Clean and O-(2√2×√2)R45°Cu(100)surfaces were prepared to study the impact of surface oxygen on the activation of methane dissociation.Auger electron spectroscopy,low energy electron diffraction,infrared re...Clean and O-(2√2×√2)R45°Cu(100)surfaces were prepared to study the impact of surface oxygen on the activation of methane dissociation.Auger electron spectroscopy,low energy electron diffraction,infrared reflection absorption spectroscopy,scanning tunneling microscope,and a quadrupole mass-spectrometer for temperature programmed desorption were used to explore the behavior of CH_(4)on the two surfaces.The dissociative adsorption of CH_(4)was observed on oxygen-pre-covered Cu(100)but not on the clean surface indicating surface oxygen promotes the dissociation of the C-H bond.This study can be a reference for the conversion of methane into other high-value-added products with high efficiency and low energy consumption.展开更多
Thermal quantities,including the the entropy density and gluon spectrum,of quark matter within a box that is finite in the longitudinal direction are calculated using a bag model.Under the assumption of entropy conser...Thermal quantities,including the the entropy density and gluon spectrum,of quark matter within a box that is finite in the longitudinal direction are calculated using a bag model.Under the assumption of entropy conservation,the corresponding gluon dissociation rate of J/ψis studied.It reaches a maximum at a certain longitudinal size L_(m),below which the suppression is weak even if the temperature becomes higher than that without the finite size effect,and above which the dissociation rate approaches to the thermodynamic limit gradually with increasing longitudinal size of the fireball.展开更多
The photodissociation dynamics of 2-iodotoluene following excitation at 266 nm have been investigated employing femtosecond time-resolved mass spectrometry. The photofragments are detected by multiphoton ionization us...The photodissociation dynamics of 2-iodotoluene following excitation at 266 nm have been investigated employing femtosecond time-resolved mass spectrometry. The photofragments are detected by multiphoton ionization using an intense laser field centered at 800 nm. A dissociation time of 3804-50 fs was measured from the rising time of the co-fragments of toluene radical (C7H7) and iodine atom (I), which is attributed to the averaged time needed for the C-I bond breaking for the simultaneously excited nσ and ππ* states by 266 nm pump light. In addition, a probe light centered at 298.23 nm corresponding to resonance wavelength of ground-state iodine atom is used to selectively ionize ground-state iodine atoms generated from the dissociation of initially populated hσ* and ππ* states. And a rise time of 4004-50 fs is extracted from the fitting of time-dependent I+ transient, which is in agreement with the dissociation time obtained by multiphoton ionization with 800 nm, suggesting that the main dissociative products are ground-state iodine atoms.展开更多
A two-channel thermal dissociation cavity ring down spectroscopy (CRDS) instrument has been built for in situ, real-time measurement of NO2 and total RNO2 (peroxy nitrates and alkyl nitrates) in ambient air, with ...A two-channel thermal dissociation cavity ring down spectroscopy (CRDS) instrument has been built for in situ, real-time measurement of NO2 and total RNO2 (peroxy nitrates and alkyl nitrates) in ambient air, with a NO2 detection limit of 0.10 ppbv at 1 s. A 6-day long measurement was conducted at urban site of Hefei by using the CRDS instrument with a time resolution of 3 s. A commercial molybdenum converted chemiluminescence (Mo-CL) instrument was also used for comparison. The average RNO2 concentration in the 6 days was measured to be 1.94 ppbv. The Mo-CL instrument overestimated the NO2 concentration by a bias of +1.69 ppbv in average, for the reason that it cannot distinguish RNO2 from NO2. The relative bias could be over 100% during the afternoon hours when NO2 was low but RNO2 was high.展开更多
Quantum chemical calculations were used to estimate the bond dissociation energies (BDEs) for 13 substituted chlorobenzene compounds. These compounds were studied by the hybrid density functional theory (B3LYP, B3P...Quantum chemical calculations were used to estimate the bond dissociation energies (BDEs) for 13 substituted chlorobenzene compounds. These compounds were studied by the hybrid density functional theory (B3LYP, B3PW91, B3P86) methods together with 6-31G^** and 6-311G^** basis sets. The results show that B3P86/6-311G^** method is the best method to compute the reliable BDEs for substituted chlorobenzene compounds which contain the C-C1 bond. It is found that the C-C1 BDE depends strongly on the computational method and the basis sets used. Substituent effect on the C-C1 BDE of substituted chlorobenzene compounds is further discussed. It is noted that the effects of substitution on the C-C1 BDE of substituted chlorobenzene compounds are very insignificant. The energy gaps between the HOMO and LUMO of studied compounds estimate the relative thermal stability ordering are also investigated and from this data we of substituted chlorobenzene compounds.展开更多
Photodissociation of jet-cooled HOD via the C state around 124 nm has been studied using the H(D)-atom Rydberg tagging time-of-flight technique. Rotational state resolved action spectrum and the product translationa...Photodissociation of jet-cooled HOD via the C state around 124 nm has been studied using the H(D)-atom Rydberg tagging time-of-flight technique. Rotational state resolved action spectrum and the product translational energy distribution spectra have been recorded for both D+OH and H+OD dissociation channels. Product channel OH/OD branching ratios for the individual C-X rotational transition have been determined. A comparison is also given with the B-X and A-X transitions. In addition, the dissociation energy of the OD bond in HOD has been determined accurately to be 41751.3±5 cm-1.展开更多
