medium solidification velocity had significant contribution to the formation of twinned dendrites.The formation mechanism of twinned dendrites which consisted of three multiplication ways of new twin boundaries formation and one way of dendrite evolution in twin plane was shown schematically. 展开更多
关键词 unidirectional solidification twinned dendrite growth direction aluminum alloy
下载PDF
Phase-field numerical simulation of three-dimensional competitive growth of dendrites in a binary alloy 被引量:1
14
作者 Li Feng Ya-long Gao +3 位作者 Chang-sheng Zhu Guo-sheng An Xin Deng Bei-bei Jia 《China Foundry》 SCIE 2018年第1期44-50,共7页
The normal vector of migration direction in the solid-liquid interface of dendrites was used to describe the phase-field governing equation. By using the three angles formed by the normal vector for the migration dire... The normal vector of migration direction in the solid-liquid interface of dendrites was used to describe the phase-field governing equation. By using the three angles formed by the normal vector for the migration direction of the dendritic growth interface and the coordinate axes of the simulation region, the authors expressed the interfacial anisotropy equation, and built a phase-field model for the competitive growth of multiple grains. Taking a Al-2%mole-Cu binary alloy as an example, the competitive growth of multiple grains during isothermal solidification was simulated by applying parallel computing techniques. In addition, the phase field simulation results were verified by the experimental method. The simulation results show that the competitive growth of equiaxed dendrite is divided into two types: the first occurs during the process of competitive growth, the tips of primary dendrite on different grains taking part in the competition stop growing in their optimal growth direction; the second also occurs during competitive growth, the tips of primary dendrite which participate in the competition on different grains never stop growing in their optimal growth direction. The dendritic morphologies of the first competition growth type are divided into two types. Primary dendrites of grains taking part in the competition stop growing in their optimal growth direction and the competition plane enlarges when neither one wins the competition. However, when one wins the competition, the primary dendrites of grains with superiority go through the blocking grains and continue to grow in their optimal growth direction. The primary dendrites of inferior grains stop growing in their optimal growth direction and then instead grow in those areas without obstacles. The dendritic morphology of the second competition-growth type is shown to be the deformation of primary dendrites, which are mainly represented as the deflection and bending observed from different views. Compared with the metallographic picture, the simulation results can show the morphology of the competitive growth in all directions, so this simulation method can better characterize the competitive growth process. 展开更多
关键词 DENDRITE Al-Cu binary alloy competitive growth dendritic morphology
下载PDF
Settling velocity of equiaxed dendrites in a tube 被引量:1
15
作者 周鹏 王猛 +1 位作者 林鑫 黄卫东 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期518-523,共6页
The settling velocity of equiaxed dendrites can cause macrosegregation and influence the structure of the equiaxed zone during the casting solidification process. So an understanding of the settling characteristics is... The settling velocity of equiaxed dendrites can cause macrosegregation and influence the structure of the equiaxed zone during the casting solidification process. So an understanding of the settling characteristics is needed to predict the structure and segregation in castings. The settling velocity of NH4Cl equiaxed dendrites of non-spherical geometry was studied experimentally in an NH4Cl-70wt.%H2O solution. A calculation formula was proposed to calculate the settling velocity of sediment equiaxed dendrites in a tube filled with saturated solution at a moderate Reynolds number region. The retardation effects of the wall and morphology of the equiaxed dendrite on the settling velocity were taken into account in the development of the calculation formula, and the correction function B of the drag coefficient with consideration of the retardation effects of the wall and morphology of the equiaxed dendrite on the settling velocity of the equiaxed dendrite was calibrated according to the experimental results. A comparison showed that the formula has a good accordance with the experimental results. 展开更多
关键词 equiaxed dendrite settling velocity morphology effect wall effect
下载PDF
The Vesicle-containing Spines of the Dendrites in the Rat Hippocampus 被引量:1
16
作者 Hu Renyi Fan shurong 《解剖学报》 CAS 1986年第1期21-21,共1页
The present article deals with the ultrastructure of the dendrites and their synapses in the rat hippocampus and the besicle-cotaining spines of the dendrites in the Ammon’s Horn were first recorded.Using glutaraldeh... The present article deals with the ultrastructure of the dendrites and their synapses in the rat hippocampus and the besicle-cotaining spines of the dendrites in the Ammon’s Horn were first recorded.Using glutaraldehyde-osmic acid as fixatives for present work. 展开更多
关键词 deals DENDRITE ULTRASTRUCTURE
下载PDF
EFFECT OF AUSTENITIC DENDRITES ON MECHANICAL PROPERTIES OF DUCTILE IRON
17
作者 ZHOU Jiyang XIE Zuhua ZHONG Fenqi Dalian University of Technology,Dalian,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1992年第11期375-377,共3页
