期刊文献+

二次检索

题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
改进RT-DETR的无人机图像目标检测算法
1
作者 姜贸翔 司占军 王晓喆 《计算机工程与应用》 北大核心 2025年第1期98-108,共11页
针对轻小型无人机图像目标检测中由于目标灵活多样、环境复杂多变导致的检测精度低等问题,提出基于改进RT-DETR无人机目标检测算法。综合考虑轻量级SimAM注意力和倒置残差模块改进ResNet-r18主干网络,提高目标检测模型的特征提取能力。... 针对轻小型无人机图像目标检测中由于目标灵活多样、环境复杂多变导致的检测精度低等问题,提出基于改进RT-DETR无人机目标检测算法。综合考虑轻量级SimAM注意力和倒置残差模块改进ResNet-r18主干网络,提高目标检测模型的特征提取能力。采用级联分组注意力机制优化倒置残差模块和特征交互模块,提升特征选择能力,实现目标检测信息的精细化获取。颈部网络中引入160×160检测层,提升特征融合阶段小目标的感知能力。基于VisDrone2019数据集的实验结果表明,改进后的模型具有更低的参数量和更高的检测精度。在Alver_Lab_Ulastirma和HIT-UAV数据集上进一步验证了改进方法的有效性和鲁棒性。 展开更多
关键词 小目标检测 detr 注意力机制 TRANSFORMER 残差链接
下载PDF
基于改进DETR的机器人铆接缺陷检测方法研究 被引量:3
2
作者 李宗刚 宋秋凡 +1 位作者 杜亚江 陈引娟 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第4期1690-1700,共11页
铆接作为铁道车辆结构件的主要连接方式,合格的铆接质量是车辆安全稳定运行的重要保证。针对现有铆接缺陷检测方法存在检测精度低、检测点位少、检测智能化水平不高等问题,提出一种基于改进DETR的机器人铆接缺陷检测方法。首先,搭建铆... 铆接作为铁道车辆结构件的主要连接方式,合格的铆接质量是车辆安全稳定运行的重要保证。针对现有铆接缺陷检测方法存在检测精度低、检测点位少、检测智能化水平不高等问题,提出一种基于改进DETR的机器人铆接缺陷检测方法。首先,搭建铆接缺陷检测系统,依次采集工件尺寸大、铆钉尺寸小工况下的铆接缺陷图像。其次,为了增强DETR模型在小目标中的图像特征提取能力和检测性能,以EfficientNet作为DETR中的主干特征提取网络,并将3-D权重注意力机制SimAM引入EfficientNet网络,从而有效保留图像特征层的镦头形态信息和铆点区域的空间信息。然后,在颈部网络中引入加权双向特征金字塔模块,以EfficientNet网络的输出作为特征融合模块的输入对各尺度特征信息进行聚合,增大不同铆接缺陷的类间差异。最后,利用Smooth L1和DIoU的线性组合改进原模型预测网络的回归损失函数,提高模型的检测精度和收敛速度。结果表明,改进模型表现出较高的检测性能,对于铆接缺陷的平均检测精度mAP为97.12%,检测速度FPS为25.4帧/s,与Faster RCNN、YOLOX等其他主流检测模型相比,在检测精度和检测速度方面均具有较大优势。研究结果能够满足实际工况中大型铆接件的小尺寸铆钉铆接缺陷实时在线检测的需求,为视觉检测技术在铆接工艺中的应用提供一定的参考价值。 展开更多
关键词 铆接缺陷检测 detr EfficientNet 3-D注意力机制 多尺度加权特征融合
下载PDF
面向松木表面缺陷检测的改进RT-DETR模型 被引量:1
3
作者 胡继文 张国梁 +1 位作者 沈明哲 李文浩 《农业工程学报》 EI CAS CSCD 北大核心 2024年第7期210-218,共9页