Photon-induced dissociation pathways of thymine are investigated with vacuum ultraviolet photoionization mass spectrometry and theoretical calculations. The photoionization mass spectra of thymine at different photon ...Photon-induced dissociation pathways of thymine are investigated with vacuum ultraviolet photoionization mass spectrometry and theoretical calculations. The photoionization mass spectra of thymine at different photon energy are measured and presented. By selecting suitable photon energy, exclusively molecular ion m/z=126 is obtained. At photon energy of 12.0 eV, the major ionic fragments at m/z=98, 97, 84, 83, 70, and 55 are obtained, which are assigned to C4H6N2O+, C4H5N2O+, C3H4N2O+ (or C4H6NO+), C4H5NO+, C2NO2+, and C3H5N+, respectively. With help of theoretical calculations, the detailed dissociation pathways of thymine at low energy are well established.展开更多
Superexcited states of NO molecule and their neutral dissociation processes have been studied both experimentally and theoretically. Neutral excited N^* and O^* atoms are detected by fluorescence spectroscopy for th...Superexcited states of NO molecule and their neutral dissociation processes have been studied both experimentally and theoretically. Neutral excited N^* and O^* atoms are detected by fluorescence spectroscopy for the NO molecule upon interaction with 800 nm intense laser radiation of duration 60 fs and intensity 0.2 PW/cm^2. Intense laser pulse causes neutral dissociation of superexcited NO molecule by way of multiphoton excitation, which is equivalent to single photon excitation in the extreme-ultraviolet region by synchrotron radiation. Potential energy curves (PECs) are also built using the calculated superexcited state of NO^+. In light of the PECs, direct dissociation and pre-dissociation mechanisms are proposed respectively for the neutral dissociation leading to excited fragments N^* and O^*.展开更多
Ion-pair dissociation is an important molecular process and frequently happens when the target molecule is pumped to its electronically superexcited states. In contrast to the experimental studies of photoexcitation i...Ion-pair dissociation is an important molecular process and frequently happens when the target molecule is pumped to its electronically superexcited states. In contrast to the experimental studies of photoexcitation ion-pair dissociation, there are some experimental challenges in the electron-impact ion-pair dissociation study, in particular, on determination of the energetic threshold. Here we report an experimental development for the ion-pair dissociation study by using the monochromized electron impacts. As an example, the threshold of BrCN→Br^-+CN^+ is determined as 13.78 eV according to the appearance energy of CN^+ signals, meanwhile, the time-sliced ion velocity image of CN^+ is recorded at 16.09 eV and indicates an anisotropic distribution of the CN^+ momentum.展开更多
The density functional theory (DFT) is the most popular method for evaluating bond dis- sociation enthalpies (BDEs) of most molecules. Thus, we are committed to looking for alternative methods that can balance the...The density functional theory (DFT) is the most popular method for evaluating bond dis- sociation enthalpies (BDEs) of most molecules. Thus, we are committed to looking for alternative methods that can balance the computational cost and higher precision to the best for large systems. The performance of DFT, double-hybrid DFT, and high-level com- posite methods are examined. The tested sets contain monocyclic and polycyclic aromatic molecules, branched hydrocarbons, small inorganic molecules, etc. The results show that the mPW2PLYP and G4MP2 methods achieve reasonable agreement with the benchmark val- ues for most tested molecules, and the mean absolute deviations are 2.43 and 1.96 kcal/mol after excluding the BDEs of branched hydrocarbons. We recommend the G4MP2 is the most appropriate method for small systems (atoms number≤20); the double-hybrid DFT methods are advised for large aromatic molecules in medium size (20≤atoms number≤50), and the double-hybrid DFT methods with empirical dispersion correction are recommended for long-chain and branched hydrocarbons in the same size scope; the DFT methods are ad- vised to apply for large systems (atoms number〉50), and the M06-2X and B3P86 methods are also favorable. Moreover, the differences of optimized geometry of different methods are discussed and the effects of basis sets for various methods are investigated.展开更多
It is well known that methane hydrate has been identified as an alternative resource due to its massive reserves and clean property. However, hydrate dissociation during oil and gas development(OGD) process in deep wa...It is well known that methane hydrate has been identified as an alternative resource due to its massive reserves and clean property. However, hydrate dissociation during oil and gas development(OGD) process in deep water can affect the stability of subsea equipment and formation. Currently, there is a serious lack of studies over quantitative assessment on the effects of hydrate dissociation on wellhead stability. In order to solve this problem, ABAQUS finite element software was used to develop a model and to evaluate the behavior of wellhead caused by hydrate dissociation. The factors that affect the wellhead stability include dissociation range, depth of hydrate formation and mechanical properties of dissociated hydrate region. Based on these, series of simulations were carried out to determine the wellhead displacement. The results revealed that, continuous dissociation of hydrate in homogeneous and isotropic formations can causes the non-linear increment in vertical displacement of wellhead. The displacement of wellhead showed good agreement with the settlement of overlying formations under the same conditions. In addition, the shallower and thicker hydrate formation can aggravate the influence of hydrate dissociation on the wellhead stability. Further, it was observed that with the declining elastic modulus and Poisson's ratio, the wellhead displacement increases. Hence, these findings not only confirm the effect of hydrate dissociation on the wellhead stability, but also lend support to the actions, such as cooling the drilling fluid, which can reduce the hydrate dissociation range and further make deepwater operations safer and more efficient.展开更多
