This paper discusses an important issue related to filter divergence in the dimension-reduced projection,four-dimensional variational data assimilation(DRP-4-DVar) approach.Idealized experiments with the Lorenz-96 mod...This paper discusses an important issue related to filter divergence in the dimension-reduced projection,four-dimensional variational data assimilation(DRP-4-DVar) approach.Idealized experiments with the Lorenz-96 model over a period of 200 days showed that the amplitudes of the root mean square errors(RMSEs) reached the same levels as those of the state variables after approximately 100 days because of the accumulation of sampling errors following the cycle of assimilation.Strategies to reduce sampling errors are critical to ensure the quality of ensemble-based assimilation.Numerical experiments showed that localization and reducing observational errors can alleviate,but cannot completely overcome,the filter divergence in the DRP-4-DVar approach,while the method of perturbing observations and the inflation technique can efficiently eliminate the filter divergence problem.展开更多
In this study we extend the dimension-reduced projection-four dimensional variational data assimilation (DRP-4DVar) approach to allow the analysis time to be tunable, so that the intervals between analysis time and ...In this study we extend the dimension-reduced projection-four dimensional variational data assimilation (DRP-4DVar) approach to allow the analysis time to be tunable, so that the intervals between analysis time and observation times can be shortened. Due to the limits of the perfect-model assumption and the tangentlinear hypothesis, the analysis-time tuning is expected to have the potential to further improve analyses and forecasts. Various sensitivity experiments using the Lorenz-96 model are conducted to test the impact of analysistime tuning on the performance of the new approach under perfect and imperfect model scenarios, respectively. Comparing three DRP-4DVar schemes having the analysis time at the start, middle, and end of the assimilation window, respectively, it is found that the scheme with the analysis time in the middle of the window outperforms the others, on the whole. Moreover, the advantage of this scheme is more pronounced when a longer assimilation window is adopted or more observations are assimilated.展开更多
In this study,the authors introduce a new bogus data assimilation method based on the dimension-reduced projection 4-DVar,which can resolve the cost function directly in low-dimensional space.The authors also try a ne...In this study,the authors introduce a new bogus data assimilation method based on the dimension-reduced projection 4-DVar,which can resolve the cost function directly in low-dimensional space.The authors also try a new method to improve the quality of samples,which are the base of dimension-reduced space projection bogus data assimilation (DRP-BDA).By running a number of numerical weather models with different model parameterization combinations on the typhoon Sinlaku,the authors obtained two groups of samples with different spreads and similarities.After DRP-BDA,the results show that,compared with the control runs,the simulated typhoon center pressure can be deepened by more than 20 hPa to 30 hPa and that the intensity can last as long as 60 hours.The mean track error is improved after DRP-BDA,and the structure of the typhoon is also improved.The wind near the typhoon center is enhanced dramatically,while the warm core is moderate.展开更多
A typhoon bogus data assimilation scheme (BDA) using dimension-reduced projection four-dimen-sional variational data assimilation (DRP-4-DVar),called DRP-BDA for short,is built in the Advanced Regional Eta Model (AREM...A typhoon bogus data assimilation scheme (BDA) using dimension-reduced projection four-dimen-sional variational data assimilation (DRP-4-DVar),called DRP-BDA for short,is built in the Advanced Regional Eta Model (AREM).As an adjoint-free approach,DRP-BDA saves time,and only several minutes are taken for the full BDA process.To evaluate its performance,the DRP-BDA is applied to a case study on a landfall ty-phoon,Fengshen (2008),from the Northwestern Pacific Ocean to Guangdong province,in which the bogus sea level pressure (SLP) is assimilated as a kind of observa-tion.The results show that a more realistic typhoon with correct center position,stronger warm core vortex,and more reasonable wind fields is reproduced in the analyzed initial condition through the new approach.Compared with the control run (CTRL) initialized with NCEP Final (FNL) Global Tropospheric Analyses,the DRP-BDA leads to an evidently positive impact on typhoon track forecasting and a small positive impact on typhoon inten-sity forecasting.Furthermore,the forecast landfall time conforms to the observed landfall time,and the forecast track error at the 36th hour is 32 km,which is much less than that of the CTRL (450 km).展开更多
