期刊文献+
共找到2,190篇文章
< 1 2 110 >
每页显示 20 50 100
On the evolution and formation of discharge morphology in pulsed dielectric barrier discharge
1
作者 陈星宇 李孟琦 +3 位作者 王威逸 张权治 彭涛 熊紫兰 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期101-113,共13页
The discharge morphology of pulsed dielectric barrier discharge(PDBD) plays important roles in its applications. Here, we systematically investigated the effects of the voltage amplitude,discharge gap, and O_(2)conten... The discharge morphology of pulsed dielectric barrier discharge(PDBD) plays important roles in its applications. Here, we systematically investigated the effects of the voltage amplitude,discharge gap, and O_(2)content on the PDBD morphology, and revealed the possible underlying mechanism of the U-shaped formation. First, the morphological evolution under different conditions was recorded. A unique U-shaped region appears in the middle edge region when the gap is larger than 2 mm, while the entire discharge region remains columnar under a 2 mm gap in He PDBD. The width of the discharge and the U-shaped region increase with the increase in voltage, and decrease with the increase of the gap and O_(2)content. To explain this phenomenon,a two-dimensional symmetric model was developed to simulate the spatiotemporal evolution of different species and calculate the electric thrust. The discharge morphology evolution directly corresponds to the excited-state atomic reduction process. The electric thrust on the charged particles mainly determines the reaction region and strongly influences the U-shaped formation.When the gap is less than 2 mm, the electric thrust is homogeneous throughout the entire region,resulting in a columnar shape. However, when the gap is larger than 2 mm or O_(2)is added, the electric thrust in the edge region becomes greater than that in the middle, leading to the U-shaped formation. Furthermore, in He PDBD, the charged particles generating electric thrust are mainly electrons and helium ions, while in He/O_(2)PDBD those that generate electric thrust at the outer edge of the electrode surface are mainly various oxygen-containing ions. 展开更多
关键词 low-temperature plasma dielectric barrier discharge discharge morphology particle distribution electric thrust
下载PDF
Sustainable nitrogen fixation by bubble discharge plasma:Performance optimization and mechanism
2
作者 Yuankun Ye Xiaoyang Wei +2 位作者 Li Zhang Sen Wang Zhi Fang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期692-701,共10页
Sustainable nitrogen fixation driven by renewable energy sources under mild conditions has been widely sought to replace the industrial Haber-Bosch process.The fixation of nitrogen in the form of NO_(x)^(-)and NH_4^(+... Sustainable nitrogen fixation driven by renewable energy sources under mild conditions has been widely sought to replace the industrial Haber-Bosch process.The fixation of nitrogen in the form of NO_(x)^(-)and NH_4^(+)into aqueous solutions using electricity-driven gas-liquid discharge plasma is considered a promising prescription.In this paper,a scalable bubble discharge excited by nanosecond pulse power is employed for nitrogen fixation in the liquid phase.The nitrogen fixation performance and the mechanisms are analyzed by varying the power supply parameters,working gas flow rate and composition.The results show that an increase in voltage and frequency can result in an enhanced NO_(3)^(-)yield.Increases in the gas flow rate can result in inadequate activation of the working gas,which together with more inefficient mass transfer efficiencies can reduce the yield.The addition of O_(2) effectively elevates NO_(3)^(-)production while simultaneously inhibiting NH_4^(+) production.The addition of H_(2)O vapor increases the production of OH and H,thereby promoting the generation of reactive nitrogen and enhancing the yield of nitrogen fixation.However,the excessive addition of O_(2) and H_(2)O vapor results in negative effect on the yield of nitrogen fixation,due to the significant weakening of the discharge intensity.The optimal nitrogen fixation yield was up to 16.5 μmol/min,while the optimal energy consumption was approximately 21.3 MJ/mol in this study.Finally,the mechanism related to nitrogen fixation is discussed through the optical emission spectral(OES) information in conjunction with the simulation of energy loss paths in the plasma by BOLSIG+.The work advances knowledge of the effect of parameter variations on nitrogen fixation by gas-liquid discharge for higher yield and energy production. 展开更多
关键词 Nitrogen fixation Gas-liquid discharge plasma Bubble discharge MECHANISM
下载PDF
Analyses of nonequilibrium transport in atmospheric-pressure direct-current argon discharge under different modes