Photon induced dissociation investigations of neutral tyramine and dopamine are carried out with synchrotron vacuum uRraviolet photoionization mass spectrometry and theoretical calculations. At low photon energy, only...Photon induced dissociation investigations of neutral tyramine and dopamine are carried out with synchrotron vacuum uRraviolet photoionization mass spectrometry and theoretical calculations. At low photon energy, only molecular ions are measured by virtue of nearthreshold photoionization. While increasing photon energy to 11.7 eV or more, four distinct fragment ions are obtained for tyramine and dopamine, respectively. Besides, the ionization energies of tyramine and dopamine are determined to be 7.984-0.05 and 7.674-0.05 eV by measuring the photoionization efficiency curves of corresponding molecular ions. With help of density function theory calculations, the detailed fragmentation pathways are established as well. These two molecular cations have similar aminoethyl group elimination pathways, CTHsO2+ (m/z=124) and C7H8O+ (m/z=108) are supposed to be generated by the McLafferty rearrangement via γ-hydrogen (7-H) shift inducing β-fission. And CH2NH2+ is proposed to derive from the direct fission of C7-C8 bond. Besides, the McLafferty rearrangement and the C7-C8 bond fission are validated to be dominant dissociation pathways for tyramine and dopamine cations.展开更多
fragments, F- and Cl- including two isotope species 35Cl- and 37Cl-, are observed in the photoexcitations of CFC13. The ion-pair anion efficiency spectra of 35Cl- and 37Cl- are recorded in the photon energy range of 7...fragments, F- and Cl- including two isotope species 35Cl- and 37Cl-, are observed in the photoexcitations of CFC13. The ion-pair anion efficiency spectra of 35Cl- and 37Cl- are recorded in the photon energy range of 7.75-22.00 eV. The threshold of ion-pair dissociation CFCl3-CFC12++Cl- is experimentally determined to be 7.944-0.04 eV. With the references of the high-resolution photoabsorption spectra reported in the literatures, we make tentative assignments of the electron valence-to-Rydberg transitions. Furthermore, the multibody ion-pair fragmentation processes to Cl- are discussed by comparison between the calculated thermochemical thresholds and the experimental efficiency spectrum.展开更多
The potential energy surfaces (PES) of unimolecular dissociation reactions for di-ethyl beryl- lium and di-t-butyl beryllium are investigated by B3LYP, CCSD(T), and G3B3 approaches. Possible reaction pathways thro...The potential energy surfaces (PES) of unimolecular dissociation reactions for di-ethyl beryl- lium and di-t-butyl beryllium are investigated by B3LYP, CCSD(T), and G3B3 approaches. Possible reaction pathways through either the radical or transition state (TS) of the molecules are considered. The geometries, vibrational frequencies and relative energies for various sta- tionary points are determined. From the study of energetics, the TS pathways arising from concerted molecular eliminations are indicated to be the main dissociation pathways for both molecules. The PES differences of the dissociation reactions are investigated. The activation energies and rate constants will be helpful for investigating the predictive ability of the reaction in further theoretical and experimental research.展开更多
The natural gas hydrate resource is tremendous. How to utilize the gas from hydrates safely is researchers' concern. In this paper, a one-dimensional model is developed to simulate the hydrate dissociation by depress...The natural gas hydrate resource is tremendous. How to utilize the gas from hydrates safely is researchers' concern. In this paper, a one-dimensional model is developed to simulate the hydrate dissociation by depressurization in hydratebearing porous medinm. This model can De used to explain the effects of the flow of multiphase fluids, the endothermie process of hydrate dissociation, the variation of permeability, the convection and conduction on the hydrate dissociation. Numerical results show that the hydrate dissociation can be divided into three stages: a rapid dissociation stage mainly governed by hydrate dissociation kinetics after an initially slow dissociation stage governed mainly by flow, and finally a slow dissociation stage. Moreover, a numerical approach of sensitivity analysis of physical parameters is proposed, with which the quantitative effect of all the parameters on hydrate dissociation can be evaluated conveniently.展开更多
The changes in the mechanical properties of gas hydrate-bearing sediments(GHBS) induced by gas hydrate(GH) dissociation are essential to the evaluation of GH exploration and stratum instabilities. Previous studies pre...The changes in the mechanical properties of gas hydrate-bearing sediments(GHBS) induced by gas hydrate(GH) dissociation are essential to the evaluation of GH exploration and stratum instabilities. Previous studies present substantial mechanical data and constitutive models for GHBS at a given GH saturation under the non-dissociated condition. In this paper, GHBS was formed by the gas saturated method, GH was dissociated by depressurization until the GH saturation reached different dissociation degrees. The stress–strain curves were measured using triaxial tests at a same pore gas pressure and different confining pressures. The results show that the shear strength decreases progressively by 30%–90% of the initial value with GH dissociation, and the modulus decreases by 50% –75%. Simplified relationships for the modulus, cohesion, and internal friction angle with GH dissociated saturation were presented.展开更多
