The existing direction-of-arrival(DOA)estimation methods only utilize the current received signals,which are susceptible to noise.In this paper,a method for DOA estimation based on a motion platform is proposed to ach...The existing direction-of-arrival(DOA)estimation methods only utilize the current received signals,which are susceptible to noise.In this paper,a method for DOA estimation based on a motion platform is proposed to achieve high-precision DOA estimation by utilizing past and present signals.The concept of synthetic aperture is introduced to construct a linear DOA estima-tion model.A DOA fine-tuning method based on the linear model is proposed to eliminate the lin-ear DOA variation,achieving a non-coherent accumulation of DOA estimations.Moreover,the baseband modulation and the phase modulation caused by the range history are compensated to achieve the coherent accumulation of all the DOA estimations.Simulation results show that the proposed method can significantly improve the DOA estimated accuracy at low signal-to-noise ratios(SNR).展开更多
Generally,due to the limitation of the dimension of the array aperture,linear arrays cannot achieve two-dimensional(2D)direction of arrival(DOA)estimation.But the emergence of array motion provides a chance for that.I...Generally,due to the limitation of the dimension of the array aperture,linear arrays cannot achieve two-dimensional(2D)direction of arrival(DOA)estimation.But the emergence of array motion provides a chance for that.In this paper,a generalized motion scheme and a novel method of 2D DOA estimation are proposed by exploring the linear array motion.To be specific,the linear arrays are controlled to move along an arbitrary direction at a constant velocity and snap per fixed time delay.All the received signals are processed to synthesize the comprehensive observation vector for an extended 2D virtual aperture.Subsequently,since most of 2D DOA estimation methods are not universal to our proposed motion scheme and the reduced-dimensional(RD)method fails to handle the case of the coupled parameters,a decoupled reduced-complexity multiple signals classification(DRC MUSIC)algorithm is designed specifically.Simulation results demonstrate that:a)our proposed scheme can achieve underdetermined 2D DOA estimation just by the linear arrays;b)our designed DRC MUSIC algorithm has the good properties of high accuracy and low complexity;c)our proposed motion scheme with the DRC method has better universality in the motion direction.展开更多
Despite some efforts and attempts have been made to improve the direction-of-arrival(DOA)estimation performance of the standard Capon beamformer(SCB)in array processing,rigorous statistical performance analyses of the...Despite some efforts and attempts have been made to improve the direction-of-arrival(DOA)estimation performance of the standard Capon beamformer(SCB)in array processing,rigorous statistical performance analyses of these modified Capon estimators are still lacking.This paper studies an improved Capon estimator(ICE)for estimating the DOAs of multiple uncorrelated narrowband signals,where the higherorder inverse(sample)array covariance matrix is used in the Capon-like cost function.By establishing the relationship between this nonparametric estimator and the parametric and classic subspace-based MUSIC(multiple signal classification),it is clarified that as long as the power order of the inverse covariance matrix is increased to reduce the influence of signal subspace components in the ICE,the estimation performance of the ICE becomes equivalent to that of the MUSIC regardless of the signal-to-noise ratio(SNR).Furthermore the statistical performance of the ICE is analyzed,and the large-sample mean-squared-error(MSE)expression of the estimated DOA is derived.Finally the effectiveness and the theoretical analysis of the ICE are substantiated through numerical examples,where the Cramer-Rao lower bound(CRB)is used to evaluate the validity of the derived asymptotic MSE expression.展开更多
This paper proposes low-cost yet high-accuracy direction of arrival(DOA)estimation for the automotive frequency-modulated continuous-wave(FMcW)radar.The existing subspace-based DOA estimation algorithms suffer fromeit...This paper proposes low-cost yet high-accuracy direction of arrival(DOA)estimation for the automotive frequency-modulated continuous-wave(FMcW)radar.The existing subspace-based DOA estimation algorithms suffer fromeither high computational costs or low accuracy.We aim to solve such contradictory relation between complexity and accuracy by using randomizedmatrix approximation.Specifically,we apply an easily-interpretablerandomized low-rank approximation to the covariance matrix(CM)and R∈C^(M×M)throughthresketch maties in the fom of R≈OBQ^(H).Here the approximately compute its subspaces.That is,we first approximate matrix Q∈C^(M×z)contains the orthonormal basis for the range of the sketchmatrik C∈C^(M×z)cwe whichis etrated fom R using randomized unifom counsampling and B∈C^(z×z)is a weight-matrix reducing the approximation error.Relying on such approximation,we are able to accelerate the subspacecomputation by the orders of the magnitude without compromising estimation accuracy.Furthermore,we drive a theoretical error bound for the suggested scheme to ensure the accuracy of the approximation.As validated by the simulation results,the DOA estimation accuracy of the proposed algorithm,eficient multiple signal classification(E-MUSIC)s high,closely tracks standardMUSIC,and outperforms the well-known algorithms with tremendouslyreduced time complexity.Thus,the devised method can realize high-resolutionreal-time target detection in the emerging multiple input and multiple output(MIMO)automotive radar systems.展开更多