3
作者 Ziming ZHANG Chuan FANG +2 位作者 Yaoting WANG Lanyue LUO Heping LI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第11期107-126,共20页
The key plasma parameters under different discharge modes, such as heavy-particle and electron temperatures, electron number density, and nonequilibrium volume of plasmas, play important roles in various applications ... The key plasma parameters under different discharge modes, such as heavy-particle and electron temperatures, electron number density, and nonequilibrium volume of plasmas, play important roles in various applications of gas discharge plasmas. In this study, a self-consistent two-dimensional nonequilibrium fluid model coupled with an external circuit model is established to reveal the mechanisms related to the discharge modes, including the normal glow, abnormal glow,arc, and glow-to-arc transition modes, with an atmospheric-pressure direct-current(DC) argon discharge as a model plasma system. The modeling results show that, under different discharge modes, the most significant difference between the preceding four discharge modes lies in the current and energy transfer processes on the cathode side. On one hand, the current to the cathode surface is mainly delivered by the ions coming from the plasma column under the glow discharge mode due to the low temperature of the solid cathode, whereas the thermionic and secondary electrons emitted from the hot cathode surface play a very important role under the arc mode with a higher cathode surface temperature and higher ion flux toward the cathode. On the other hand, the energy transfer channel on the cathode side changes from mainly heating the solid cathode under the glow mode to simultaneously heating both the solid cathode and plasma column under the arc mode with an increase in the discharge current. Consequently, the power density in the cathode sheath(P_c) was used as a key parameter for judging different discharge modes, and the range of(0.28–1.2) × 10^(12) W m^(-3) was determined as a critical window of P_c corresponding to the glow-to-arc-mode transition for the atmospheric-pressure DC argon discharge, which was also verified by comparison with the experimental results in this study and the data in the previous literature. 展开更多
关键词 atmospheric-pressure plasma direct-current gas discharge discharge mode mode transition power density in cathode sheath
下载PDF
Comparative analysis of single-crater parameters in ultrasonic-assisted and unassisted micro-EDM of Ti6Al4V using discharge plasma imaging
4
作者 Sohaib Raza Chandrakant Nirala 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第2期11-24,共14页
Ultrasonic-assisted micro-electro-discharge machining(EDM)has the potential to enhance processing responses such as material removal rate(MRR)and surface finish.To understand the reasons for this enhancement,the physi... Ultrasonic-assisted micro-electro-discharge machining(EDM)has the potential to enhance processing responses such as material removal rate(MRR)and surface finish.To understand the reasons for this enhancement,the physical mechanisms responsible for the individual discharges and the craters that they form need to be explored.This work examines features of craters formed by single discharges at various parameter values in both conventional and ultrasonic-assistedEDM of Ti6Al4V.High-speed imaging of the plasma channel is performed,and data on the individual discharges are captured in real-time.A 2D axisymmetric model using finite element software is established to model crater formation.On the basis of simulation and experimental results,a comparative study is then carried out to examine the effects of ultrasonic vibrational assistance on crater geometry.For every set ofEDM parameters,the crater diameter and depth from a single discharge are found to be higher in ultrasonic-assistedEDM than in conventionalEDM.The improved crater geometry and the reduced bulge formation at the crater edges are attributed to the increased melt pool velocity and temperature predicted by the model. 展开更多
关键词 Ultrasonic vibration discharge crater Plasma diameter Single discharge
下载PDF
Effect of dielectric material on the uniformity of nanosecond pulsed dielectric barrier discharge
5
作者 Wenhao ZHOU Dongxuan ZHANG +3 位作者 Xiaohui DUAN Xi ZHU Feng LIU Zhi FANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第9期79-87,共9页
