To elucidate the effect of expression of doublecortin and CaM kinase-like-1 (DCLK1) in patients with pancreatic ductal adenocarcinoma (PDAC). METHODSTumor specimens were obtained from 136 patients with pancreatic canc...To elucidate the effect of expression of doublecortin and CaM kinase-like-1 (DCLK1) in patients with pancreatic ductal adenocarcinoma (PDAC). METHODSTumor specimens were obtained from 136 patients with pancreatic cancer who had undergone resection without preoperative therapy between January 2000 and December 2013 at the Department of Surgical Oncology, Osaka City University. The resected specimens were analyzed for associations with clinicopathological data, including DCLK1 expression, epithelial mesenchymal transition (EMT) marker expression, and cancer stem cell (CSC) marker expression. Univariate and multivariate survival analyses were performed and we assessed the association between DCLK1 expression and clinicopathological factors, including the EMT marker and CSC marker. RESULTSIn total, 48.5% (66/136) of the pancreatic cancer samples were positive for DCLK1. Patients with DCLK1-positive tumors had significantly shorter survival times than those with DCLK1-negative tumors (median, 18.7 mo vs 49.5 mo, respectively; P < 0.0001). Positive DCLK1 expression correlated with histological grade (P = 0.0290), preoperative CA19-9 level (P = 0.0060), epithelial cell adhesion molecule (EpCAM) expression (P = 0.0235), and the triple-positive expression of CD44/CD24/EpCAM (P = 0.0139). On univariate survival analysis, five factors were significantly associated with worse overall survival: histological grade of G2 to G4 (P = 0.0091), high preoperative serum SPan-1 level (P = 0.0034), R1/2 (P < 0.0001), positive expression of DCLK1 (P < 0.0001) or CD44 (P = 0.0245). On multivariate survival analysis, R1/2 [odds ratio (OR) = 2.019, 95% confidence interval (CI): 1.380-2.933; P = 0.0004] and positive DCLK1 expression (OR = 1.848, 95%CI: 1.2854-2.661; P = 0.0009) were independent prognostic factors. CONCLUSIONDCLK1 expression was found to be an independent prognostic factor and it may play a crucial prognostic role by promoting acquisition of stemness.展开更多
Objective: Colon cancer stem cells (CSCs) are implicated in colorectal cancer carcinogenesis, metastasis, and therapeutic resistance. The identification of these cells could help to develop novel therapeutic strate...Objective: Colon cancer stem cells (CSCs) are implicated in colorectal cancer carcinogenesis, metastasis, and therapeutic resistance. The identification of these cells could help to develop novel therapeutic strategies. Doublecortin-like kinase 1 (DCLK1) has been viewed as a marker for gastrointestinal stem cells that fuel the self-renewal process, however others view them as a marker of Tuft cells or as an enteroendocrine subtype. The purpose of this study was to use a colon cancer cell line to identify and characterize the stem-like characteristics of the DCLKI+ cell population. Methods: To enrich stem-like cells, HCT116 cells (derived from colon adenocarcinomas) were cultured using serum-free media to form spheres under both normal oxygen and hypoxia condition. DCLK1 transcript expression in the adherent parental cells and spheroids was quantified using quantitative real time reverse transcription- polymerase chain reaction [(q)RT-PCR]. DCLK1 protein expression was determined using flow cytometry. Self-renewal capability from adherent parental cells and spheroids was determined using extreme limiting dilution analysis (ELDA). Results: Under both normal oxygen and hypoxia condition, the adherent parental cells were composed of cells that express low levels of DCLK1. However, spheroids exhibited an increased frequency of cells expressing DCLK1 on both mRNA and protein levels. Cells derived from spheroids also possess stronger self-renewal capability. Conclusions: The higher fraction of DCLK1 + cells exhibited by spheroids and hypoxia reflects the stem- like characteristics of these cells. DCLK1 may represent an ideal marker to study and develop effective strategies to overcome chemo-resistance and relapse of colon cancer.展开更多
Beta-nerve growth factor(β-NGF) is known to be a major leading cause of neuronal plasticity. To identify the possible action mechanisms of β-NGF gene therapy for sciatic nerve recovery, experimental dogs were random...Beta-nerve growth factor(β-NGF) is known to be a major leading cause of neuronal plasticity. To identify the possible action mechanisms of β-NGF gene therapy for sciatic nerve recovery, experimental dogs were randomly divided into control, pyridoxine, and pyridoxine + β-NGF groups. We observed chronological changes of morphology in the dorsal root ganglia in response to pyridoxine toxicity based on cresyl violet staining. The number of large neurons positive for cresyl violet was dramatically decreased after pyridoxine intoxication for 7 days in the dorsal root ganglia and the neuron number was gradually