A novel decorrelating DOA estimation algorithm of multipath signals for CDMA frequency selective fading channels based only on the principal eigenvector of its corresponding covariance matrix is proposed. The propose...A novel decorrelating DOA estimation algorithm of multipath signals for CDMA frequency selective fading channels based only on the principal eigenvector of its corresponding covariance matrix is proposed. The proposed algorithm has the advantages that the DOAs of the multipath signals can be estimated independently and all the other resolved multipath signal interference is eliminated. Simulation results show that this algorithm estimates the DOAs of multipath signals efficiently and accurately.展开更多
A joint direction of arrival (DOA) estimation and phase calibration for synchronous CDMA system with decorrelator are presented. Through decorrelating processing DOAs of the desired users can be estimated independentl...A joint direction of arrival (DOA) estimation and phase calibration for synchronous CDMA system with decorrelator are presented. Through decorrelating processing DOAs of the desired users can be estimated independently and all other resolved signal interferences are eliminated. Emphasis is directed to applications in which sensor phases may be in error. It is shown that accurate phase calibration in conjunction with their use in high resolution DOA estimation can be achieved for the decoupled signals.展开更多
In this paper, a novel DOA estimation methodology based upon the technology of adaptive nulling antenna is proposed. Initially, the nulling antenna obtains the weight vector by LMS algorithm and power inversion criter...In this paper, a novel DOA estimation methodology based upon the technology of adaptive nulling antenna is proposed. Initially, the nulling antenna obtains the weight vector by LMS algorithm and power inversion criterion.Afterwards, reciprocal of the antenna pattern is defined as the spatial spectrum and the extracted peak values are corresponded to the estimated DOA. Through observation of the spectrum and data analysis of variable steps and SNRs, the simulation results demonstrate that the proposed method can estimate DOA above board. Furthermore, the estimation error of the proposed technique is directly proportional to step size and is inversely proportional to SNR. Unlike the existing MUSIC algorithm, the proposed algorithm has less computational complexity as it eliminates the need of estimating the number of signals and the eigenvalue decomposition of covariance matrix. Also it outperforms MUSIC algorithm, the recently proposed MUSIC-Like algorithm and classical methods by achieving better resolution with narrow width of peaks.展开更多
This paper presents a modified Root-MUSIC algorithm by which the signal DOA estimation performance can be improved when the snapshot number is limited. The operation principlesof this algorithm are described in detail...This paper presents a modified Root-MUSIC algorithm by which the signal DOA estimation performance can be improved when the snapshot number is limited. The operation principlesof this algorithm are described in detail. It is also pointed out theoretically that this is equivalentto have increased the snapshot number and can make the DOA estimation better. Finally, somesimulating results to verify the theoretical analyses are presented.展开更多
To cope with the scenario where both uncorrelated sources and coherent sources coexist, a novel algorithm to direction of arrival (DOA) estimation for symmetric uniform linear array is presented. Under the condition...To cope with the scenario where both uncorrelated sources and coherent sources coexist, a novel algorithm to direction of arrival (DOA) estimation for symmetric uniform linear array is presented. Under the condition of stationary colored noise field, the algorithm employs a spatial differencing method to eliminate the noise covariance matrix and uncorrelated sources, then a Toeplitz matrix is constructed for the remained coherent sources. After preprocessing, a propagator method (PM) is employed to find the DOAs without any eigendecomposition. The number of sources resolved by this approach can exceed the number of array elements at a lower computational complexity. Simulation results demonstrate the effectiveness and efficiency of the proposed method.展开更多
This paper considers multi-frequency passive radar and develops a multi-frequency joint direction of arrival(DOA)estimation algorithm to improve estimation accuracy and resolution.The developed algorithm exploits the ...This paper considers multi-frequency passive radar and develops a multi-frequency joint direction of arrival(DOA)estimation algorithm to improve estimation accuracy and resolution.The developed algorithm exploits the sparsity of targets in the spatial domain.Specifically,we first extract the required frequency channel data and acquire the snapshot data through a series of preprocessing such as clutter suppression,coherent integration,beamforming,and constant false alarm rate(CFAR)detection.Then,based on the framework of sparse Bayesian learning,the target’s DOA is estimated by jointly extracting the multi-frequency data via evidence maximization.Simulation results show that the developed algorithm has better estimation accuracy and resolution than other existing multi-frequency DOA estimation algorithms,especially under the scenarios of low signalto-noise ratio(SNR)and small snapshots.Furthermore,the effectiveness is verified by the field experimental data of a multi-frequency FM-based passive radar.展开更多
