液晶面板喷墨打印表面缺陷检测中存在目标小、样本少、纹理背景干扰等问题,应用传统图像处理算法检测精度低、泛化性差,针对以上问题提出了一种改进RT-DETR(real-time detection transformer)的目标检测算法。改进RT-DETR算法通过将主...液晶面板喷墨打印表面缺陷检测中存在目标小、样本少、纹理背景干扰等问题,应用传统图像处理算法检测精度低、泛化性差,针对以上问题提出了一种改进RT-DETR(real-time detection transformer)的目标检测算法。改进RT-DETR算法通过将主干网络ResNet模型替换为特征提取性能更优的ConvNeXt模型,提高算法整体检测精度。设计了基于通道注意力的增强通道压缩模块,使算法更有效地消除背景干扰专注于定位缺陷目标,加快算法收敛,提高小目标检测精度。在构建的喷墨打印缺陷数据集训练实验上,改进RT-DETR算法检测平均精度mAP(mean average precision)为80.58%,较原始RT-DETR算法提升了2.89%,较原始DETR算法提升了15.88%,检测速度达到20 FPS(frames per second),改进RT-DETR算法的综合检测性能更优。改进RT-DETR算法在小目标检测数据集VisDrone训练实验上表现出良好的通用性,为其他工业场景下的表面小目标缺陷检测提供了参考价值。展开更多
针对高分辨率遥感影像中建筑目标较小和背景信息冗余带来的挑战,提出了一种称为FE-DETR(feature enhancement-detection with transformer)的端到端目标检测算法。首先,利用拼接融合模块(concatenation fusion module,CFM)融合不同尺度...针对高分辨率遥感影像中建筑目标较小和背景信息冗余带来的挑战,提出了一种称为FE-DETR(feature enhancement-detection with transformer)的端到端目标检测算法。首先,利用拼接融合模块(concatenation fusion module,CFM)融合不同尺度的特征层,缓解小建筑目标特征缺失问题;其次,使用全局通道注意力(global channel attention,GCA)模块细化融合后的特征。具体来说,该模块通过构建通道间的关系矩阵,提高模型对目标的感知能力,有效缓解复杂背景信息带来的干扰。最后,在WCH(Wuhan caidian house)、EA(east Asia)和CBC(city building of China)数据集上评估该算法的检测性能。实验结果表明,所提出的改进算法在上述3个数据集上AP_(50)分别提高了0.8%、0.6%和0.6%,验证了该算法的有效性。展开更多
文摘液晶面板喷墨打印表面缺陷检测中存在目标小、样本少、纹理背景干扰等问题,应用传统图像处理算法检测精度低、泛化性差,针对以上问题提出了一种改进RT-DETR(real-time detection transformer)的目标检测算法。改进RT-DETR算法通过将主干网络ResNet模型替换为特征提取性能更优的ConvNeXt模型,提高算法整体检测精度。设计了基于通道注意力的增强通道压缩模块,使算法更有效地消除背景干扰专注于定位缺陷目标,加快算法收敛,提高小目标检测精度。在构建的喷墨打印缺陷数据集训练实验上,改进RT-DETR算法检测平均精度mAP(mean average precision)为80.58%,较原始RT-DETR算法提升了2.89%,较原始DETR算法提升了15.88%,检测速度达到20 FPS(frames per second),改进RT-DETR算法的综合检测性能更优。改进RT-DETR算法在小目标检测数据集VisDrone训练实验上表现出良好的通用性,为其他工业场景下的表面小目标缺陷检测提供了参考价值。
文摘针对高分辨率遥感影像中建筑目标较小和背景信息冗余带来的挑战,提出了一种称为FE-DETR(feature enhancement-detection with transformer)的端到端目标检测算法。首先,利用拼接融合模块(concatenation fusion module,CFM)融合不同尺度的特征层,缓解小建筑目标特征缺失问题;其次,使用全局通道注意力(global channel attention,GCA)模块细化融合后的特征。具体来说,该模块通过构建通道间的关系矩阵,提高模型对目标的感知能力,有效缓解复杂背景信息带来的干扰。最后,在WCH(Wuhan caidian house)、EA(east Asia)和CBC(city building of China)数据集上评估该算法的检测性能。实验结果表明,所提出的改进算法在上述3个数据集上AP_(50)分别提高了0.8%、0.6%和0.6%,验证了该算法的有效性。