为提高松木表面缺陷检测精确度,保证检测速率,该研究提出一种改进RT-DETR的检测模型RIC-DETR。首先,从木材表面缺陷公开数据集中获取图片,并进行标注及数据增强,构建一个包含13642张图片的表面缺陷数据集;其次,对比VGG11、VGG13、ResNe... 为提高松木表面缺陷检测精确度,保证检测速率,该研究提出一种改进RT-DETR的检测模型RIC-DETR。首先,从木材表面缺陷公开数据集中获取图片,并进行标注及数据增强,构建一个包含13642张图片的表面缺陷数据集;其次,对比VGG11、VGG13、ResNet18和VanillaNet13等网络架构,选用计算复杂度低且检测精度较高的ResNet18作为主干特征提取基准网络;然后,引入反向残差移动模块更新ResNet18中的基本块,扩展模型的感受野,改善层间的特征交互;最后,使用EfficientViT模型中的级联分组注意力机制对反向残差移动模块进行二次创新改进,降低计算资源的消耗,提升模型的表达能力。试验结果表明,RIC-DETR的精确率、召回率、平均精度均值分别为95.4%、96.0%、97.2%,均优于目前主流的YOLO系列模型,对比基准模型RT-DETR,RIC-DETR在保持高精度的情况下,参数量、浮点运算量和内存占用量大幅减少,分别降低了54%、57%、52%,同时检测速度可达63.5帧/s。RIC-DETR模型具有复杂度低、准确率高、检测速度快的特点,可为松木的表面缺陷检测提供技术支持。 展开更多
关键词 木材 模型 松木表面缺陷检测 RT-detr RIC-detr YOLO
下载PDF
FMA-DETR:一种无编码器的Transformer目标检测方法 被引量:1
4
作者 周全 倪英豪 +2 位作者 莫玉玮 康彬 张索非 《信号处理》 CSCD 北大核心 2024年第6期1160-1170,共11页
DETR是第一个将Transformer应用于目标检测的视觉模型。在DETR结构中,Transformer编码器对已高度编码的图像特征进行再编码,这在一定程度上导致了网络功能的重复。此外,由于Transformer编码器具有多层深度堆叠的结构和巨大的参数量,导... DETR是第一个将Transformer应用于目标检测的视觉模型。在DETR结构中,Transformer编码器对已高度编码的图像特征进行再编码,这在一定程度上导致了网络功能的重复。此外,由于Transformer编码器具有多层深度堆叠的结构和巨大的参数量,导致网络优化变得困难,模型收敛速度缓慢。本文设计了一种无编码器的Transformer目标检测网络模型。由于不需要引入Transformer编码器,本文的模型比DETR参数量更小、计算量更低、模型收敛速度更快。但是,直接去除Transformer编码器将降低网络的表达能力,导致Transformer解码器无法从数量庞大的图像特征中关注到包含目标的图像特征,从而使检测性能大幅降低。为了缓解这个问题,本文提出了一种混合特征注意力(fusion-feature mixing attention,FMA)机制,它通过自适应特征混合和通道交叉注意力弥补检测网络特征表达能力的下降,将其应用于Transformer解码器可以减轻由于去除Transformer编码器带来的性能降低。在MS-COCO数据集上,本文网络模型(称为FMA-DETR)实现了与DETR相近的性能表现,同时本文的模型拥有更快的收敛速度、更小的参数量以及更低的计算量。本文还进行了大量消融实验来验证所提出方法的有效性。 展开更多
关键词 目标检测 TRANSFORMER 编码器 detr 混合注意力
下载PDF
基于改进Deformable-DETR的水下图像目标检测方法 被引量:2
5
作者 崔颖 韩佳成 +1 位作者 高山 陈立伟 《应用科技》 CAS 2024年第1期30-36,91,共8页
针对由于水下复杂环境造成的目标检测效果较差、检测精度较低的问题,基于Deformable-DETR算法提出一种改进的水下目标检测算法Deformable-DETR-DA。使用空间注意力模块结合标准Transformer块设计了一个用于增加模型深度的深度特征金字塔... 针对由于水下复杂环境造成的目标检测效果较差、检测精度较低的问题,基于Deformable-DETR算法提出一种改进的水下目标检测算法Deformable-DETR-DA。使用空间注意力模块结合标准Transformer块设计了一个用于增加模型深度的深度特征金字塔(deep feature pyramid networks,DFPN)模块,将其嵌入到模型中提高模型对深层纹理信息的提取能力。使用注意力引导的方式对原模型中编码器部分进行改进,加强了对特征信息的聚合能力,提高了模型在复杂环境下的检测能力。针对URPC数据集,模型各交并比尺度的平均准确度(average precision,AP)为39.5%,相比原模型提升1%,与一些DETR(detection transformer)类的模型相比,不同目标尺度的平均准确度均有1%~4%左右的提高,表明改进的模型能够很好解决复杂环境的水下目标检测的问题。本文提出的模型可作为其他水下目标检测模型设计的参考。 展开更多