Arranging multiple identical sub-arrays in a special way can enhance degrees of freedom(DOFs)and obtain a hole-free difference co-array(DCA).In this paper,by adjusting the interval of adjacent sub-arrays,a kind of gen...Arranging multiple identical sub-arrays in a special way can enhance degrees of freedom(DOFs)and obtain a hole-free difference co-array(DCA).In this paper,by adjusting the interval of adjacent sub-arrays,a kind of generalized array architecture with larger aperture is proposed.Although some holes may exist in the DCA of the proposed array,they are distributed uniformly.Utilizing the partial continuity of the DCA,an extended covariance matrix can be constructed.Singular value decomposition(SVD)is used to obtain an extended signal sub-space,by which the direction-of-arrival(DOA)estimation algorithm for quasi-stationary signals is given.In order to eliminating angle ambiguity caused by the holes of DCA,the estimation of signal parameters via rotational invariance techniques(ESPRIT)is used to construct a matrix that includes all angle information.Utilizing this matrix,a secondary extended signal sub-space can be obtained.This signal sub-space is corresponding to a hole-free DCA.Then,dealing with the further extended signal sub-space by multiple signal classification(MUSIC)algorithm,the unambiguous DOAs of all incident signals can be estimated.Some simulation results are shown to prove the improved performance of proposed generalized array architecture in DOA estimation and the effectiveness of corresponding hole-repair algorithm in eliminating angle ambiguity.展开更多
This paper proposes to apply the genetic algorithm and the firefly algorithm to enhance the estimation of the direction of arrival (DOA) angle of electromagnetic signals of a smart antenna array. This estimation is es...This paper proposes to apply the genetic algorithm and the firefly algorithm to enhance the estimation of the direction of arrival (DOA) angle of electromagnetic signals of a smart antenna array. This estimation is essential for beamforming, where the antenna array radiating pattern is steered to provide faster and reliable data transmission with increased coverage. This work proposes using metaheuristics to improve a maximum likelihood DOA estimator for an antenna array arranged in a uniform cuboidal geometry. The DOA estimation performance of the proposed algorithm was compared to that of MUSIC on different two dimensions scenarios. The metaheuristic algorithms present better performance than the well-known MUSIC algorithm.展开更多
An improved direction of arrival (DOA) estimation algorithm with sensor gain and phase uncertainties for synchronous code division multiple access(CDMA) system with decorrelator is presented. Through decorrelating pro...An improved direction of arrival (DOA) estimation algorithm with sensor gain and phase uncertainties for synchronous code division multiple access(CDMA) system with decorrelator is presented. Through decorrelating processing DOAs of the desired users can be estimated independently and all other resolved signal interferences are eliminated. Emphasis is directed to applications in which sensor gain and phase are perturbed that often happen actually. It is shown that improved DOA estimation can be achieved for decoupled signals by gain and phase pre estimation procedures.展开更多
In order to reduce the effect of noises on DOA estimation,this paper proposes a direc-tion-of-arrival(DOA)estimation method using sparse representation with orthogonal projection(OPSR).The OPSR method obtains a new co...In order to reduce the effect of noises on DOA estimation,this paper proposes a direc-tion-of-arrival(DOA)estimation method using sparse representation with orthogonal projection(OPSR).The OPSR method obtains a new covariance matrix by projecting the covariance matrix of the array data to the signal subspace,leading to the elimination of the noise subspace.After-wards,based on the new covariance matrix after the orthogonal projection,a new sparse representa-tion model is established and employed for DOA estimation.Simulation results demonstrate that compared to other methods,the OPSR method has higher angle resolution and better DOA estima-tion performance in the cases of few snapshots and low SNRs.展开更多
This paper presents a novel scheme for joint frequency and direction of arrival(DOA)estimation,that pairs frequencies and DOAs automatically without additional computations.First,when the property of the Kronecker pro...This paper presents a novel scheme for joint frequency and direction of arrival(DOA)estimation,that pairs frequencies and DOAs automatically without additional computations.First,when the property of the Kronecker product is used in the received array signal of the multiple-delay output model,the frequency-angle steering vector can be reconstructed as the product of the frequency steering vector and the angle steering vector.The frequency of the incoming signal is then obtained by searching for the minimal eigenvalue among the smallest eigenvalues that depend on the frequency parameters but are irrelevant to the DOAs.Subsequently,the DOA related to the selected frequency is acquired through some operations on the minimal eigenvector according to the Rayleigh–Ritz theorem,which realizes the natural pairing of frequencies and DOAs.Furthermore,the proposed method can not only distinguish multiple sources,but also effectively deal with other arrays.The effectiveness and superiority of the proposed algorithm are further analyzed by simulations.展开更多