The dissociation rates of methane hydrates formed with and without the presence of sodium dodecyl sulfate (methane-SDS hydrates), were measured under atmospheric pressure and temperatures below ice point to investig...The dissociation rates of methane hydrates formed with and without the presence of sodium dodecyl sulfate (methane-SDS hydrates), were measured under atmospheric pressure and temperatures below ice point to investigate the influence of the hydrate production conditions and manners upon its dissociation kinetic behavior. The experimental results demonstrated that the dissociation rate of methane hydrate below ice point is strongly dependent on the manners of hydrate formation and processing. The dissociation rate of hydrate formed quiescently was lower than that of hydrate formed with stirring; the dissociation rate of hydrate formed at lower pressure was higher than that of hydrate formed at higher oressure; the comoaction of hydrate after its formation lowered its stability, i.e., increased'its dissociation rate.The stability of hydrate could beincreased by prolonging the time period for which hydrate was held at formation temperature and pressure before it was cooled down, or by prolonging the time period for which hydrate was held at dissociation temperature and formation pressure before it was depressurized to atmospheric pressure. It was found that the dissociation rate of methane hydrate varied with the temperature (ranging from 245.2 to 272.2 K) anomalously as reported on the dissociation of methane hydrate without the presence of surfactant as kinetic promoter. The dissociation rate at 268 K was found to be the lowest when the manners and conditions at which hydrates were formed and processed were fixed.展开更多
The formation and breaking of Ni-L (L=N-heterocyclic carbene, tertiary phosphine etc.) bond is involved in many Ni-catalyzed/mediated reactions. The accurate prediction of Ni-L bond dissociation enthalpies (BDEs) ...The formation and breaking of Ni-L (L=N-heterocyclic carbene, tertiary phosphine etc.) bond is involved in many Ni-catalyzed/mediated reactions. The accurate prediction of Ni-L bond dissociation enthalpies (BDEs) is potentially important to understand these Ni-complex involving reactions. We assess the accuracy of diffierent DFT functionals (such as B3LYP, M06, MPWB1K, etc.) and diffierent basis sets, including both effective core potentials for Ni and the all electron basis sets for all other atoms in predicting the Ni-L BDE values reported recently by Nolan et al. [J. Am. Chem. Soc. 125, 10490 (2003) and Organometallics 27, 3181 (2008)]. It is found that the MPWB1K/LanL2DZ:6-31+G(d,p)//MPWB1K/LanL2DZ:6-31G(d) method gives the best correlations with the experimental results. Meanwhile, the solvent effect calculations (with CPCM, PCM, and SMD models) indicate that both CPCM and PCM perform well.展开更多
The separation of the by-product (The volume fraction of 3-picoline is 68.472 2% and 4-picoline 26. 517 6% .) in the synthesis of pyridine by dissociation extraction wasstudied. Six separation conditions of the dissoc...The separation of the by-product (The volume fraction of 3-picoline is 68.472 2% and 4-picoline 26. 517 6% .) in the synthesis of pyridine by dissociation extraction wasstudied. Six separation conditions of the dissociation extraction-the kind and the dosage ofextractant and organic solvent, the concentration of the extractant and separation temperature-wereinvestigated. Different levels of each factor were chosen to form an orthogonal test of six factorsand five levels. The results show that the volume ratio of 3-picoline and 4-picoline in organicphase is the highest when 24 mL picolines are separated at 0 t by 2. 0 mol/L p-toluenesulfonic andn-heptane whose dosages are 40 mL and 48 mL, respectively. The effect of the separation isconsiderably improved with repetition test. This process of dissociation extraction has commendablepotential for industrial exploitation.展开更多
Methane hydrate is considered as a potential energy source in the future due to its abundant reserves and high energy density.To investigate the influence of initial hydrate saturation,production pressure,and the temp...Methane hydrate is considered as a potential energy source in the future due to its abundant reserves and high energy density.To investigate the influence of initial hydrate saturation,production pressure,and the temperature of thermal stimulation on gas production rate and cumulative gas production percentage,we conducted the methane hydrate dissociation experiments using depressurization,thermal stimulation and a combination of two methods in this study.It is found that when the gas production pressures are the same,the higher the hydrate initial saturation,the greater change in hydrate reservoir temperature.Therefore,it is easier to appear the phenomenon of icing and hydrate reformation when the hydrate saturation is higher.For example,the reservoir temperature dropped to below zero in depressurization process when the hydrate saturation was about 37%.However,the same phenomenon didn’t appear as the saturation was about 12%.This may be due to more free gas in the reservoir with hydrate saturated of 37%.We also find that the temperature variation of reservoir can be reduced effectively by combination of depressurization and thermal stimulation method.And the average gas production rate is highest with combined method in the experiments.When the pressure of gas production is 2 MPa,compared with depressurization,the average of gas production can increase 54%when the combined method is used.The efficiency of gas production is very low when thermal stimulation was used alone.When the temperature of thermal stimulation is 11℃,the average rate of gas production in the experiment of thermal stimulation is less than 1/3 of that in the experiment of the combined method.展开更多
基金This work is supported by the National Key R&D Program of China(No.2022YFB4101201)the Na-tional Natural Science Foundation of China(No.21972162).