关键词 水下光学图像 Deformable-detr 目标检测 TRANSFORMER 注意力机制 深度学习 图像处理 残差网络
下载PDF
基于改进Deformable DETR模型的多源局部放电识别方法及其应用
6
作者 雷志鹏 彭川 +4 位作者 许子涵 姜宛廷 李传扬 吝伶艳 彭邦发 《中国电机工程学报》 EI CSCD 北大核心 2024年第15期6248-6260,I0035,共14页
基于图像的局部放电识别方法大部分仅对单源局部放电谱图有效,无法识别多源局部放电谱图。为实现对多源局部放电谱图的识别,该文提出一种基于Transformer架构的局部放电Deformable DETR目标检测模型,收集典型单源局部放电和多源局部放... 基于图像的局部放电识别方法大部分仅对单源局部放电谱图有效,无法识别多源局部放电谱图。为实现对多源局部放电谱图的识别,该文提出一种基于Transformer架构的局部放电Deformable DETR目标检测模型,收集典型单源局部放电和多源局部放电数据,生成局部放电相位角解析和极坐标相位分布解析谱图数据集。在Deformable DETR模型中引入去噪训练任务和贝叶斯优化算法,优化了局部放电目标检测模型;编写局部放电谱图采集和识别程序,并使用优化后的局部放电Deformable DETR模型对单源和多源局部放电谱图进行识别。结果表明:局部放电Deformable DETR模型不仅可有效识别出单源和多源局部放电的类型,而且大幅提升了局部放电类型识别的收敛速度和精度等性能。在对真实绝缘缺陷电动机的局部放电谱图识别中,局部放电Deformable DETR模型的识别准确率达到91%,证明该模型在实际应用中的有效性。 展开更多
关键词 局部放电 模式识别 Deformabledetr 目标检测 多源局部放电
下载PDF
改进RT-DETR的液晶面板喷墨打印表面缺陷检测
7
作者 李昂 刘竹丽 +1 位作者 宋伟 王立新 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第11期147-154,共8页
液晶面板喷墨打印表面缺陷检测中存在目标小、样本少、纹理背景干扰等问题,应用传统图像处理算法检测精度低、泛化性差,针对以上问题提出了一种改进RT-DETR(real-time detection transformer)的目标检测算法。改进RT-DETR算法通过将主... 液晶面板喷墨打印表面缺陷检测中存在目标小、样本少、纹理背景干扰等问题,应用传统图像处理算法检测精度低、泛化性差,针对以上问题提出了一种改进RT-DETR(real-time detection transformer)的目标检测算法。改进RT-DETR算法通过将主干网络ResNet模型替换为特征提取性能更优的ConvNeXt模型,提高算法整体检测精度。设计了基于通道注意力的增强通道压缩模块,使算法更有效地消除背景干扰专注于定位缺陷目标,加快算法收敛,提高小目标检测精度。在构建的喷墨打印缺陷数据集训练实验上,改进RT-DETR算法检测平均精度mAP(mean average precision)为80.58%,较原始RT-DETR算法提升了2.89%,较原始DETR算法提升了15.88%,检测速度达到20 FPS(frames per second),改进RT-DETR算法的综合检测性能更优。改进RT-DETR算法在小目标检测数据集VisDrone训练实验上表现出良好的通用性,为其他工业场景下的表面小目标缺陷检测提供了参考价值。 展开更多
关键词 表面缺陷检测 目标检测 RT-detr算法 ConvNeXt模型 通道注意力
下载PDF
基于改进RT-DETR的路面坑槽检测模型
8
