基于强阳离子交换填料(PCX),采用分散微固相萃取前处理技术,结合超高效液相色谱-四级杆-静电场轨道阱高分辨质谱联用技术,建立了一种快速测定葡萄酒和啤酒中多菌灵和噻菌灵的方法。通过对分散微固相萃取技术中PCX用量、洗脱溶剂中氨水...基于强阳离子交换填料(PCX),采用分散微固相萃取前处理技术,结合超高效液相色谱-四级杆-静电场轨道阱高分辨质谱联用技术,建立了一种快速测定葡萄酒和啤酒中多菌灵和噻菌灵的方法。通过对分散微固相萃取技术中PCX用量、洗脱溶剂中氨水的体积分数、乙腈的体积分数和洗脱体积的优化,实现了样品中多菌灵和噻菌灵的有效净化。经BEH C_(18)(50 mm×2.1 mm,1.7μm)色谱柱分离后,通过静电场轨道阱质谱靶向单一离子监测(targeted single ion monitoring,tSIM)结合数据依赖的二级质谱扫描(data dependent tandem mass spectrometry,ddMS^2)采集模式进行定性定量分析。待测物多菌灵和噻菌灵在一定浓度范围内均呈良好线性关系,相关系数R^2≥0.999 9。在葡萄酒和啤酒基质中,多菌灵和噻菌灵的检出限分别为0.02和0.01μg/L,定量限分别为0.06和0.03μg/L。在0.1、1.0、100μg/L 3个添加水平下,多菌灵和噻菌灵的加标回收率分别为95.6%~110.2%和87.5%~102.8%,日内精密度(RSDr)分别为1.8%~5.2%和1.3%~4.8%,日间精密度(RSD_R)分别为4.3%~8.7%和4.8%~9.4%。该方法快速、简便、灵敏,适用于葡萄酒和啤酒中多菌灵和噻菌灵的残留检测。展开更多
文摘基于强阳离子交换填料(PCX),采用分散微固相萃取前处理技术,结合超高效液相色谱-四级杆-静电场轨道阱高分辨质谱联用技术,建立了一种快速测定葡萄酒和啤酒中多菌灵和噻菌灵的方法。通过对分散微固相萃取技术中PCX用量、洗脱溶剂中氨水的体积分数、乙腈的体积分数和洗脱体积的优化,实现了样品中多菌灵和噻菌灵的有效净化。经BEH C_(18)(50 mm×2.1 mm,1.7μm)色谱柱分离后,通过静电场轨道阱质谱靶向单一离子监测(targeted single ion monitoring,tSIM)结合数据依赖的二级质谱扫描(data dependent tandem mass spectrometry,ddMS^2)采集模式进行定性定量分析。待测物多菌灵和噻菌灵在一定浓度范围内均呈良好线性关系,相关系数R^2≥0.999 9。在葡萄酒和啤酒基质中,多菌灵和噻菌灵的检出限分别为0.02和0.01μg/L,定量限分别为0.06和0.03μg/L。在0.1、1.0、100μg/L 3个添加水平下,多菌灵和噻菌灵的加标回收率分别为95.6%~110.2%和87.5%~102.8%,日内精密度(RSDr)分别为1.8%~5.2%和1.3%~4.8%,日间精密度(RSD_R)分别为4.3%~8.7%和4.8%~9.4%。该方法快速、简便、灵敏,适用于葡萄酒和啤酒中多菌灵和噻菌灵的残留检测。