Soldering experiments with Sn-3.5Ag-0.5Cu lead-free solder on Au/Ni/Cu pad were carried out by means of diode-laser and IR reflow soldering methods respectively.The influence of different heating methods as well as ou...Soldering experiments with Sn-3.5Ag-0.5Cu lead-free solder on Au/Ni/Cu pad were carried out by means of diode-laser and IR reflow soldering methods respectively.The influence of different heating methods as well as output power of diode-laser on shear force of micro-joints was studied and the relationship between the shear force and microstructures of micro-joints was analyzed.The results indicate that the formation of intermetallic compound Ag3Sn is the key factor to affect the shear force and the fine eutectic network structures of micro-joints as well as the dispersion morphology of fine compound Ag3Sn,in which eutectic network band is responsible for the improvement of the shear force of micro-joints soldered with Sn-Ag-Cu lead-free solder.With the increases of output power of diode-laser,the shear force and the microstructures change obviously.The eutectic network structures of micro-joints soldered with diode-laser soldering method are more homogeneous and the grains of Ag3Sn compounds are finer in the range of near optimal output power than those soldered with IR reflow soldering method,so the shear force is also higher than that using IR reflow soldering method.When the output power value of diode-laser is about 41.0 W,the shear force exhibits the highest value that is 70% higher than that using IR reflow soldering method.展开更多
Objective: To assess the effect of temporary occlusion of hepatic blood inflow on hepatic cancer treated with di- ode-laser induced thermocogation (LITT). Methods: The carcinoma Walker-256 was implanted in 40 SD rat l...Objective: To assess the effect of temporary occlusion of hepatic blood inflow on hepatic cancer treated with di- ode-laser induced thermocogation (LITT). Methods: The carcinoma Walker-256 was implanted in 40 SD rat livers. Twelve days later, the animals were randomly divided into 4 groups. Group A received LITT alone; group B received hepatic artery temporary occlusion during LITT; group C received portal vein temporary occlusion during LITT; group D received hepatic artery and portal vein temporary occlusion during LITT. Tumors were exposed to 810 nm diode-laser light at 0.95 watts for 10 min from a scanner tip applicator placed in the tumor. At the same time, the intrahepatic temperature distribution in rats with liver tumors was meas- ured per 2 min during thermocoagulation. Tumor control was examined immediately 7 and 14 d after thermocoagulation. Results: There was significant difference of intrahepatic temperature distribution in rats with liver tumors among the 4 groups (P<0.05) except when group C samples were compared with group D samples at each time point, and group B samples were compared with group C samples at 120 s (P>0.05). Light microscopic examination of the histologic section samples revealed three separate zones: regular hyperthermic coagulation necrosis zone, transition zone and reference zone. Compared with the samples in group A and group B, group C and group D samples had more clear margin among the three zones. Conclusion: The hepatic blood inflow occlusion, especially portal vein hepatic blood inflow occlusion, or all hepatic blood inflow occlusion considerably increased the efficacy of LITT in the treatment of liver cancer.展开更多
An innovative gas sensor with on-chip reference using a monolithic twin laser is proposed. In this sensor a monolithic twin laser generates two closer laser beams with slight different wavelengths alternatively, one p...An innovative gas sensor with on-chip reference using a monolithic twin laser is proposed. In this sensor a monolithic twin laser generates two closer laser beams with slight different wavelengths alternatively, one photodiode is used to catch both absorption and reference signals by time division multiplexing. The detection of nitrous oxide adopting this scheme using a 2.1 I^m antimonide laser and an InGaAs photodiode has been demonstrated experimentally with detection limit below i ppm. Using this on chip reference scheme the fluctuations from the optical path and devices can be compensated effectively; the sensor system is simplified distinctly.展开更多
A novel flat-flat resonator consisting of two crystals(Nd:YAG + Nd:YVO4) is established for power scaling in a diode-end-pumped solid-state laser. We systematically compare laser characteristics between multi-seg...A novel flat-flat resonator consisting of two crystals(Nd:YAG + Nd:YVO4) is established for power scaling in a diode-end-pumped solid-state laser. We systematically compare laser characteristics between multi-segmented(Nd:YAG + Nd:YVO4) and conventional composite(Nd:YAG + Nd:YAG) crystals to demonstrate the feasibility of spectral line matching for output power scale-up in end-pumped lasers. A maximum continuous-wave output power of 79.2 W is reported at 1064 nm, with Mx2= 4.82, My2= 5.48, and a pumping power of 136 W in the multi-segmented crystals(Nd:YAG + Nd:YVO4). Compared to conventional composite crystals(Nd:YAG + Nd:YAG), the optical-optical conversion efficiency of multi-segmented crystals(Nd:YAG + Nd:YVO4) from 808 nm to 1064 nm is enhanced from 30% to 58.8%,while the laser output sensitivity as affected by the diode-laser temperature is reduced from 55% to 9%.展开更多