Direction of arrival(DOA)estimation for unfolded coprime array(UFCA)is discussed,and a method based on subspace compensation is proposed.Conventional DOA estimation meth-ods partition the UFCA into two subarrays for s...Direction of arrival(DOA)estimation for unfolded coprime array(UFCA)is discussed,and a method based on subspace compensation is proposed.Conventional DOA estimation meth-ods partition the UFCA into two subarrays for separate estimations,which are then combined for unique DOA determination.However,the DOA estimation performance loss is caused as only the partial array aperture is exploited.We use the estimations from one subarray as initial estimations,and then enhance the estimation results via a compensation based on the whole array,which is im-plemented via a simple least squares(LS)operation constructed from the initial estimation and first-order Taylor expansion.Compared to conventional methods,the DOA estimation performance is improved while the computational complexity is in the same level.Multiple simulations are con-ducted to verify the efficiency of the proposed approach.展开更多
A novel identification method for point source,coherently distributed(CD) source and incoherently distributed(ICD) source is proposed.The differences among the point source,CD source and ICD source are studied.Acc...A novel identification method for point source,coherently distributed(CD) source and incoherently distributed(ICD) source is proposed.The differences among the point source,CD source and ICD source are studied.According to the different characters of covariance matrix and general steering vector of the array received source,a second order blind identification method is used to separate the sources,the mixing matrix could be obtained.From the mixing matrix,the type of the source is identified by using an amplitude criterion.And the direction of arrival for the array received source is estimated by using the matching pursuit algorithm from the vectors of the mixing matrix.Computer simulations validate the efficiency of the method.展开更多
A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a spa...A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a sparse reconstruction problem of the cleaned array covariance matrix, which is processed to eliminate the affection of the noise. Then by using the block of matrices, the information of DOAs which we pursuit are implied in the sparse coefficient matrix. Finally, the sparse reconstruction problem is solved by the improved M-FOCUSS method, which is applied to the situation of block of matrices. This method outperforms its data domain counterpart in terms of noise suppression, and has a better performance in DOA estimation than the customary spatial smoothing technique. Simulation results verify the efficacy of the proposed method.展开更多
Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face ...Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face great challenges in practical applications due to high computational complexity and dependence on ideal assumptions.This paper presents an effective DOA estimation approach based on a deep residual network(DRN)for the underdetermined case.We first extract an input feature from a new matrix calculated by stacking several covariance matrices corresponding to different time delays.We then provide the input feature to the trained DRN to construct the super resolution spectrum.The DRN learns the mapping relationship between the input feature and the spatial spectrum by training.The proposed approach is superior to existing model-based estimation methods in terms of calculation efficiency,independence of source sparseness and adaptive capacity to non-ideal conditions(e.g.,low signal to noise ratio,short bit sequence).Simulations demonstrate the validity and strong performance of the proposed algorithm on both overdetermined and underdetermined cases.展开更多
In this paper,a two-dimensional(2 D)direction-of-arrival(DOA)estimation algorithm with increased degrees of freedom for two parallel linear arrays is presented.Being different from the conventional two-parallel linear...In this paper,a two-dimensional(2 D)direction-of-arrival(DOA)estimation algorithm with increased degrees of freedom for two parallel linear arrays is presented.Being different from the conventional two-parallel linear array,the proposed two-parallel linear array consists of two uniform linear arrays with non-equal inter-element spacing.Propagator method(PM)is used to obtain a special matrix which can be utilized to increase the virtual elements of one of uniform linear arrays.Then,the PM algorithm is used again to obtain automatically paired elevation and azimuth angles.The simulation results and complexity analysis show that the proposed method can increase the number of distinguishable signals and improve the estimation precision without increasing the computational complexity.展开更多
基金supported in part by the National Science Fund for Excel-lent Young Scholars(No.62222113)in part by the joint Funds of the National Natural Science Foundation of China(No.U22B2015)+1 种基金in part by the stabilization support of National Radar Signal Processing Laboratory(No.KGJ202203)in part by the Fundamental Research Funds for the Central Universities(No.ZDRC2004).