文摘Clean and O-(2√2×√2)R45°Cu(100)surfaces were prepared to study the impact of surface oxygen on the activation of methane dissociation.Auger electron spectroscopy,low energy electron diffraction,infrared reflection absorption spectroscopy,scanning tunneling microscope,and a quadrupole mass-spectrometer for temperature programmed desorption were used to explore the behavior of CH_(4)on the two surfaces.The dissociative adsorption of CH_(4)was observed on oxygen-pre-covered Cu(100)but not on the clean surface indicating surface oxygen promotes the dissociation of the C-H bond.This study can be a reference for the conversion of methane into other high-value-added products with high efficiency and low energy consumption.
基金supported by the National Natural Science Foundation of China(Grant No.12175165)。
文摘Thermal quantities,including the the entropy density and gluon spectrum,of quark matter within a box that is finite in the longitudinal direction are calculated using a bag model.Under the assumption of entropy conservation,the corresponding gluon dissociation rate of J/ψis studied.It reaches a maximum at a certain longitudinal size L_(m),below which the suppression is weak even if the temperature becomes higher than that without the finite size effect,and above which the dissociation rate approaches to the thermodynamic limit gradually with increasing longitudinal size of the fireball.
基金This work was supported by the National Basic Research Program of China (973 Program) (No.2013CB922200) and the National Natural Science Foundation of China (No.91121006, No.21273274, No.21173256, and No.21303255).
文摘The photodissociation dynamics of 2-iodotoluene following excitation at 266 nm have been investigated employing femtosecond time-resolved mass spectrometry. The photofragments are detected by multiphoton ionization using an intense laser field centered at 800 nm. A dissociation time of 3804-50 fs was measured from the rising time of the co-fragments of toluene radical (C7H7) and iodine atom (I), which is attributed to the averaged time needed for the C-I bond breaking for the simultaneously excited nσ and ππ* states by 266 nm pump light. In addition, a probe light centered at 298.23 nm corresponding to resonance wavelength of ground-state iodine atom is used to selectively ionize ground-state iodine atoms generated from the dissociation of initially populated hσ* and ππ* states. And a rise time of 4004-50 fs is extracted from the fitting of time-dependent I+ transient, which is in agreement with the dissociation time obtained by multiphoton ionization with 800 nm, suggesting that the main dissociative products are ground-state iodine atoms.
文摘A two-channel thermal dissociation cavity ring down spectroscopy (CRDS) instrument has been built for in situ, real-time measurement of NO2 and total RNO2 (peroxy nitrates and alkyl nitrates) in ambient air, with a NO2 detection limit of 0.10 ppbv at 1 s. A 6-day long measurement was conducted at urban site of Hefei by using the CRDS instrument with a time resolution of 3 s. A commercial molybdenum converted chemiluminescence (Mo-CL) instrument was also used for comparison. The average RNO2 concentration in the 6 days was measured to be 1.94 ppbv. The Mo-CL instrument overestimated the NO2 concentration by a bias of +1.69 ppbv in average, for the reason that it cannot distinguish RNO2 from NO2. The relative bias could be over 100% during the afternoon hours when NO2 was low but RNO2 was high.
基金This work was supported by the National Natural Science Foundation of China (No.10774039).
文摘Quantum chemical calculations were used to estimate the bond dissociation energies (BDEs) for 13 substituted chlorobenzene compounds. These compounds were studied by the hybrid density functional theory (B3LYP, B3PW91, B3P86) methods together with 6-31G^** and 6-311G^** basis sets. The results show that B3P86/6-311G^** method is the best method to compute the reliable BDEs for substituted chlorobenzene compounds which contain the C-C1 bond. It is found that the C-C1 BDE depends strongly on the computational method and the basis sets used. Substituent effect on the C-C1 BDE of substituted chlorobenzene compounds is further discussed. It is noted that the effects of substitution on the C-C1 BDE of substituted chlorobenzene compounds are very insignificant. The energy gaps between the HOMO and LUMO of studied compounds estimate the relative thermal stability ordering are also investigated and from this data we of substituted chlorobenzene compounds.
基金ACKNOWLEDGMENTS This work was supported by the Chinese Academy of Sciences, the Ministry of Science and Technology, and the National Natural Science Foundation of China.
文摘Photodissociation of jet-cooled HOD via the C state around 124 nm has been studied using the H(D)-atom Rydberg tagging time-of-flight technique. Rotational state resolved action spectrum and the product translational energy distribution spectra have been recorded for both D+OH and H+OD dissociation channels. Product channel OH/OD branching ratios for the individual C-X rotational transition have been determined. A comparison is also given with the B-X and A-X transitions. In addition, the dissociation energy of the OD bond in HOD has been determined accurately to be 41751.3±5 cm-1.