increased after pyridoxine withdrawal. In addition, we also investigated the effects of β-NGF gene therapy on neuronal plasticity in pyridoxine-induced neuropathic dogs. To accomplish this, tyrosine kinase receptor A(TrkA), βIII-tubulin and doublecortin(DCX) immunohistochemical staining was performed at 3 days after the last pyridoxine treatment. TrkA-immunoreactive neurons were dramatically decreased in the pyridoxine group compared to the control group, but strong TrkA immunoreactivity was observed in the small-sized dorsal root ganglia in this group. TrkA immunoreactivity in the dorsal root ganglia was similar between β-NGF and control groups. The numbers of βIII-tubulin-and DCX-immunoreactive cells decreased significantly in the pyridoxine group compared to the control group. However, the reduction of βIII-tubulin-and DCX-immunoreactive cells in the dorsal root ganglia in the β-NGF group was significantly ameliorated than that in the pyridoxine group. These results indicate that β-NGF gene therapy is a powerful treatment of pyridoxine-induced neuropathic damage by increasing the TrkA and DCX levels in the dorsal root ganglia. The experimental protocol was approved by the Institutional Animal Care and Use Committee(IACUC) of Seoul National University, South Korea(approval No. SNU-060623-1, SNU-091009-1) on June 23, 2006 and October 9, 2009, respectively.展开更多
The inflammato ry response plays an important role in neuroprotection and regeneration after ischemic insult.The use of non-ste roidal anti-inflammatory drugs has been a matter of debate as to whether they have benefi...The inflammato ry response plays an important role in neuroprotection and regeneration after ischemic insult.The use of non-ste roidal anti-inflammatory drugs has been a matter of debate as to whether they have beneficial or detrimental effects.In this context,the effects of the anti-inflammatory agent meloxicam have been scarcely documented after stro ke,but its ability to inhibit both cyclooxygenase isoforms(1 and 2) could be a promising strategy to modulate postischemic inflammation.This study analyzed the effect of meloxicam in a transient focal cerebral ischemia model in rats,measuring its neuroprotective effect after 48 hours and 7 days of reperfusion and the effects of the treatment on the glial scar and regenerative events such as the generation of new progenitors in the subventricular zone and axonal sprouting at the edge of the damaged area.We show that meloxicam’s neuroprotective effects remained after 7 days of reperfusion even if its administration was restricted to the two first days after ischemia.Moreover,meloxicam treatment modulated glial scar reactivity,which matched with an increase in axonal sprouting.However,this treatment decreased the formation of neuronal progenitor cells.This study discusses the dual role of anti-inflammatory treatments after stro ke and encourages the careful analysis of both the neuroprotective and the regenerative effects in preclinical studies.展开更多
文摘To elucidate the effect of expression of doublecortin and CaM kinase-like-1 (DCLK1) in patients with pancreatic ductal adenocarcinoma (PDAC). METHODSTumor specimens were obtained from 136 patients with pancreatic cancer who had undergone resection without preoperative therapy between January 2000 and December 2013 at the Department of Surgical Oncology, Osaka City University. The resected specimens were analyzed for associations with clinicopathological data, including DCLK1 expression, epithelial mesenchymal transition (EMT) marker expression, and cancer stem cell (CSC) marker expression. Univariate and multivariate survival analyses were performed and we assessed the association between DCLK1 expression and clinicopathological factors, including the EMT marker and CSC marker. RESULTSIn total, 48.5% (66/136) of the pancreatic cancer samples were positive for DCLK1. Patients with DCLK1-positive tumors had significantly shorter survival times than those with DCLK1-negative tumors (median, 18.7 mo vs 49.5 mo, respectively; P < 0.0001). Positive DCLK1 expression correlated with histological grade (P = 0.0290), preoperative CA19-9 level (P = 0.0060), epithelial cell adhesion molecule (EpCAM) expression (P = 0.0235), and the triple-positive expression of CD44/CD24/EpCAM (P = 0.0139). On univariate survival analysis, five factors were significantly associated with worse overall survival: histological grade of G2 to G4 (P = 0.0091), high preoperative serum SPan-1 level (P = 0.0034), R1/2 (P < 0.0001), positive expression of DCLK1 (P < 0.0001) or CD44 (P = 0.0245). On multivariate survival analysis, R1/2 [odds ratio (OR) = 2.019, 95% confidence interval (CI): 1.380-2.933; P = 0.0004] and positive DCLK1 expression (OR = 1.848, 95%CI: 1.2854-2.661; P = 0.0009) were independent prognostic factors. CONCLUSIONDCLK1 expression was found to be an independent prognostic factor and it may play a crucial prognostic role by promoting acquisition of stemness.