Dielectric barrier discharge(DBD)is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure,and the dielectric barrier layer between the electrodes plays a key role in the DB... Dielectric barrier discharge(DBD)is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure,and the dielectric barrier layer between the electrodes plays a key role in the DBD processes and enhancing discharge uniformity.In this work,the uniformity and discharge characteristics of the nanosecond(ns)pulsed DBD with dielectric barrier layers made of alumina,quartz glass,polycarbonate(PC),and polypropylene(PP)are investigated via discharge image observation,voltage-current waveform measurement and optical emission spectral diagnosis.Through analyzing discharge image by gray value standard deviation method,the discharge uniformity is quantitatively calculated.The effects of the space electric field intensity,the electron density(Ne),and the space reactive species on the uniformity are studied with quantifying the gap voltage Ug and the discharge current Ig,analyzing the recorded optical emission spectra,and simulating the temporal distribution of Ne with a one-dimensional fluid model.It is found that as the relative permittivity of the dielectric materials increases,the space electric field intensity is enhanced,which results in a higher Ne and electron temperature(Te).Therefore,an appropriate value of space electric field intensity can promote electron avalanches,resulting in uniform and stable plasma by the merging of electron avalanches.However,an excessive value of space electric field intensity leads to the aggregation of space charges and the distortion of the space electric field,which reduce the discharge uniformity.The surface roughness and the surface charge decay are measured to explain the influences of the surface properties and the second electron emission on the discharge uniformity.The results in this work give a comprehensive understanding of the effect of the dielectric materials on the DBD uniformity,and contribute to the selection of dielectric materials for DBD reactor and the realization of atmospheric pressure uniform,stable,and reactive plasma sources. 展开更多
关键词 dielectric barrier discharge dielectric material UNIFORMITY discharge characteristics
下载PDF
Discharge and mass transfer characteristics of atmospheric pressure gas-solid two-phase gliding arc
6
作者 Min ZHU Yuchen PING +2 位作者 Yinghao ZHANG Chaohai ZHANG Shuqun WU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第9期88-96,共9页
In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the... In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the blade electrodes.A range of experimental parameters,including the inter-electrode spacing,gas flow rate,applied voltage,and the type of the powder,were systematically varied to elucidate the influence of solid powder matter on the dynamics of gliding arc discharge(GAD).The discharge images were captured by ICCD and digital camera to investigate the mass transfer characteristics of GS-GAD,and the electrical parameters,such as the effective values of voltage,current,and discharge power were record to reveal the discharge characteristics of GS-GAD.The results demonstrate that powder undergoes spontaneous movement towards the upper region of the gliding arc due to the influence of electric field force.Increasing the discharge voltage,decreasing relative dielectric constant of the powder and reducing the electrode-to-sieve-plate distance all contribute to a greater involvement of powder in the GAD process,subsequently resulting in an enhanced powder concentration within the GAD region.Additionally,powder located beneath the gliding arc experiences downward resistance caused by the opposing gas flow and arc.Excessive gas flow rate notably hampers the powder concentration within the discharge region,and the velocity of powder motion in the upper part of the GAD region is reduced.Under the condition of electrode-to-sieve-plate distance of 30 mm,gas flow rate of 1.5 L/min,and peak-to-peak voltage of 31 kV,the best combination of arc gliding and powder spark discharge phenomena can be achieved with the addition of Al_(2)O_(3) powder. 展开更多
关键词 gliding arc discharge atmospheric pressure plasma multiphase discharge mass transfer
下载PDF
Experimental study on the effect of H_(2)O and O_(2) on the degradation of SF_(6) by pulsed dielectric barrier discharge
7
作者 李亚龙 万昆 +5 位作者 王宇非 张晓星 杨照迪 傅明利 卓然 王邸博 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第2期125-131,共7页