文摘The existing direction-of-arrival(DOA)estimation methods only utilize the current received signals,which are susceptible to noise.In this paper,a method for DOA estimation based on a motion platform is proposed to achieve high-precision DOA estimation by utilizing past and present signals.The concept of synthetic aperture is introduced to construct a linear DOA estima-tion model.A DOA fine-tuning method based on the linear model is proposed to eliminate the lin-ear DOA variation,achieving a non-coherent accumulation of DOA estimations.Moreover,the baseband modulation and the phase modulation caused by the range history are compensated to achieve the coherent accumulation of all the DOA estimations.Simulation results show that the proposed method can significantly improve the DOA estimated accuracy at low signal-to-noise ratios(SNR).
基金This work was supported in part by the Key R&D Program of Shandong Province,China(No.2020CXGC010109)in part by the Beijing Municipal Science and Technology Project(Z181100003218015).
文摘Generally,due to the limitation of the dimension of the array aperture,linear arrays cannot achieve two-dimensional(2D)direction of arrival(DOA)estimation.But the emergence of array motion provides a chance for that.In this paper,a generalized motion scheme and a novel method of 2D DOA estimation are proposed by exploring the linear array motion.To be specific,the linear arrays are controlled to move along an arbitrary direction at a constant velocity and snap per fixed time delay.All the received signals are processed to synthesize the comprehensive observation vector for an extended 2D virtual aperture.Subsequently,since most of 2D DOA estimation methods are not universal to our proposed motion scheme and the reduced-dimensional(RD)method fails to handle the case of the coupled parameters,a decoupled reduced-complexity multiple signals classification(DRC MUSIC)algorithm is designed specifically.Simulation results demonstrate that:a)our proposed scheme can achieve underdetermined 2D DOA estimation just by the linear arrays;b)our designed DRC MUSIC algorithm has the good properties of high accuracy and low complexity;c)our proposed motion scheme with the DRC method has better universality in the motion direction.
基金supported in part by the National Natural Science Foundation of China(62201447)the Project Supported by Natural Science Basic Research Plan in Shaanxi Province of China(2022JQ-640)。
文摘Despite some efforts and attempts have been made to improve the direction-of-arrival(DOA)estimation performance of the standard Capon beamformer(SCB)in array processing,rigorous statistical performance analyses of these modified Capon estimators are still lacking.This paper studies an improved Capon estimator(ICE)for estimating the DOAs of multiple uncorrelated narrowband signals,where the higherorder inverse(sample)array covariance matrix is used in the Capon-like cost function.By establishing the relationship between this nonparametric estimator and the parametric and classic subspace-based MUSIC(multiple signal classification),it is clarified that as long as the power order of the inverse covariance matrix is increased to reduce the influence of signal subspace components in the ICE,the estimation performance of the ICE becomes equivalent to that of the MUSIC regardless of the signal-to-noise ratio(SNR).Furthermore the statistical performance of the ICE is analyzed,and the large-sample mean-squared-error(MSE)expression of the estimated DOA is derived.Finally the effectiveness and the theoretical analysis of the ICE are substantiated through numerical examples,where the Cramer-Rao lower bound(CRB)is used to evaluate the validity of the derived asymptotic MSE expression.