Impact toughness of ductile nodular cast iron loaded perpendicular to the austenitic dendrites is found to be 43% higher than that parallel to ones.Yet tensile strength and elongation of the former are 23% and 30% low... Impact toughness of ductile nodular cast iron loaded perpendicular to the austenitic dendrites is found to be 43% higher than that parallel to ones.Yet tensile strength and elongation of the former are 23% and 30% lower than the later respectively.It is belived that the dendritic segregation may cause such differences. 展开更多
关键词 ductile iron austenitic dendrite mechanical property
下载PDF
Morphological Heredity of Intermetallic Nb_(5)Si_(3)Dendrites in Hypereutectic Nb-Si Based Alloys via Non-Equilibrium Solidification
18
作者 Yueling Guo Lina Jia +1 位作者 Wenjun Lu Hu Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第5期393-400,共8页
For hypereutectic Nb-Si based alloys,primary Nb_(5)Si_(3)phases typically grow in a faceted mode during equilibrium or near-equilibrium solidification,which damages the ductility and toughness.To address this issue,he... For hypereutectic Nb-Si based alloys,primary Nb_(5)Si_(3)phases typically grow in a faceted mode during equilibrium or near-equilibrium solidification,which damages the ductility and toughness.To address this issue,here we artificially manipulate the growth morphology of Nb_(5)Si_(3)using electron beam surface melting(EBSM)and subsequent annealing treatments.Results show that such a non-equilibrium solidification pathway enables the transition from faceted growth to non-faceted dendritic growth of Nb_(5)Si_(3),along with evident microstructure refinement,generation of metastableβ-Nb_(5)Si_(3)phases and elimination of chemical segregation.The transformation fromβ-Nb_(5)Si_(3)toα-Nb_(5)Si_(3)and Nb solid solution(Nbss)particles is triggered by the annealing treatment at 1450°C for 5 h.Also,we find the annealing-mediated formation of inherited Nb_(5)Si_(3)dendrites that maintain the dendritic morphology of the original as-solidifiedβ-Nb_(5)Si_(3)dendrites.This work thus provides a feasible routine to obtain thermally stable and refinedα-Nb_(5)Si_(3)dendrites in hypereutectic Nb-Si based alloys. 展开更多
关键词 Nb-Si alloy Intermetallics Nb_(5)Si_(3) Rapid solidification Dendritic growth
下载PDF
Restraining growth of Zn dendrites by poly dimethyl diallyl ammonium cations in aqueous electrolytes
19
作者 Xiang-Xin Zhang Yuan-Qiang Chen +8 位作者 Chang-Xin Lin Yuan-Sheng Lin Guo-Lin Hu Yong-Chuan Liu Xi-Lai Xue Su-Jing Chen Zhan-Lin Yang Bai-Sheng Sa Yi-Ning Zhang 《Rare Metals》 SCIE EI CAS CSCD 2024年第8期3735-3747,共13页
Metallic zinc is an excellent anode material for Zn-ion batteries,but the growth of Zn dendrite severely hinders its practical application.Herein,an efficient and economical cationic additive,poly dimethyl diallyl amm... Metallic zinc is an excellent anode material for Zn-ion batteries,but the growth of Zn dendrite severely hinders its practical application.Herein,an efficient and economical cationic additive,poly dimethyl diallyl ammonium(PDDA) was reported,used in aqueous Zn-ion batteries electrolyte for stabilizing Zn anode.The growth of zinc dendrites can be significantly restrained by benefiting from the pronounced electrostatic shielding effect from PDDA on the Zn metal surface.Moreover,the PDDA is preferentially absorbed on Zn(002) plane,thus preventing unwanted side reactions on Zn anode.Owing to the introduction of a certain amount of PDDA additive into the common ZnSO_(4)-based electrolyte,the cycle life of assembled Zn‖Zn cells(1 mA·cm^(-2) and 1 mAh·cm^(-2)) is prolonged to more than 1100 h.In response to the perforation issue of Zn electrodes caused by PDDA additives,the problem can be solved by combining foamy copper with zinc foil.For real application,Zn-ion hybrid supercapacitors and MnO_(2)‖Zn cells were assembled,which exhibited excellent cycling stability with PDDA additives.This work provides a new solution and perspective to cope with the dendrite growth problem of Zn anode. 展开更多
关键词 PDDA Electrostatic shielding effect Zn anode Zn dendrites
原文传递
Quantification and visualization of spatial distribution of dendrites in solid polymer electrolytes
20
作者 Tiancheng Yi Enyue Zhao +2 位作者 Yuping He Tianjiao Liang Howard Wang 《eScience》 2024年第1期114-122,共9页
Integrating lithium metal anodes with polymer electrolytes is a promising technology for the next generation high-energy-density rechargeable batteries.As the progress is often hindered by the dendrite growth upon cyc... Integrating lithium metal anodes with polymer electrolytes is a promising technology for the next generation high-energy-density rechargeable batteries.As the progress is often hindered by the dendrite growth upon cycling,quantifying three-dimensional(3D)microstructures of dendrites in polymer electrolytes is essential to better understanding of dendrite formation for the development of mitigation strategies.Techniques for 3D quantification and visualization of dendrites,especially those with low Li contents,are rather limited.This study reports quantitative measurements of the spatial distribution of Li dendrites grown in solid polymer electrolytes using 3D tomographic neutron depth profiling(NDP)with improved spatial resolution,compositional range,and data presentation.Data reveal heterogeneous distribution of Li over length scales from tens nanometers to centimeters.While most dendrites grow from the plating toward the stripping electrode with dwindling Li quantities,dendrites apparently grown from the Li-stripping electrode are also observed.The discovery is only possibly due to the unique combination of the high specificity and high sensitivity of the neutron activation analysis of Li isotope. 展开更多
关键词 Li metal battery Solid polymer electrolytes 3D tomographic neutron depth profiling Lithium dendrite
原文传递
上一页 1 2 64 下一页 到第
使用帮助 返回顶部