SF_(6) has excellent insulation performance and arc extinguishing ability,and is widely used in the power industry.However,its global warming potential is about 23,500 times that of C0_(2),it can exist stably in the a... SF_(6) has excellent insulation performance and arc extinguishing ability,and is widely used in the power industry.However,its global warming potential is about 23,500 times that of C0_(2),it can exist stably in the atmosphere,it is not easily degradable and is of great potential harm to the environment.Based on pulsed dielectric barrier discharge plasma technology,the effects of H_(2)O and 0_(2) on the degradation of SF_(6) were studied.Studies have shown that H_(2)O can effectively promote the decomposition of SF_(6) and improve its degradation rate and energy efficiency of degradation.Under the action of a pulse input voltage and input frequency of 15 kV and 15 kHz,respectively,when H_(2)O is added alone the effect of 1% H_(2)O is the best,and the rate and energy efficiency of degradation of SF_(6) reach their maximum values,which are 91.9% and 8.25 g kWh^(-1),respectively.The synergistic effect of H_(2)O and O_(2) on the degradation of SF_(6) was similar to that of H_(2)O.When the concentration of H_(2)O and O_(2) was 1%,the system obtained the best rate and energy efficiency of degradation,namely 89.7% and 8.05 g kWh~(-1),respectively.At the same time,different external gases exhibit different capabilities to regulate decomposition products.The addition of H_(2)O can effectively improve the selectivity of S0_(2).Under the synergistic effect of H_(2)O and O_(2),with increase in O_(2) concentration the degradation products gradually transformed into SO_(2)F_(2).From the perspective of harmless treatment of the degradation products of SF_(6),the addition of O_(2) during the SF_(6) degradation process should be avoided. 展开更多
关键词 SF_(6) pulsed dielectric barrier discharge DEGRADATION discharge gas
下载PDF
Novel method for identifying the stages of discharge underwater based on impedance change characteristic
8
作者 高崇 康忠健 +3 位作者 龚大建 张扬 王玉芳 孙一鸣 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期133-145,共13页
It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel... It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel underwater discharge stage identification method based on the Strong Tracking Filter(STF) and impedance change characteristics. The time-varying equivalent circuit model of the discharge underwater is established based on the plasma theory analysis of the impedance change characteristics and mechanism of the discharge process. The STF is used to reduce the randomness of the impedance of repeated discharges underwater, and then the universal identification resistance data is obtained. Based on the resistance variation characteristics of the discriminating resistance of the pre-breakdown, main, and oscillatory discharge stages, the threshold values for determining the discharge stage are obtained. These include the threshold values for the resistance variation rate(K) and the moment(t).Experimental and error analysis results demonstrate the efficacy of this innovative method in discharge stage determination, with a maximum mean square deviation of Scrless than 1.761. 展开更多
关键词 discharge underwater discharge stage identification impedance characteristics strong tracking filter
下载PDF
Integrated design and performance optimization of three-electrode sliding discharge plasma power supply
9
作者 Borui ZHENG Linwu WANG +4 位作者 Jianbo ZHANG Shaojie QI Yuhong CHEN Haodong LIU Dongliang BIAN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第11期152-161,共10页
The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a par... The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a parallel DC electrode into the standard DBD design. This design improves the body force and induced jet velocity while allowing flexible control of the induced jet angle, overcoming the limitations of discharge extension and uncontrollable direction in traditional DBD plasma actuators. An integrated plasma power supply has been designed specifically for TES-DBD plasma actuators, streamlining the power supply management. The methodology involves designing the circuit topology for the TES-DBD power supply, followed by simulating and validating its operating principles using Multisim software. The operational performance of the power supply is evaluated through a comprehensive analysis of its electrical,thermal, and aerodynamic properties specific to TES-DBD plasma actuation. 展开更多
关键词 plasma flow control dielectric barrier discharge three-electrode sliding discharge plasma power supply
下载PDF
A comparative study on the spectral characteristics of nanosecond pulsed discharges in atmospheric He and a He+2.3%H_(2)O mixture
10
作者 陈传杰 彭东宇 +4 位作者 刘博通 张婷琳 钱沐杨 周锋 王如刚 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期22-30,共9页
Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas... Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas. In this experiment, the discharges in helium(He) and He with 2.3%water vapor(H_(2)O) are driven by a series of 10 ns overvoltage pulses(~13 k V). Special attention is paid to the spectral characteristics obtained in the center of discharges by time-resolved optical emission spectroscopy. It is found that in helium, the emission of atomic and molecular helium during the afterglow is more intense than that in the active discharge, while in the He+2.3%H_(2)O mixture, helium emission is only observed during the discharge pulse and the molecular helium emission disappears. In addition, the emissions of OH(A-X) and Hα present similar behavior that increases sharply during the falling edge of the voltage pulse as the electrons cool down rapidly. The gas temperature is set to remain low at 540 K by fitting the OH(A-X) band. A comparative study on the emission of radiative species(He, He_(2), OH and H)is performed between these two discharge cases to derive their main production mechanisms. In both cases, the dominant primary ion is He^(+) at the onset of discharges, but their He^(+) charge transfer processes are quite different. Based on these experimental data and a qualitative discussion on the discharge kinetics, with regard to the present discharge conditions, it is shown that the electron-assisted three-body recombination processes appear to be the significant sources of radiative OH and H species in high-density plasmas. 展开更多
关键词 nanosecond repetitively pulsed discharge helium and water vapor optical emission spectroscopy atmospheric pressure micro-discharge kinetics
下载PDF
Factors influencing discharge readiness among patients with mild-to-moderate ischemic stroke:a cross-sectional study
11
作者 Li-Fei Wang Niphawan Samartkit Khemaradee Masingboon 《Frontiers of Nursing》 2024年第1期57-66,共10页
Objective:To describe discharge readiness and determine whether self-efficacy,social support,and the quality of discharge teaching can predict discharge readiness among patients with mild-to-moderate ischemic stroke.M... Objective:To describe discharge readiness and determine whether self-efficacy,social support,and the quality of discharge teaching can predict discharge readiness among patients with mild-to-moderate ischemic stroke.Methods:A total of 120 patients with mild-to-moderate ischemic stroke were recruited using simple random sampling.Five instruments,namely,the Demographic Data Questionnaire,the Chinese version of the Readiness for Hospital Discharge Scale(RHDS_C),the SelfEfficacy for Managing Chronic Disease 6-Item Scale(SES6),the Perceived Social Support Scale(PSSS),and the Quality of Discharge Teaching Scale(QDTS),were used for data collection.Descriptive statistics and standard multiple linear regression were used for data analysis.Results:The mean score of discharge readiness among patients with mild-to-moderate ischemic stroke was at a moderate level(M=7.6,SD=0.92),and 75.8%of the participants felt ready for discharge.Standard multiple linear regression revealed that selfefficacy(β=0.62,P<0.001)and the quality of discharge teaching(β=0.28,P<0.001)were the influencing factors.However,social support could not predict discharge readiness significantly.All the factors combined explained 64.9%of the variance in discharge readiness.Conclusions:Intervention programs aimed at improving self-efficacy and the quality of discharge teaching may be helpful in promoting discharge readiness in patients with mild-to-moderate ischemic stroke,especially in coping ability. 展开更多
关键词 discharge readiness ischemic stroke quality of discharge teaching SELF-EFFICACY social support
下载PDF
Mutual effects between a gliding arc discharge and a premixed flame
12
作者 Jiajian ZHU Le LI +2 位作者 Yifu TIAN Minggang WAN Mingbo SUN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第12期140-149,共10页
Mutual effects between a gliding arc(GA)discharge at atmospheric pressure and a premixed CH_(4)/air flame were experimentally investigated.Effects of the flame on the GA were studied using simultaneous measurements of... Mutual effects between a gliding arc(GA)discharge at atmospheric pressure and a premixed CH_(4)/air flame were experimentally investigated.Effects of the flame on the GA were studied using simultaneous measurements of the current,the voltage,and the instantaneous images of the plasma columns.The GA in the flame has a thicker and more diffusive plasma column,and it is more frequently ignited at a smaller breakdown voltage than that in the air.The GA extension velocity and the gliding velocity in the flame are larger than those in the air.The electrode voltage drop of the GA discharge in the flame is about 160 V,whereas that in the air is about 220 V.Compared with the GA in the air,the different features of the GA in the flame can be explained by high-temperature,weakly ionized,and species-abundant environment that are generated by the premixed CH_(4)/air flame.Effects of the gliding arc discharge on the premixed flames were demonstrated using planar laser-induced fluorescence of hydroxyl radicals(OH)and formaldehyde(CH_(2)O).OH and CH_(2)O can be formed in the CH_(4)/air mixture in the presence of the GA due to kinetic effects,and the increase of OH and CH_(2)O shows the great potential of the GA for combustion enhancement. 展开更多