作者 许小伟 陈燕玲 +2 位作者 占柳 漆庆华 邓明星 《武汉科技大学学报》 CAS 北大核心 2024年第6期457-467,共11页
路面坑槽对驾驶的舒适性和安全性有很大影响。针对路面图像中坑槽尺寸小和特征信息匮乏导致检测精度低的问题,提出一种基于RT-DETR的路面坑槽检测模型Pavement Pothole-DETR(PP-DETR)。其主干网络使用SPDRSFE模块进行特征提取,可保留更... 路面坑槽对驾驶的舒适性和安全性有很大影响。针对路面图像中坑槽尺寸小和特征信息匮乏导致检测精度低的问题,提出一种基于RT-DETR的路面坑槽检测模型Pavement Pothole-DETR(PP-DETR)。其主干网络使用SPDRSFE模块进行特征提取,可保留更多特征信息,提高小目标检测精度;引入渐进特征金字塔网络实现特征融合,避免多级传输造成的信息丢失,以解决坑槽特征信息主要集中在中、底特征层的问题;使用结构重参数化模块Conv3XCC3进行特征再提取,在提高网络表达能力的同时又不增加计算量。实验结果显示,相比原RT-DETR模型,PP-DETR的精确率与召回率分别提升了2.9和5.4个百分点,mAP达到76.9%。本文提出的改进方法有效提升了网络的特征提取和特征融合能力,在路面坑槽检测任务上的表现明显优于YOLO系列模型。 展开更多
关键词 目标检测 路面坑槽 改进RT-detr 渐进特征金字塔网络 结构重参数化
下载PDF
MSDAB-DETR:一种多尺度遥感目标检测算法
9
作者 李烨 周生翠 张驰 《数据采集与处理》 CSCD 北大核心 2024年第6期1455-1469,共15页
由于遥感图像中的目标尺寸差异大,且捕获不同尺度目标的信息非常困难,因此难以有效识别不同尺度目标。同时,传统Transformer在处理高分辨率图像时会出现计算资源不足的问题;单一的损失计算方式和匈牙利算法结合会增大代价损失的波动性,... 由于遥感图像中的目标尺寸差异大,且捕获不同尺度目标的信息非常困难,因此难以有效识别不同尺度目标。同时,传统Transformer在处理高分辨率图像时会出现计算资源不足的问题;单一的损失计算方式和匈牙利算法结合会增大代价损失的波动性,影响算法的收敛速度和精度。基于上述问题,本文提出一种基于改进DAB-DETR的多尺度遥感目标检测算法(Multi-scale dynamic anchor boxes for DETR, MSDAB-DETR)。首先,该算法通过创建一种新型的多尺度注意力融合模块,利用不同分辨率特征信息之间的差异,实现了对遥感图像的多尺度预测。其次,采用高效注意力机制对Transformer模型中的自注意力机制进行改进,降低原始模型的内存占用量。最后,利用SIoU损失函数作为边界框回归损失,与匈牙利算法相结合,削弱了二分图匹配的波动性,加快了收敛速度,并进一步改善了边界框的回归能力。实验结果表明,该方法在NWPU VHR-10和DIOR数据集上的检测精度分别高达95.3%和71.5%;在NWPU VHR-10数据集上,小、中、大3种尺度目标的平均检测精度相较于DAB-DETR模型分别提升了10.5%、1.8%和2.7%;内存占用量减少约9%。 展开更多
关键词 遥感图像检测 DAB-detr模型 多尺度注意力融合 高效注意力Transformer SIoU损失
下载PDF
基于RT-DETR-Faster的苹果采摘机器人实时目标检测算法 被引量:1
10
作者 王文杰 陈伟 +1 位作者 路锦通 黄珍伟 《自动化与仪表》 2024年第7期57-62,共6页
为了解决苹果采摘中目标小,实时性要求高等问题,提出了一种基于RT-DETR的采摘机器人目标检测方法,名为RT-DETR-Faster。首先,采用FasterNet部分卷积替换主干网络的传统卷积,有效提升了模型的运算速度;其次,使用改进的级联注意力编码器... 为了解决苹果采摘中目标小,实时性要求高等问题,提出了一种基于RT-DETR的采摘机器人目标检测方法,名为RT-DETR-Faster。首先,采用FasterNet部分卷积替换主干网络的传统卷积,有效提升了模型的运算速度;其次,使用改进的级联注意力编码器替换原始的编码器,使网络更专注于目标区域;最后,引入Faster_Rep融合特征模块,保留更多有效特征并减少计算量。该文在实际的果园图像上进行了实验,结果表明,该文提出的算法与原始的RT-DETR算法相比,FPS提升了34%,帧数达到了47.9,同时准确率更高,适用于苹果采摘机器人的实时目标检测任务。 展开更多