文摘This paper proposes low-cost yet high-accuracy direction of arrival(DOA)estimation for the automotive frequency-modulated continuous-wave(FMcW)radar.The existing subspace-based DOA estimation algorithms suffer fromeither high computational costs or low accuracy.We aim to solve such contradictory relation between complexity and accuracy by using randomizedmatrix approximation.Specifically,we apply an easily-interpretablerandomized low-rank approximation to the covariance matrix(CM)and R∈C^(M×M)throughthresketch maties in the fom of R≈OBQ^(H).Here the approximately compute its subspaces.That is,we first approximate matrix Q∈C^(M×z)contains the orthonormal basis for the range of the sketchmatrik C∈C^(M×z)cwe whichis etrated fom R using randomized unifom counsampling and B∈C^(z×z)is a weight-matrix reducing the approximation error.Relying on such approximation,we are able to accelerate the subspacecomputation by the orders of the magnitude without compromising estimation accuracy.Furthermore,we drive a theoretical error bound for the suggested scheme to ensure the accuracy of the approximation.As validated by the simulation results,the DOA estimation accuracy of the proposed algorithm,eficient multiple signal classification(E-MUSIC)s high,closely tracks standardMUSIC,and outperforms the well-known algorithms with tremendouslyreduced time complexity.Thus,the devised method can realize high-resolutionreal-time target detection in the emerging multiple input and multiple output(MIMO)automotive radar systems.
文摘A novel decorrelating DOA estimation algorithm of multipath signals for CDMA frequency selective fading channels based only on the principal eigenvector of its corresponding covariance matrix is proposed. The proposed algorithm has the advantages that the DOAs of the multipath signals can be estimated independently and all the other resolved multipath signal interference is eliminated. Simulation results show that this algorithm estimates the DOAs of multipath signals efficiently and accurately.
文摘A joint direction of arrival (DOA) estimation and phase calibration for synchronous CDMA system with decorrelator are presented. Through decorrelating processing DOAs of the desired users can be estimated independently and all other resolved signal interferences are eliminated. Emphasis is directed to applications in which sensor phases may be in error. It is shown that accurate phase calibration in conjunction with their use in high resolution DOA estimation can be achieved for the decoupled signals.
基金support of the Science and Technology Commission of Chongqing through the Nature Science Fund (2013jj B40005)supported by the Fundamental Research Funds for the Central University (106112016CDJZR165508) of China
文摘In this paper, a novel DOA estimation methodology based upon the technology of adaptive nulling antenna is proposed. Initially, the nulling antenna obtains the weight vector by LMS algorithm and power inversion criterion.Afterwards, reciprocal of the antenna pattern is defined as the spatial spectrum and the extracted peak values are corresponded to the estimated DOA. Through observation of the spectrum and data analysis of variable steps and SNRs, the simulation results demonstrate that the proposed method can estimate DOA above board. Furthermore, the estimation error of the proposed technique is directly proportional to step size and is inversely proportional to SNR. Unlike the existing MUSIC algorithm, the proposed algorithm has less computational complexity as it eliminates the need of estimating the number of signals and the eigenvalue decomposition of covariance matrix. Also it outperforms MUSIC algorithm, the recently proposed MUSIC-Like algorithm and classical methods by achieving better resolution with narrow width of peaks.
文摘This paper presents a modified Root-MUSIC algorithm by which the signal DOA estimation performance can be improved when the snapshot number is limited. The operation principlesof this algorithm are described in detail. It is also pointed out theoretically that this is equivalentto have increased the snapshot number and can make the DOA estimation better. Finally, somesimulating results to verify the theoretical analyses are presented.
基金the National Natural Science Foundation of China (60601016)
文摘To cope with the scenario where both uncorrelated sources and coherent sources coexist, a novel algorithm to direction of arrival (DOA) estimation for symmetric uniform linear array is presented. Under the condition of stationary colored noise field, the algorithm employs a spatial differencing method to eliminate the noise covariance matrix and uncorrelated sources, then a Toeplitz matrix is constructed for the remained coherent sources. After preprocessing, a propagator method (PM) is employed to find the DOAs without any eigendecomposition. The number of sources resolved by this approach can exceed the number of array elements at a lower computational complexity. Simulation results demonstrate the effectiveness and efficiency of the proposed method.
基金supported by the National Natural Science Foundation of China(62071335,61931015,61831009)the Technological Innovation Project of Hubei Province of China(2019AAA061).
文摘This paper considers multi-frequency passive radar and develops a multi-frequency joint direction of arrival(DOA)estimation algorithm to improve estimation accuracy and resolution.The developed algorithm exploits the sparsity of targets in the spatial domain.Specifically,we first extract the required frequency channel data and acquire the snapshot data through a series of preprocessing such as clutter suppression,coherent integration,beamforming,and constant false alarm rate(CFAR)detection.Then,based on the framework of sparse Bayesian learning,the target’s DOA is estimated by jointly extracting the multi-frequency data via evidence maximization.Simulation results show that the developed algorithm has better estimation accuracy and resolution than other existing multi-frequency DOA estimation algorithms,especially under the scenarios of low signalto-noise ratio(SNR)and small snapshots.Furthermore,the effectiveness is verified by the field experimental data of a multi-frequency FM-based passive radar.