基金This work was supported by the Chinese Academy of Sciences and the National Natural Science Foundation of China (No.10805047). Authors appreciate the kind help from Dr. Yang Pan in experiments.
文摘Photon-induced dissociation pathways of thymine are investigated with vacuum ultraviolet photoionization mass spectrometry and theoretical calculations. The photoionization mass spectra of thymine at different photon energy are measured and presented. By selecting suitable photon energy, exclusively molecular ion m/z=126 is obtained. At photon energy of 12.0 eV, the major ionic fragments at m/z=98, 97, 84, 83, 70, and 55 are obtained, which are assigned to C4H6N2O+, C4H5N2O+, C3H4N2O+ (or C4H6NO+), C4H5NO+, C2NO2+, and C3H5N+, respectively. With help of theoretical calculations, the detailed dissociation pathways of thymine at low energy are well established.
文摘Superexcited states of NO molecule and their neutral dissociation processes have been studied both experimentally and theoretically. Neutral excited N^* and O^* atoms are detected by fluorescence spectroscopy for the NO molecule upon interaction with 800 nm intense laser radiation of duration 60 fs and intensity 0.2 PW/cm^2. Intense laser pulse causes neutral dissociation of superexcited NO molecule by way of multiphoton excitation, which is equivalent to single photon excitation in the extreme-ultraviolet region by synchrotron radiation. Potential energy curves (PECs) are also built using the calculated superexcited state of NO^+. In light of the PECs, direct dissociation and pre-dissociation mechanisms are proposed respectively for the neutral dissociation leading to excited fragments N^* and O^*.
基金supported by the National Natural Science Foundation of China (No.21625301)
文摘Ion-pair dissociation is an important molecular process and frequently happens when the target molecule is pumped to its electronically superexcited states. In contrast to the experimental studies of photoexcitation ion-pair dissociation, there are some experimental challenges in the electron-impact ion-pair dissociation study, in particular, on determination of the energetic threshold. Here we report an experimental development for the ion-pair dissociation study by using the monochromized electron impacts. As an example, the threshold of BrCN→Br^-+CN^+ is determined as 13.78 eV according to the appearance energy of CN^+ signals, meanwhile, the time-sliced ion velocity image of CN^+ is recorded at 16.09 eV and indicates an anisotropic distribution of the CN^+ momentum.
文摘The density functional theory (DFT) is the most popular method for evaluating bond dis- sociation enthalpies (BDEs) of most molecules. Thus, we are committed to looking for alternative methods that can balance the computational cost and higher precision to the best for large systems. The performance of DFT, double-hybrid DFT, and high-level com- posite methods are examined. The tested sets contain monocyclic and polycyclic aromatic molecules, branched hydrocarbons, small inorganic molecules, etc. The results show that the mPW2PLYP and G4MP2 methods achieve reasonable agreement with the benchmark val- ues for most tested molecules, and the mean absolute deviations are 2.43 and 1.96 kcal/mol after excluding the BDEs of branched hydrocarbons. We recommend the G4MP2 is the most appropriate method for small systems (atoms number≤20); the double-hybrid DFT methods are advised for large aromatic molecules in medium size (20≤atoms number≤50), and the double-hybrid DFT methods with empirical dispersion correction are recommended for long-chain and branched hydrocarbons in the same size scope; the DFT methods are ad- vised to apply for large systems (atoms number〉50), and the M06-2X and B3P86 methods are also favorable. Moreover, the differences of optimized geometry of different methods are discussed and the effects of basis sets for various methods are investigated.
基金supported by the Program for the Changjiang Scholars and Innovative Research Team in University (No. IRT_14R58)the National Natural Science Foundation of China (No. 51704311)+3 种基金the Fundamental Research Funds for the Central Universities (No. 16CX06 033A)the National Key Research and Development Program (No. 2016YFC0304005)the National Basic Research Program of China (973 Program) (No. 2015CB251 201)the Qingdao Science and Technology Project (No. 15-9-1-55-jch)
文摘It is well known that methane hydrate has been identified as an alternative resource due to its massive reserves and clean property. However, hydrate dissociation during oil and gas development(OGD) process in deep water can affect the stability of subsea equipment and formation. Currently, there is a serious lack of studies over quantitative assessment on the effects of hydrate dissociation on wellhead stability. In order to solve this problem, ABAQUS finite element software was used to develop a model and to evaluate the behavior of wellhead caused by hydrate dissociation. The factors that affect the wellhead stability include dissociation range, depth of hydrate formation and mechanical properties of dissociated hydrate region. Based on these, series of simulations were carried out to determine the wellhead displacement. The results revealed that, continuous dissociation of hydrate in homogeneous and isotropic formations can causes the non-linear increment in vertical displacement of wellhead. The displacement of wellhead showed good agreement with the settlement of overlying formations under the same conditions. In addition, the shallower and thicker hydrate formation can aggravate the influence of hydrate dissociation on the wellhead stability. Further, it was observed that with the declining elastic modulus and Poisson's ratio, the wellhead displacement increases. Hence, these findings not only confirm the effect of hydrate dissociation on the wellhead stability, but also lend support to the actions, such as cooling the drilling fluid, which can reduce the hydrate dissociation range and further make deepwater operations safer and more efficient.