关键词 深度学习 果园采摘 TRANSFORMER 注意力机制 RT-detr
下载PDF
多尺度局部聚类的Kmeans-DETR目标检测方法
11
作者 崔鹏 杨海峰 +1 位作者 蔡江辉 王玉鹏 《小型微型计算机系统》 CSCD 北大核心 2024年第5期1136-1142,共7页
在利用DETR进行目标检测时,复杂的矩阵运算不仅对稀疏冗余特征产生了大量无效计算,还阻碍了对图像更多尺度信息的使用.针对上述问题,本文提出了多尺度局部聚类的Kmeans-DETR目标检测方法.首先构造了局部Kmeans聚类方法,通过在特征图的... 在利用DETR进行目标检测时,复杂的矩阵运算不仅对稀疏冗余特征产生了大量无效计算,还阻碍了对图像更多尺度信息的使用.针对上述问题,本文提出了多尺度局部聚类的Kmeans-DETR目标检测方法.首先构造了局部Kmeans聚类方法,通过在特征图的局部区域内聚类得到对应簇,并选取特征代表该簇以降低稀疏冗余特征的数量,进而减少矩阵计算量与模型复杂度;其次通过3种尺度的局部聚类,引入多尺度信息的同时通过不同尺度聚类区域重叠的方式解决局部信息不互通的问题;最后改进了位置编码方式用以记录局部聚类后特征的位置信息,并嵌入到簇的代表特征中,利用Transformer结构完成检测任务.本文提出的模型在COCO数据集上与主流的目标检测模型进行了对比,在多个指标上均有较好的表现. 展开更多
关键词 目标检测 Kmeans detr 多尺度 TRANSFORMER
下载PDF
基于改进Deformable DETR的无人机视频流车辆目标检测算法
12
作者 江志鹏 王自全 +4 位作者 张永生 于英 程彬彬 赵龙海 张梦唯 《计算机工程与科学》 CSCD 北大核心 2024年第1期91-101,共11页
针对无人机视频流检测中小目标数量多、因图像传输质量较低而导致的上下文语义信息不充分、传统算法融合特征推理速度慢、数据集类别样本不均衡导致的训练效果差等问题,提出一种基于改进Deformable DETR的无人机视频流车辆目标检测算法... 针对无人机视频流检测中小目标数量多、因图像传输质量较低而导致的上下文语义信息不充分、传统算法融合特征推理速度慢、数据集类别样本不均衡导致的训练效果差等问题,提出一种基于改进Deformable DETR的无人机视频流车辆目标检测算法。在模型结构方面,该算法设计了跨尺度特征融合模块以增大感受野,提升小目标检测能力,并采用针对object_query的挤压-激励模块提升关键目标的响应值,减少重要目标的漏检与错检率;在数据处理方面,使用了在线困难样本挖掘技术,改善数据集中类别样本分布不均的问题。在UAVDT数据集上进行了实验,实验结果表明,改进后的算法相较于基线算法在平均检测精度上提升了1.5%,在小目标检测精度上提升了0.8%,并在保持参数量较少增长的情况下,维持了原有的检测速度。 展开更多
关键词 Deformable detr 目标检测 跨尺度特征融合模块 object query挤压-激励 在线难样本挖掘
下载PDF
基于改进RT-DETR的车门内拉手表面缺陷检测方法
13
作者 徐仟祥 曾勇 +1 位作者 卢倩 南玉龙 《电子测量技术》 北大核心 2024年第18期172-181,共10页
针对车门内拉手表面的缺陷目标小、多尺度、易反光等问题。首先,通过使用碗状光源和降低图像采集表面夹角的方法,解决内拉手表面图像采集时因表面弯曲和镜面反射导致的缺陷特征被覆盖问题。然后,针对传统的RT-DETR模型存在缺陷检测精度... 针对车门内拉手表面的缺陷目标小、多尺度、易反光等问题。首先,通过使用碗状光源和降低图像采集表面夹角的方法,解决内拉手表面图像采集时因表面弯曲和镜面反射导致的缺陷特征被覆盖问题。然后,针对传统的RT-DETR模型存在缺陷检测精度差,速度慢等问题,提出一种改进的RT-DETR目标检测方法。该方法首先以RT-DETR为基础架构,在主干网络中采用并行的膨胀卷积与CA注意力机制并结合卷积重参数化的方式,以增加网络感受野和建立长距离的语义信息的同时提高网络推理速度。其次,通过添加额外的检测层来增加网络对小目标检测的特征提取能力。紧接着,在多尺度特征融合阶段使用了改进的BIFPN结构以提高模型信息交互的能力。最后,消融实验表明,相较于传统的基于RT-DETR的检测方法,本文提出的改进RT-DETR的检测方法,平均精度提升了6.5%,检测速度为传统模型的1.6倍,同时模型的参数量仅为原网络的76.5%。验证了本文所提方法的有效性。 展开更多