基金This work was supported by supported by the National Natural Science Foundation of China(51877015,U1831117)the Cooperation Agreement Project by the Department of Science and Technology of Guizhou Province of China(LH[2017]7320,LH[2017]7321)+2 种基金the Foundation of Top-notch Talents by Education Department of Guizhou Province of China(KY[2018]075)the nature and science fund from the Education Department of Guizhou province the Innovation Group Major Research Program Funded by Guizhou Provincial Education Department(KY[2016]051)PhD Research Startup Foundation of Tongren University(trxyDH1710).
文摘Arranging multiple identical sub-arrays in a special way can enhance degrees of freedom(DOFs)and obtain a hole-free difference co-array(DCA).In this paper,by adjusting the interval of adjacent sub-arrays,a kind of generalized array architecture with larger aperture is proposed.Although some holes may exist in the DCA of the proposed array,they are distributed uniformly.Utilizing the partial continuity of the DCA,an extended covariance matrix can be constructed.Singular value decomposition(SVD)is used to obtain an extended signal sub-space,by which the direction-of-arrival(DOA)estimation algorithm for quasi-stationary signals is given.In order to eliminating angle ambiguity caused by the holes of DCA,the estimation of signal parameters via rotational invariance techniques(ESPRIT)is used to construct a matrix that includes all angle information.Utilizing this matrix,a secondary extended signal sub-space can be obtained.This signal sub-space is corresponding to a hole-free DCA.Then,dealing with the further extended signal sub-space by multiple signal classification(MUSIC)algorithm,the unambiguous DOAs of all incident signals can be estimated.Some simulation results are shown to prove the improved performance of proposed generalized array architecture in DOA estimation and the effectiveness of corresponding hole-repair algorithm in eliminating angle ambiguity.
文摘This paper proposes to apply the genetic algorithm and the firefly algorithm to enhance the estimation of the direction of arrival (DOA) angle of electromagnetic signals of a smart antenna array. This estimation is essential for beamforming, where the antenna array radiating pattern is steered to provide faster and reliable data transmission with increased coverage. This work proposes using metaheuristics to improve a maximum likelihood DOA estimator for an antenna array arranged in a uniform cuboidal geometry. The DOA estimation performance of the proposed algorithm was compared to that of MUSIC on different two dimensions scenarios. The metaheuristic algorithms present better performance than the well-known MUSIC algorithm.
文摘An improved direction of arrival (DOA) estimation algorithm with sensor gain and phase uncertainties for synchronous code division multiple access(CDMA) system with decorrelator is presented. Through decorrelating processing DOAs of the desired users can be estimated independently and all other resolved signal interferences are eliminated. Emphasis is directed to applications in which sensor gain and phase are perturbed that often happen actually. It is shown that improved DOA estimation can be achieved for decoupled signals by gain and phase pre estimation procedures.
基金the National Natural Science Foundation of China(No.61701133)the Fundamental Research Funds for the Central Universities(No.D5000210641).
文摘In order to reduce the effect of noises on DOA estimation,this paper proposes a direc-tion-of-arrival(DOA)estimation method using sparse representation with orthogonal projection(OPSR).The OPSR method obtains a new covariance matrix by projecting the covariance matrix of the array data to the signal subspace,leading to the elimination of the noise subspace.After-wards,based on the new covariance matrix after the orthogonal projection,a new sparse representa-tion model is established and employed for DOA estimation.Simulation results demonstrate that compared to other methods,the OPSR method has higher angle resolution and better DOA estima-tion performance in the cases of few snapshots and low SNRs.
基金supported by the colleges and universities of the Key Projects Scientic Research Plan of Henan Province(19B413005).
文摘This paper presents a novel scheme for joint frequency and direction of arrival(DOA)estimation,that pairs frequencies and DOAs automatically without additional computations.First,when the property of the Kronecker product is used in the received array signal of the multiple-delay output model,the frequency-angle steering vector can be reconstructed as the product of the frequency steering vector and the angle steering vector.The frequency of the incoming signal is then obtained by searching for the minimal eigenvalue among the smallest eigenvalues that depend on the frequency parameters but are irrelevant to the DOAs.Subsequently,the DOA related to the selected frequency is acquired through some operations on the minimal eigenvector according to the Rayleigh–Ritz theorem,which realizes the natural pairing of frequencies and DOAs.Furthermore,the proposed method can not only distinguish multiple sources,but also effectively deal with other arrays.The effectiveness and superiority of the proposed algorithm are further analyzed by simulations.