文摘Objective: Colon cancer stem cells (CSCs) are implicated in colorectal cancer carcinogenesis, metastasis, and therapeutic resistance. The identification of these cells could help to develop novel therapeutic strategies. Doublecortin-like kinase 1 (DCLK1) has been viewed as a marker for gastrointestinal stem cells that fuel the self-renewal process, however others view them as a marker of Tuft cells or as an enteroendocrine subtype. The purpose of this study was to use a colon cancer cell line to identify and characterize the stem-like characteristics of the DCLKI+ cell population. Methods: To enrich stem-like cells, HCT116 cells (derived from colon adenocarcinomas) were cultured using serum-free media to form spheres under both normal oxygen and hypoxia condition. DCLK1 transcript expression in the adherent parental cells and spheroids was quantified using quantitative real time reverse transcription- polymerase chain reaction [(q)RT-PCR]. DCLK1 protein expression was determined using flow cytometry. Self-renewal capability from adherent parental cells and spheroids was determined using extreme limiting dilution analysis (ELDA). Results: Under both normal oxygen and hypoxia condition, the adherent parental cells were composed of cells that express low levels of DCLK1. However, spheroids exhibited an increased frequency of cells expressing DCLK1 on both mRNA and protein levels. Cells derived from spheroids also possess stronger self-renewal capability. Conclusions: The higher fraction of DCLK1 + cells exhibited by spheroids and hypoxia reflects the stem- like characteristics of these cells. DCLK1 may represent an ideal marker to study and develop effective strategies to overcome chemo-resistance and relapse of colon cancer.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT&Future Planning(No.NRF-2017R1A1A1A05000762)Cooperative Research Program for Agriculture Science and Technology Development,Rural Development Administration,Republic of Korea(No.PJ01395602 both to JYC)
文摘Beta-nerve growth factor(β-NGF) is known to be a major leading cause of neuronal plasticity. To identify the possible action mechanisms of β-NGF gene therapy for sciatic nerve recovery, experimental dogs were randomly divided into control, pyridoxine, and pyridoxine + β-NGF groups. We observed chronological changes of morphology in the dorsal root ganglia in response to pyridoxine toxicity based on cresyl violet staining. The number of large neurons positive for cresyl violet was dramatically decreased after pyridoxine intoxication for 7 days in the dorsal root ganglia and the neuron number was gradually increased after pyridoxine withdrawal. In addition, we also investigated the effects of β-NGF gene therapy on neuronal plasticity in pyridoxine-induced neuropathic dogs. To accomplish this, tyrosine kinase receptor A(TrkA), βIII-tubulin and doublecortin(DCX) immunohistochemical staining was performed at 3 days after the last pyridoxine treatment. TrkA-immunoreactive neurons were dramatically decreased in the pyridoxine group compared to the control group, but strong TrkA immunoreactivity was observed in the small-sized dorsal root ganglia in this group. TrkA immunoreactivity in the dorsal root ganglia was similar between β-NGF and control groups. The numbers of βIII-tubulin-and DCX-immunoreactive cells decreased significantly in the pyridoxine group compared to the control group. However, the reduction of βIII-tubulin-and DCX-immunoreactive cells in the dorsal root ganglia in the β-NGF group was significantly ameliorated than that in the pyridoxine group. These results indicate that β-NGF gene therapy is a powerful treatment of pyridoxine-induced neuropathic damage by increasing the TrkA and DCX levels in the dorsal root ganglia. The experimental protocol was approved by the Institutional Animal Care and Use Committee(IACUC) of Seoul National University, South Korea(approval No. SNU-060623-1, SNU-091009-1) on June 23, 2006 and October 9, 2009, respectively.
基金supported by MINECO and FEDER funds:ref CPP2021-008855 and RTC-2015-4094-1,Junta de Castilla y León ref.LE025P1 7Neural Therapies SLref.NTDev-01 (all to AFL and JMGO)。
文摘The inflammato ry response plays an important role in neuroprotection and regeneration after ischemic insult.The use of non-ste roidal anti-inflammatory drugs has been a matter of debate as to whether they have beneficial or detrimental effects.In this context,the effects of the anti-inflammatory agent meloxicam have been scarcely documented after stro ke,but its ability to inhibit both cyclooxygenase isoforms(1 and 2) could be a promising strategy to modulate postischemic inflammation.This study analyzed the effect of meloxicam in a transient focal cerebral ischemia model in rats,measuring its neuroprotective effect after 48 hours and 7 days of reperfusion and the effects of the treatment on the glial scar and regenerative events such as the generation of new progenitors in the subventricular zone and axonal sprouting at the edge of the damaged area.We show that meloxicam’s neuroprotective effects remained after 7 days of reperfusion even if its administration was restricted to the two first days after ischemia.Moreover,meloxicam treatment modulated glial scar reactivity,which matched with an increase in axonal sprouting.However,this treatment decreased the formation of neuronal progenitor cells.This study discusses the dual role of anti-inflammatory treatments after stro ke and encourages the careful analysis of both the neuroprotective and the regenerative effects in preclinical studies.