基金Authors thank Dr. Yang Pan for useful discussions This work was supported by the National Natural Science Foundation of China (No.10805047).
文摘Photon induced dissociation investigations of neutral tyramine and dopamine are carried out with synchrotron vacuum uRraviolet photoionization mass spectrometry and theoretical calculations. At low photon energy, only molecular ions are measured by virtue of nearthreshold photoionization. While increasing photon energy to 11.7 eV or more, four distinct fragment ions are obtained for tyramine and dopamine, respectively. Besides, the ionization energies of tyramine and dopamine are determined to be 7.984-0.05 and 7.674-0.05 eV by measuring the photoionization efficiency curves of corresponding molecular ions. With help of density function theory calculations, the detailed fragmentation pathways are established as well. These two molecular cations have similar aminoethyl group elimination pathways, CTHsO2+ (m/z=124) and C7H8O+ (m/z=108) are supposed to be generated by the McLafferty rearrangement via γ-hydrogen (7-H) shift inducing β-fission. And CH2NH2+ is proposed to derive from the direct fission of C7-C8 bond. Besides, the McLafferty rearrangement and the C7-C8 bond fission are validated to be dominant dissociation pathways for tyramine and dopamine cations.
文摘fragments, F- and Cl- including two isotope species 35Cl- and 37Cl-, are observed in the photoexcitations of CFC13. The ion-pair anion efficiency spectra of 35Cl- and 37Cl- are recorded in the photon energy range of 7.75-22.00 eV. The threshold of ion-pair dissociation CFCl3-CFC12++Cl- is experimentally determined to be 7.944-0.04 eV. With the references of the high-resolution photoabsorption spectra reported in the literatures, we make tentative assignments of the electron valence-to-Rydberg transitions. Furthermore, the multibody ion-pair fragmentation processes to Cl- are discussed by comparison between the calculated thermochemical thresholds and the experimental efficiency spectrum.
基金ACKNOWLEDGMENTS This work was supported by the NationM Nature Science Foundation of China (No.11104256) and the Open Project of State Key Laboratory Cultivation base for Nonmetal Composites and Functional Mate- rials (No.11zxfk19). We thank Dr. Shuang-lin Hu from the Chemistry Department of Uppsala University in Sweden for helpful suggestion. We would also thank the Hefei National Laboratory for Physical Sciences at the Microscale in University of Science and Technology of China for the computational facilities (Gaussian 09).
文摘The potential energy surfaces (PES) of unimolecular dissociation reactions for di-ethyl beryl- lium and di-t-butyl beryllium are investigated by B3LYP, CCSD(T), and G3B3 approaches. Possible reaction pathways through either the radical or transition state (TS) of the molecules are considered. The geometries, vibrational frequencies and relative energies for various sta- tionary points are determined. From the study of energetics, the TS pathways arising from concerted molecular eliminations are indicated to be the main dissociation pathways for both molecules. The PES differences of the dissociation reactions are investigated. The activation energies and rate constants will be helpful for investigating the predictive ability of the reaction in further theoretical and experimental research.
基金This work is financially supported by the National High Technology Research and Development Programof China(863 Program,Grant No.2006AA09A209)
文摘The natural gas hydrate resource is tremendous. How to utilize the gas from hydrates safely is researchers' concern. In this paper, a one-dimensional model is developed to simulate the hydrate dissociation by depressurization in hydratebearing porous medinm. This model can De used to explain the effects of the flow of multiphase fluids, the endothermie process of hydrate dissociation, the variation of permeability, the convection and conduction on the hydrate dissociation. Numerical results show that the hydrate dissociation can be divided into three stages: a rapid dissociation stage mainly governed by hydrate dissociation kinetics after an initially slow dissociation stage governed mainly by flow, and finally a slow dissociation stage. Moreover, a numerical approach of sensitivity analysis of physical parameters is proposed, with which the quantitative effect of all the parameters on hydrate dissociation can be evaluated conveniently.
基金supported by the National Natural Science Foundation of China(Grants 41376078,51639008,and 51239010)the China Geological Survey(Grant DD20160216)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant 2017027)
文摘The changes in the mechanical properties of gas hydrate-bearing sediments(GHBS) induced by gas hydrate(GH) dissociation are essential to the evaluation of GH exploration and stratum instabilities. Previous studies present substantial mechanical data and constitutive models for GHBS at a given GH saturation under the non-dissociated condition. In this paper, GHBS was formed by the gas saturated method, GH was dissociated by depressurization until the GH saturation reached different dissociation degrees. The stress–strain curves were measured using triaxial tests at a same pore gas pressure and different confining pressures. The results show that the shear strength decreases progressively by 30%–90% of the initial value with GH dissociation, and the modulus decreases by 50% –75%. Simplified relationships for the modulus, cohesion, and internal friction angle with GH dissociated saturation were presented.
基金Supported by the National Natural Science Foundation of China (20506016, 20676145, U0633003), the National High Technology Research and Development Program of China (2006AA09A208), Program for New Century Excellent Talents in Uni versity of the State Ministry of Education (NCET-07-0842), and the Foundation for the Authors of National Excellent Doc toral Dissertation of the People's Republic of China (200447).