基金the Fund of State Key Laboratory of Com-plex Electromagnetic Environment Effects on Electronics and Information System(CEMEE 2021Z0101B)the Na-tional Natural Science Foundation of China(No.61601167).
文摘Direction of arrival(DOA)estimation for unfolded coprime array(UFCA)is discussed,and a method based on subspace compensation is proposed.Conventional DOA estimation meth-ods partition the UFCA into two subarrays for separate estimations,which are then combined for unique DOA determination.However,the DOA estimation performance loss is caused as only the partial array aperture is exploited.We use the estimations from one subarray as initial estimations,and then enhance the estimation results via a compensation based on the whole array,which is im-plemented via a simple least squares(LS)operation constructed from the initial estimation and first-order Taylor expansion.Compared to conventional methods,the DOA estimation performance is improved while the computational complexity is in the same level.Multiple simulations are con-ducted to verify the efficiency of the proposed approach.
文摘A novel identification method for point source,coherently distributed(CD) source and incoherently distributed(ICD) source is proposed.The differences among the point source,CD source and ICD source are studied.According to the different characters of covariance matrix and general steering vector of the array received source,a second order blind identification method is used to separate the sources,the mixing matrix could be obtained.From the mixing matrix,the type of the source is identified by using an amplitude criterion.And the direction of arrival for the array received source is estimated by using the matching pursuit algorithm from the vectors of the mixing matrix.Computer simulations validate the efficiency of the method.
基金Supported by the National Natural Science Foundation of China (61072098 61072099+1 种基金 60736006)PCSIRT-IRT1005
文摘A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a sparse reconstruction problem of the cleaned array covariance matrix, which is processed to eliminate the affection of the noise. Then by using the block of matrices, the information of DOAs which we pursuit are implied in the sparse coefficient matrix. Finally, the sparse reconstruction problem is solved by the improved M-FOCUSS method, which is applied to the situation of block of matrices. This method outperforms its data domain counterpart in terms of noise suppression, and has a better performance in DOA estimation than the customary spatial smoothing technique. Simulation results verify the efficacy of the proposed method.
基金supported by the Program for Innovative Research Groups of the Hunan Provincial Natural Science Foundation of China(2019JJ10004)。
文摘Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face great challenges in practical applications due to high computational complexity and dependence on ideal assumptions.This paper presents an effective DOA estimation approach based on a deep residual network(DRN)for the underdetermined case.We first extract an input feature from a new matrix calculated by stacking several covariance matrices corresponding to different time delays.We then provide the input feature to the trained DRN to construct the super resolution spectrum.The DRN learns the mapping relationship between the input feature and the spatial spectrum by training.The proposed approach is superior to existing model-based estimation methods in terms of calculation efficiency,independence of source sparseness and adaptive capacity to non-ideal conditions(e.g.,low signal to noise ratio,short bit sequence).Simulations demonstrate the validity and strong performance of the proposed algorithm on both overdetermined and underdetermined cases.
基金supported by the National Natural Science Foundation of China(51877015,U1831117)the Cooperation Agreement Foundation by the Department of Science and Technology of Guizhou Province of China(LH[2017]7320,LH[2017]7321,[2015]7249)+2 种基金the Innovation Group Major Research Program Funded by Guizhou Provincial Education Department(KY[2016]051)the Foundation of Top-notch Talents by Education Department of Guizhou Province of China(KY[2018]075)PhD Research Startup Foundation of Tongren University(trxy DH1710)。
文摘In this paper,a two-dimensional(2 D)direction-of-arrival(DOA)estimation algorithm with increased degrees of freedom for two parallel linear arrays is presented.Being different from the conventional two-parallel linear array,the proposed two-parallel linear array consists of two uniform linear arrays with non-equal inter-element spacing.Propagator method(PM)is used to obtain a special matrix which can be utilized to increase the virtual elements of one of uniform linear arrays.Then,the PM algorithm is used again to obtain automatically paired elevation and azimuth angles.The simulation results and complexity analysis show that the proposed method can increase the number of distinguishable signals and improve the estimation precision without increasing the computational complexity.