文摘Soldering experiments with Sn-3.5Ag-0.5Cu lead-free solder on Au/Ni/Cu pad were carried out by means of diode-laser and IR reflow soldering methods respectively.The influence of different heating methods as well as output power of diode-laser on shear force of micro-joints was studied and the relationship between the shear force and microstructures of micro-joints was analyzed.The results indicate that the formation of intermetallic compound Ag3Sn is the key factor to affect the shear force and the fine eutectic network structures of micro-joints as well as the dispersion morphology of fine compound Ag3Sn,in which eutectic network band is responsible for the improvement of the shear force of micro-joints soldered with Sn-Ag-Cu lead-free solder.With the increases of output power of diode-laser,the shear force and the microstructures change obviously.The eutectic network structures of micro-joints soldered with diode-laser soldering method are more homogeneous and the grains of Ag3Sn compounds are finer in the range of near optimal output power than those soldered with IR reflow soldering method,so the shear force is also higher than that using IR reflow soldering method.When the output power value of diode-laser is about 41.0 W,the shear force exhibits the highest value that is 70% higher than that using IR reflow soldering method.
基金Project supported by the National Basic Research and DevelopmentProgram (973) (No. 863-410-2001-5) of China and Science Founda-tion of Zhejiang Province (No. 2004C33016) China
文摘Objective: To assess the effect of temporary occlusion of hepatic blood inflow on hepatic cancer treated with di- ode-laser induced thermocogation (LITT). Methods: The carcinoma Walker-256 was implanted in 40 SD rat livers. Twelve days later, the animals were randomly divided into 4 groups. Group A received LITT alone; group B received hepatic artery temporary occlusion during LITT; group C received portal vein temporary occlusion during LITT; group D received hepatic artery and portal vein temporary occlusion during LITT. Tumors were exposed to 810 nm diode-laser light at 0.95 watts for 10 min from a scanner tip applicator placed in the tumor. At the same time, the intrahepatic temperature distribution in rats with liver tumors was meas- ured per 2 min during thermocoagulation. Tumor control was examined immediately 7 and 14 d after thermocoagulation. Results: There was significant difference of intrahepatic temperature distribution in rats with liver tumors among the 4 groups (P<0.05) except when group C samples were compared with group D samples at each time point, and group B samples were compared with group C samples at 120 s (P>0.05). Light microscopic examination of the histologic section samples revealed three separate zones: regular hyperthermic coagulation necrosis zone, transition zone and reference zone. Compared with the samples in group A and group B, group C and group D samples had more clear margin among the three zones. Conclusion: The hepatic blood inflow occlusion, especially portal vein hepatic blood inflow occlusion, or all hepatic blood inflow occlusion considerably increased the efficacy of LITT in the treatment of liver cancer.
文摘An innovative gas sensor with on-chip reference using a monolithic twin laser is proposed. In this sensor a monolithic twin laser generates two closer laser beams with slight different wavelengths alternatively, one photodiode is used to catch both absorption and reference signals by time division multiplexing. The detection of nitrous oxide adopting this scheme using a 2.1 I^m antimonide laser and an InGaAs photodiode has been demonstrated experimentally with detection limit below i ppm. Using this on chip reference scheme the fluctuations from the optical path and devices can be compensated effectively; the sensor system is simplified distinctly.
基金Project supported by the National Defense Pre-Research Foundation of China(Grant No.9140A020105)
文摘A novel flat-flat resonator consisting of two crystals(Nd:YAG + Nd:YVO4) is established for power scaling in a diode-end-pumped solid-state laser. We systematically compare laser characteristics between multi-segmented(Nd:YAG + Nd:YVO4) and conventional composite(Nd:YAG + Nd:YAG) crystals to demonstrate the feasibility of spectral line matching for output power scale-up in end-pumped lasers. A maximum continuous-wave output power of 79.2 W is reported at 1064 nm, with Mx2= 4.82, My2= 5.48, and a pumping power of 136 W in the multi-segmented crystals(Nd:YAG + Nd:YVO4). Compared to conventional composite crystals(Nd:YAG + Nd:YAG), the optical-optical conversion efficiency of multi-segmented crystals(Nd:YAG + Nd:YVO4) from 808 nm to 1064 nm is enhanced from 30% to 58.8%,while the laser output sensitivity as affected by the diode-laser temperature is reduced from 55% to 9%.