文摘The dissociation rates of methane hydrates formed with and without the presence of sodium dodecyl sulfate (methane-SDS hydrates), were measured under atmospheric pressure and temperatures below ice point to investigate the influence of the hydrate production conditions and manners upon its dissociation kinetic behavior. The experimental results demonstrated that the dissociation rate of methane hydrate below ice point is strongly dependent on the manners of hydrate formation and processing. The dissociation rate of hydrate formed quiescently was lower than that of hydrate formed with stirring; the dissociation rate of hydrate formed at lower pressure was higher than that of hydrate formed at higher oressure; the comoaction of hydrate after its formation lowered its stability, i.e., increased'its dissociation rate.The stability of hydrate could beincreased by prolonging the time period for which hydrate was held at formation temperature and pressure before it was cooled down, or by prolonging the time period for which hydrate was held at dissociation temperature and formation pressure before it was depressurized to atmospheric pressure. It was found that the dissociation rate of methane hydrate varied with the temperature (ranging from 245.2 to 272.2 K) anomalously as reported on the dissociation of methane hydrate without the presence of surfactant as kinetic promoter. The dissociation rate at 268 K was found to be the lowest when the manners and conditions at which hydrates were formed and processed were fixed.
基金This work was supported by the National Nature Science Foundation of China (No.21325208, No.21172209, No.21202006, No.21361140372), the Anhui Provincial Natural Science Foundation (No.1308085QB38), the Specialized Research Fund for the Doctoral Program of Higher Education (No.20123402110051), the Financial Resources Federal Credit Union (No.WK2060190025, No.FRF-TP-13-023A), the Science Foundation of the Chinese Academy of Sciences (No.JCX2-EW-J02), the Fok Ying Tung Education Foundation, the ChinaGrid project funded by MOE of China and the supercom- puter center of Shanghai and USTC.
文摘The formation and breaking of Ni-L (L=N-heterocyclic carbene, tertiary phosphine etc.) bond is involved in many Ni-catalyzed/mediated reactions. The accurate prediction of Ni-L bond dissociation enthalpies (BDEs) is potentially important to understand these Ni-complex involving reactions. We assess the accuracy of diffierent DFT functionals (such as B3LYP, M06, MPWB1K, etc.) and diffierent basis sets, including both effective core potentials for Ni and the all electron basis sets for all other atoms in predicting the Ni-L BDE values reported recently by Nolan et al. [J. Am. Chem. Soc. 125, 10490 (2003) and Organometallics 27, 3181 (2008)]. It is found that the MPWB1K/LanL2DZ:6-31+G(d,p)//MPWB1K/LanL2DZ:6-31G(d) method gives the best correlations with the experimental results. Meanwhile, the solvent effect calculations (with CPCM, PCM, and SMD models) indicate that both CPCM and PCM perform well.
文摘The separation of the by-product (The volume fraction of 3-picoline is 68.472 2% and 4-picoline 26. 517 6% .) in the synthesis of pyridine by dissociation extraction wasstudied. Six separation conditions of the dissociation extraction-the kind and the dosage ofextractant and organic solvent, the concentration of the extractant and separation temperature-wereinvestigated. Different levels of each factor were chosen to form an orthogonal test of six factorsand five levels. The results show that the volume ratio of 3-picoline and 4-picoline in organicphase is the highest when 24 mL picolines are separated at 0 t by 2. 0 mol/L p-toluenesulfonic andn-heptane whose dosages are 40 mL and 48 mL, respectively. The effect of the separation isconsiderably improved with repetition test. This process of dissociation extraction has commendablepotential for industrial exploitation.
基金Supported by the National Natural Science Foundation of China(51436003,51822603,51576025)the National Key Research and Development Program of China(2017YFC0307303,2016YFC0304001)+1 种基金the Fok Ying Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(161050)the Fundamental Research Funds for the Central Universities of China(DUT18ZD403)
文摘Methane hydrate is considered as a potential energy source in the future due to its abundant reserves and high energy density.To investigate the influence of initial hydrate saturation,production pressure,and the temperature of thermal stimulation on gas production rate and cumulative gas production percentage,we conducted the methane hydrate dissociation experiments using depressurization,thermal stimulation and a combination of two methods in this study.It is found that when the gas production pressures are the same,the higher the hydrate initial saturation,the greater change in hydrate reservoir temperature.Therefore,it is easier to appear the phenomenon of icing and hydrate reformation when the hydrate saturation is higher.For example,the reservoir temperature dropped to below zero in depressurization process when the hydrate saturation was about 37%.However,the same phenomenon didn’t appear as the saturation was about 12%.This may be due to more free gas in the reservoir with hydrate saturated of 37%.We also find that the temperature variation of reservoir can be reduced effectively by combination of depressurization and thermal stimulation method.And the average gas production rate is highest with combined method in the experiments.When the pressure of gas production is 2 MPa,compared with depressurization,the average of gas production can increase 54%when the combined method is used.The efficiency of gas production is very low when thermal stimulation was used alone.When the temperature of thermal stimulation is 11℃,the average rate of gas production in the experiment of thermal stimulation is less than 1/3 of that in the experiment of the combined method.