关键词 gliding arc premixed flame discharge characteristics plasma-assisted combustion mutual effects planar laser-induced fluorescence(PLIF)
下载PDF
Effect of antenna helicity on discharge characteristics of helicon plasma under a divergent magnetic field
13
作者 孙萌 徐晓芳 +3 位作者 王陈文 尹贤轶 陈强 张海宝 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期50-59,共10页
The characteristics of the blue core phenomenon observed in a divergent magnetic field helicon plasma are investigated using two different helical antennas, namely right-handed and lefthanded helical antennas. The mod... The characteristics of the blue core phenomenon observed in a divergent magnetic field helicon plasma are investigated using two different helical antennas, namely right-handed and lefthanded helical antennas. The mode transition, discharge image, spatial profiles of plasma density and electron temperature are diagnosed using a Langmuir probe, a Nikon D90 camera,an intensified charge-coupled device camera and an optical emission spectrometer, respectively.The results demonstrated that the blue core phenomenon appeared in the upstream region of the discharge tube at a fixed magnetic field under both helical antennas. However, it is more likely to appear in a right-handed helical antenna, in which the plasma density and ionization rate of the helicon plasma are higher. The spatial profiles of the plasma density and electron temperature are also different in both axial and radial directions for these two kinds of helical antenna. The wavelength calculated based on the dispersion relation of the bounded whistler wave is consistent with the order of magnitude of plasma length. It is proved that the helicon plasma is part of the wave mode discharge mechanism. 展开更多
关键词 helicon plasma non-uniform magnetic field helical antenna blue core discharge mechanism
下载PDF
Machine learning for parameters diagnosis of spark discharge by electro-acoustic signal
14
作者 熊俊 卢诗宇 +3 位作者 刘晓明 周文俊 查晓明 裴学凯 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期64-72,共9页
Discharge plasma parameter measurement is a key focus in low-temperature plasma research.Traditional diagnostics often require costly equipment,whereas electro-acoustic signals provide a rich,non-invasive,and less com... Discharge plasma parameter measurement is a key focus in low-temperature plasma research.Traditional diagnostics often require costly equipment,whereas electro-acoustic signals provide a rich,non-invasive,and less complex source of discharge information.This study harnesses machine learning to decode these signals.It establishes links between electro-acoustic signals and gas discharge parameters,such as power and distance,thus streamlining the prediction process.By building a spark discharge platform to collect electro-acoustic signals and implementing a series of acoustic signal processing techniques,the Mel-Frequency Cepstral Coefficients(MFCCs)of the acoustic signals are extracted to construct the predictors.Three machine learning models(Linear Regression,k-Nearest Neighbors,and Random Forest)are introduced and applied to the predictors to achieve real-time rapid diagnostic measurement of typical spark discharge power and discharge distance.All models display impressive performance in prediction precision and fitting abilities.Among them,the k-Nearest Neighbors model shows the best performance on discharge power prediction with the lowest mean square error(MSE=0.00571)and the highest R-squared value(R^(2)=0.93877).The experimental results show that the relationship between the electro-acoustic signal and the gas discharge power and distance can be effectively constructed based on the machine learning algorithm,which provides a new idea and basis for the online monitoring and real-time diagnosis of plasma parameters. 展开更多
关键词 discharge plasma plasma real-time diagnosis electro-acoustic signal machine learning acoustic signature
下载PDF
Progress in the creation of long-lived atmospheric luminous formations in a pulsed electric discharge with an electrolytic electrode
15
作者 Jingfeng YAO Jianfei LI +6 位作者 Shixin ZHAO Chengxun YUAN Lin MIAO Nie CHEN A.M.ASTAFIEV A.A.KUDRYAVTSEV G.D.SHABANOV 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第12期82-88,共7页