关键词 车门内拉手 缺陷检测 RT-detr 膨胀卷积 卷积重参数化 BIFPN
下载PDF
基于DeformableDETR的域自适应目标检测模型在城市街道场景中的应用
14
作者 杨浩 陈斌 李科 《计算机应用》 CSCD 北大核心 2024年第S01期262-267,共6页
针对在特定环境背景条件下训练的城市街道目标检测模型直接应用在另一种环境背景条件下城市街道场景中检测性能下降的问题,提出一种基于Deformable DETR(DEtection TRansformer)的域自适应目标检测模型City-DA-DETR,通过引入域自适应模... 针对在特定环境背景条件下训练的城市街道目标检测模型直接应用在另一种环境背景条件下城市街道场景中检测性能下降的问题,提出一种基于Deformable DETR(DEtection TRansformer)的域自适应目标检测模型City-DA-DETR,通过引入域自适应模块融合主干网络特征与Transformer特征,有效实现特征对齐与知识跨域迁移。首先,域自适应模块利用Transformer解码器输出Token与编码器特征交互,生成多尺度实例特征蒙板(MSIM);其次,实例特征蒙板引导Transformer编码器特征生成多尺度空间注意力机制与通道注意力机制;最后,主干网络特征与编码器特征通过注意力机制融合生成用于跨域特征对齐的语义向量。从Cityscape到Fogy-Cityscape数据集,City-DA-DETR模型的平均精度均值(mAP)达到了43.8%,相较于基线模型SFA(Sequence Feature Alignment)提升了2.5百分点;从Sim10K到Cityscape数据集,City-DA-DETR模型的mAP达到了56.1%,相较于SFA提升了3.5百分点。实验结果表明,City-DA-DETR具有良好的域自适应性,有效实现了不同环境背景城市街道场景的跨域迁移。 展开更多
关键词 城市街道场景 detr 目标检测 域自适应 注意力机制
下载PDF
基于改进DETR的智慧车间人员典型行为识别算法
15
作者 何赟泽 谯灵俊 +2 位作者 王洪金 马刚 王耀南 《电子测量与仪器学报》 CSCD 北大核心 2024年第9期76-84,共9页
生产车间环境复杂,设备众多且人员活动具有高度自主性和不确定性,传统的人工观测方式在面对海量监控数据时,难以实现高效的实时管控。为提高车间人员行为的自动化监测水平,保障生产安全,提出一种基于改进DETR的行为识别算法。通过智慧... 生产车间环境复杂,设备众多且人员活动具有高度自主性和不确定性,传统的人工观测方式在面对海量监控数据时,难以实现高效的实时管控。为提高车间人员行为的自动化监测水平,保障生产安全,提出一种基于改进DETR的行为识别算法。通过智慧车间的实地调研,采集多种工作行为及异常行为数据,构建车间红外行为数据集,并在此基础上设计改进算法。针对原始算法的不足,引入相对位置编码,并采用空间调制共同注意力机制,旨在提升网络对全局特征中待检测物体的定位精度。此外,通过引入待检测物体的高斯分布权重,使网络解码器更加高效地识别行为特征。实验结果表明,改进后的算法在自建数据集上的识别精度相比原始算法提高了6.97%,并在公开数据集上同样表现出色。该改进方法不仅为车间人员行为的监控提供了更加高效的解决方案,也为智慧车间的自动化与智能化发展提供了有力的技术支持。 展开更多
关键词 detr 行为识别 注意力机制 深度学习 智慧车间 红外数据集
下载PDF
基于MA-DETR的SAR图像飞机目标检测
16
作者 周文骏 黄硕 +4 位作者 张宁 宋传龙 赵宇轩 段一帆 徐国庆 《光学精密工程》 EI CAS CSCD 北大核心 2024年第18期2814-2822,共9页