This work presents an analysis of the research conducted in many countries in recent years on the so-called Gatchina discharge.The findings indicate that the Gatchina discharge exhibits the majority of the characteris... This work presents an analysis of the research conducted in many countries in recent years on the so-called Gatchina discharge.The findings indicate that the Gatchina discharge exhibits the majority of the characteristics of natural ball lightning,making it the most effective method for reproducing and studying this phenomenon.To a large extent,our new results are based on experiments performed for the first time to visualize dust particles arising in an erosive emission,as well as the formation of vortex flows.These experiments make it possible to explain the ability of the Gatchina discharge to maintain its shape for a long time in the afterglow. 展开更多
关键词 Gatchina discharge ball lightning SELF-ORGANIZATION dusty plasma
下载PDF
Effect and mechanism of on-chip electrostatic discharge protection circuit under fast rising time electromagnetic pulse
16
作者 Mao Xinyi Chai Changchun +3 位作者 Li Fuxing Lin Haodong Zhao Tianlong Yang Yintang 《强激光与粒子束》 CAS CSCD 北大核心 2024年第10期44-52,共9页
The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with ... The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with the CMOS circuit,but also acts on the protection circuit.This paper establishes a model of on-chip CMOS electrostatic discharge protection circuit and selects square pulse as the FREMP signals.Based on multiple physical parameter models,it depicts the distribution of the lattice temperature,current density,and electric field intensity inside the device.At the same time,this paper explores the changes of the internal devices in the circuit under the injection of fast rising time electromagnetic pulse and describes the relationship between the damage amplitude threshold and the pulse width.The results show that the ESD protection circuit has potential damage risk,and the injection of FREMP leads to irreversible heat loss inside the circuit.In addition,pulse signals with different attributes will change the damage threshold of the circuit.These results provide an important reference for further evaluation of the influence of electromagnetic environment on the chip,which is helpful to carry out the reliability enhancement research of ESD protection circuit. 展开更多
关键词 fast rising time electromagnetic pulse damage effect electrostatic discharge protection circuit damage location prediction
下载PDF
Experimental study of the effect of gas discharge on ionic liquid electrospray
17
作者 石文 杨鹏飞 +1 位作者 宋培义 吴健 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期37-43,共7页
Ionic liquid electrospray(ILE) in an atmospheric environment is often accompanied by the gas discharge phenomenon. It interferes with the normal operation of the electrospray and the measurement of experimental parame... Ionic liquid electrospray(ILE) in an atmospheric environment is often accompanied by the gas discharge phenomenon. It interferes with the normal operation of the electrospray and the measurement of experimental parameters. In this study, electrospray experiments were conducted on the ionic liquid EMI-BF4. The observations revealed that the operating modes of the ionic liquid depend on the voltage polarity at high voltages. Additionally, a correspondence between the operating mode of ILE and the current signal in the circuit was established. The shape of the liquid cone formed at the needle tip bore a striking resemblance to the plume of corona discharge, suggesting that the motion trajectory of electrons influenced the curvature of the liquid cone. Steamer theory provided a clear explanation for the change in curvature as the voltage increased. 展开更多
关键词 ionic liquid ELECTROSPRAY Taylor cone jet corona discharge
下载PDF
Suppression of current-induced membrane discharge of bipolar membranes by regulating ion crossover transport
18
作者 Tingting Yu Haolan Tao +2 位作者 Jingkun Li Cheng Lian Honglai Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期387-395,共9页
Bipolar membranes(BPMs)exhibit the unique capability to regulate the operating environment of electrochemical system through the water dissociation-combination processes.However,the industrial utilization of BPMs is l... Bipolar membranes(BPMs)exhibit the unique capability to regulate the operating environment of electrochemical system through the water dissociation-combination processes.However,the industrial utilization of BPMs is limited by instability and serious energy consumption.The current-induced membrane discharge(CIMD)at high-current conditions has a negative influence on the performance of anion-exchange membranes,but the underlying ion transport mechanisms in the BPMs remain unclear.Here,the CIMD-coupled Poisson-Nernst-Planck(PNP)equations are used to explore the ion transport mechanisms in the BPMs for