SAR图像目标检测近年来一直是研究热点,但其成像不清晰的特点也导致DETR网络模型无法很好地提取其潜在特征,同时DETR网络也存在训练周期长、收敛慢的问题。为此设计了一种基于多标签分配的DETR网络(Multi-label Assignment DETR,MA-DETR... SAR图像目标检测近年来一直是研究热点,但其成像不清晰的特点也导致DETR网络模型无法很好地提取其潜在特征,同时DETR网络也存在训练周期长、收敛慢的问题。为此设计了一种基于多标签分配的DETR网络(Multi-label Assignment DETR,MA-DETR)用于SAR图像飞机目标检测任务。本文利用添加大尺度抖动(Large Scale Jittering,LSJ)的数据增强模块增强网络训练效果,然后设计了一种多标签分配监督模块处理从编码器输出的数据,其中多个监督辅助头提取潜在特征并输入到解码器改善DETR网络一对一标签分配方式的不足之处。最后还设计了一种匹配增强模块加入解码器中,缓解由匈牙利匹配算法带来的匹配离散性,提高网络训练损失收敛速度。实验结果表明:在SAR AIRcraft数据集上,相较于原方法,本文方法使AP0.5和AP0.75精度分别提高了7.9%和7.4%,同时基于相同的训练网络,其损失收敛速度有3.3倍的提升。新的网络结构有效提高SAR图像目标检测精度,并且减少了DETR网络训练周期。 展开更多
关键词 目标检测 SAR图像 detr网络 注意力机制
下载PDF
基于DETR的3C装配场景精准视觉检测方法
17
作者 程轲 陈雯柏 刘辉翔 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第9期269-276,共8页
针对当前传统检测算法对3C智能装配场景下小尺度器件识别精度不高,在面对目标器件遮挡情况下产生漏检等问题,提出一种改进的DETR算法,通过引入多尺度特征融合网络PANet,使模型保留更多的细节和上下文信息,从而提高对小目标的感知能力,... 针对当前传统检测算法对3C智能装配场景下小尺度器件识别精度不高,在面对目标器件遮挡情况下产生漏检等问题,提出一种改进的DETR算法,通过引入多尺度特征融合网络PANet,使模型保留更多的细节和上下文信息,从而提高对小目标的感知能力,改善小尺度器件识别精度不高的问题;针对骨干网络对多尺度特征提取能力弱,计算和参数量较大的问题,采用了ResNeSt-50骨干网络,使模型拥有更强的特征表示能力,从而改善了泛化能力以及提升了模型的效率;采用ACON自适应激活函数有效的优化了激活函数在负半轴特征信息消失的问题;最后使用Smooth-L 1 Loss可以结合Focal Loss损失函数,使模型收敛精度更高,并且有效的改善了正负样本比例不平衡的问题。在自建3C装配数据集上进行了实验对比,实验结果表明:所提算法的mAP@0.5比基准网络YOLOv5提高了4%,比YOLOv7提升了2%。 展开更多
关键词 目标检测 detr 注意力机制 特征融合 自适应激活
下载PDF
改进DETR的高分辨率遥感影像建筑物检测方法
18
作者 吴奇鸿 张斌 +2 位作者 段功豪 郭昶 王磊 《遥感信息》 CSCD 北大核心 2024年第1期146-156,共11页
针对高分辨率遥感影像中建筑目标较小和背景信息冗余带来的挑战,提出了一种称为FE-DETR(feature enhancement-detection with transformer)的端到端目标检测算法。首先,利用拼接融合模块(concatenation fusion module,CFM)融合不同尺度... 针对高分辨率遥感影像中建筑目标较小和背景信息冗余带来的挑战,提出了一种称为FE-DETR(feature enhancement-detection with transformer)的端到端目标检测算法。首先,利用拼接融合模块(concatenation fusion module,CFM)融合不同尺度的特征层,缓解小建筑目标特征缺失问题;其次,使用全局通道注意力(global channel attention,GCA)模块细化融合后的特征。具体来说,该模块通过构建通道间的关系矩阵,提高模型对目标的感知能力,有效缓解复杂背景信息带来的干扰。最后,在WCH(Wuhan caidian house)、EA(east Asia)和CBC(city building of China)数据集上评估该算法的检测性能。实验结果表明,所提出的改进算法在上述3个数据集上AP_(50)分别提高了0.8%、0.6%和0.6%,验证了该算法的有效性。 展开更多
关键词 建筑物检测 高分辨率 特征融合 全局通道注意力 detr
下载PDF
基于RT-DETR-ASF的学生科学探究实验行为检测研究
19
作者 杨帆 詹泽慧 《数字教育》 2024年第5期14-23,共10页
深度学习方法在学生科学实验的自动检测和评估方面具有提高效率的潜力。为了解决学生科学实验数据集的缺乏和低准确率的问题,该文提出了一种基于实时的注意力尺度序列融合的目标检测变换器RT-DETR-ASF的学生科学实验检测方法。首先,该... 深度学习方法在学生科学实验的自动检测和评估方面具有提高效率的潜力。为了解决学生科学实验数据集的缺乏和低准确率的问题,该文提出了一种基于实时的注意力尺度序列融合的目标检测变换器RT-DETR-ASF的学生科学实验检测方法。首先,该文构建了学生科学实验数据集,包括417个视频,18308张视频帧和20331个标注,主要关注5种行为:称重、测高度、丢球、测大小和记录。为提高检测准确率,引入了一种注意力尺度序列融合模块。为解决边界数据问题,提出了行为边界指数,用于识别数据集中的边界样本。为了解决数据不平衡问题,进行了过采样与视频帧扩展的操作。使用科学实验检测模型对数据集进行检测,实验结果表明:行为分类检测的平均准确率达到了71.1%。这证明了该模型的有效性。学生科学实验数据集与RT-DETR-ASF为未来的学生科学实验分析提供了先验基础,有望推动该领域的进一步发展。 展开更多
关键词 深度学习 学生科学实验 RT-detr-ASF 数据不平衡
下载PDF
基于DETR-SGC算法的煤矿变电所安全防护装备检测
20
作者 杨文轲 王向前 《湖北民族大学学报(自然科学版)》 CAS 2024年第4期528-532,581,共6页
为了对煤矿井下变电所人员防护装备穿戴情况进行智能监测,以及避免监测视频受光照不均、粉尘干扰、遮挡等因素影响导致检测精确率降低的问题,提出了平滑幽灵卷积检测变换器(detection Transformer-smooth-L 1 ghost convolution,DETR-S... 为了对煤矿井下变电所人员防护装备穿戴情况进行智能监测,以及避免监测视频受光照不均、粉尘干扰、遮挡等因素影响导致检测精确率降低的问题,提出了平滑幽灵卷积检测变换器(detection Transformer-smooth-L 1 ghost convolution,DETR-SGC)算法进行煤矿变电所安全防护装备检测。首先,在检测变换器(detection Transformer,DETR)算法的位置编码部分,引入幽灵组块通道缩放(ghost batchnormalization sigmoid gated linear unit-squeeze and excitation,GBS-SE)模块,增强算法空间维度特征提取能力;其次,在变换器模块中引入卷积块注意力模块(convolutional block attention module,CBAM),提高通道和空间维度特征提取能力,提升算法的检测精确率;最后,融合平滑L 1范数损失(smooth-L 1)和广义交并比(generalized intersection over union,GIoU)损失函数提升算法的回归精确率。实验表明,DETR-SGC算法的平均精确率、召回率、平均精确率均值分别达到了93.3%、87.9%、91.3%,比原始DETR算法分别提升了10.8%、4.3%、5.9%。因此,该算法能够有效解决煤矿变电所人员安全防护装备穿戴的检测问题。 展开更多
关键词 安全防护装备检测 detr-SGC 变换器 CBAM Smooth-L 1 GIoU损失函数
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部