both reverse bias and forward bias at neutral and acid-base conditions.It is demonstrated that the CIMD effect in the reverse-bias mode can be suppressed by enhancing the diffusive transport of salt counter-ions(Na^(+)and Cl^(−))into the BPMs,and that in the forward-bias mode with acid-base electrolytes can be suppressed by matching the transport rate of water counter-ions(H_(3)O^(+)and OH^(−)).Suppressing the CIMD can promote the water dissociation in the reverse-bias mode,as well as overcome the plateau of limiting current density and reduce the interfacial blockage of salt co-ions(Cl^(−))in the anion-exchange layer in the forward-bias mode with acid-base electrolytes.Our work highlights the importance of regulating ion crossover transport on improving the performance of BPMs. 展开更多
关键词 Bipolar membranes Current-induced membrane discharge Salt ion crossover Diffusion-migration-reaction process
下载PDF
Discharge evolution law of debris flow based on a sharp bend physical modeling test
19
作者 LU Ming SUN Hao +3 位作者 LIU Jinfeng Abrar HUSSAIN SHANG Yuqi FU Hang 《Journal of Mountain Science》 SCIE CSCD 2024年第6期1904-1915,共12页
For the basins with debris flow development,its channel terrain exhibits a tortuous shape,which significantly restricts the movement of debris flows and leads to severe erosion effects on the concave bank.Therefore,th... For the basins with debris flow development,its channel terrain exhibits a tortuous shape,which significantly restricts the movement of debris flows and leads to severe erosion effects on the concave bank.Therefore,this study aims to analyze the shear force of debris flows within the bend channel.We established the relationship between the shear force and bend curvature through laboratory experiments.Under the long-term erosion by debris flows,the curvature radius of bends gradually increases,however,when this increasing trend reaches an equilibrium state with the intensity of debris flow discharge,there will be no significant change in curvature radius.In general,the activity pattern and discharges of debris flows would remain relatively stable.Hence,we can infer the magnitude of debris flow discharges from the terrain parameters of the bend channel. 展开更多
关键词 Debris flow discharge Erosion effect Bend channel Curvature radius
下载PDF
Mitigating volume expansion of silicon-based anode through interfacial engineering based on intermittent discharge strategy
20
作者 Chunlei Li Yu Zhu +7 位作者 Yin Quan Feifei Zong Jie Wang Dongni Zhao Ningshuang Zhang Peng Wang Xiaoling Cui Shiyou Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期680-691,共12页
Silicon is considered to be one of the most promising anode materials for lithium-ion batteries(LIBs),but its application is limited by the large volume expansion during alloying and dealloying.The constructing of a h... Silicon is considered to be one of the most promising anode materials for lithium-ion batteries(LIBs),but its application is limited by the large volume expansion during alloying and dealloying.The constructing of a high-performance solid electrolyte interface(SEI) film on the surface of the anode material is considered to be one of the effective strategies to mitigate volume expansion of silicon-based anode.In this study,an intermittent discharge strategy which helps to improve the utilization efficiency of electrolyte additive of lithium difluorobisoxalate phosphate(LiDFBOP) is proposed to construct a highly conductive and dense SEI film.The results of electrochemical and physical characterization and theoretical calculations show that the intermittent discharge in the voltage range from open circuit voltage(OCV) to 1.8 V facilitates the diffusion of the soluble products,creates the conditions for the repeated direct contact between Si@C anode and LiDFBOP additive,increases the decomposition of LiDFBOP additive,and thus produces a uniform,dense and inorganics-rich(Li_(2)C_(2)O_(4),LiF and Li_(x)PO_yF_z) SEI film.Subsequently,this SEI film helps to ensure the even intercalation/de-intercalation of Li^(+) in the SEI film and the homogeneous diffusion of Li^(+) inside the Si particles,decreasing the internal stresses and anisotropic phase transitions,maintaining the integrity of Si particles,inhibiting the volume expansion and thu s improving the electrochemical performance of cells.This study not only improves the utilization efficiency of expensive additives through a simply and low-cost method,but also enriches the strategy to improve the electrochemical performance of Si@C anode through interfacial engineering. 展开更多
关键词 Si@C anode Lithium difluoro(bisoxalato)phosphate Intermittent discharge Solid electrolyte interface Volume expansion
下载PDF
上一页 1 2 110 下一页 到第
使用帮助 返回顶部