Observations of accumulated precipitation are extremely valuable for effectively improving rainfall analysis and forecast. It is, however, difficult to use such observations directly through sequential assimilation me...Observations of accumulated precipitation are extremely valuable for effectively improving rainfall analysis and forecast. It is, however, difficult to use such observations directly through sequential assimilation methods, such as three-dimensional variational data assimilation or an Ensemble Kalman Filter. In this study, the authors illustrate a new approach that makes effective use of precipitation data to improve rainfall forecast. The new method directly obtains an optimal solution in a reduced space by fitting observations with historical time series generated by the model; it also avoids the implementation of tangent linear model and its adjoint. A lot of historical samples are produced as the ensemble of precipitation observations with the fully nonlinear forecast model. The results show that the new approach is capable of extracting information from precipitation observations to improve the analysis and forecast. This method provides comparable performance with the standard fourdimensional variational data assimilation at a much lower computational cost.展开更多
A four dimensional variational data assimilation (4DVar) based on a dimension-reduced projection (DRP-4DVar) has been developed as a hybrid of the 4DVar and Ensemble Kalman filter (EnKF) concepts. Its good flow-...A four dimensional variational data assimilation (4DVar) based on a dimension-reduced projection (DRP-4DVar) has been developed as a hybrid of the 4DVar and Ensemble Kalman filter (EnKF) concepts. Its good flow-dependent features are demonstrated in single-point experiments through comparisons with adjointbased 4DVar and three-dimensional variational data (3DVar) assimilations using the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5). The results reveal that DRP-4DVar can reasonably generate a background error covariance matrix (simply B-matrix) during the assimilation window from an initial estimation using a number of initial condition dependent historical forecast samples. In contrast, flow-dependence in the B-matrix of MM5 4DVar is barely detectable. It is argued that use of diagonal estimation in the B-matrix of the MM5 4DVar method at the initial time leads to this failure. The experiments also show that the increments produced by DRP-4DVar are anisotropic and no longer symmetric with respect to observation location due to the effects of the weather trends captured in its B-matrix. This differs from the MM5 3DVar which does not consider the influence of heterogeneous forcing on the correlation structure of the B-matrix, a condition that is realistic for many situations. Thus, the MM5 3DVar assimilation could only present an isotropic and homogeneous structure in its increments.展开更多
Accurate forecast of rainstorms associated with the mei-yu front has been an important issue for the Chinese economy and society. In July 1998 a heavy rainstorm hit the Yangzi River valley and received widespread atte...Accurate forecast of rainstorms associated with the mei-yu front has been an important issue for the Chinese economy and society. In July 1998 a heavy rainstorm hit the Yangzi River valley and received widespread attention from the public because it caused catastrophic damage in China. Several numerical studies have shown that many forecast models, including Pennsylvania State University National Center for Atmospheric Research’s fifth-generation mesoscale model (MM5), failed to simulate the heavy precipitation over the Yangzi River valley. This study demonstrates that with the optimal initial conditions from the dimension-reduced projection four-dimensional variational data assimilation (DRP-4DVar) system, MM5 can successfully reproduce these observed rainfall amounts and can capture many important mesoscale features, including the southwestward shear line and the low-level jet stream. The study also indicates that the failure of previous forecasts can be mainly attributed to the lack of mesoscale details in the initial conditions of the models.展开更多
基金the National Basic Research Program of China (973 Program) (Grant No. 2010CB951604)the National High Technology Research and Development Program of China (863 Program) (Grant No. 2010AA012304)+1 种基金the China Meteorological Administration for the R&D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY(QX)200906009)the LASG free exploration fund
文摘This paper discusses an important issue related to filter divergence in the dimension-reduced projection,four-dimensional variational data assimilation(DRP-4-DVar) approach.Idealized experiments with the Lorenz-96 model over a period of 200 days showed that the amplitudes of the root mean square errors(RMSEs) reached the same levels as those of the state variables after approximately 100 days because of the accumulation of sampling errors following the cycle of assimilation.Strategies to reduce sampling errors are critical to ensure the quality of ensemble-based assimilation.Numerical experiments showed that localization and reducing observational errors can alleviate,but cannot completely overcome,the filter divergence in the DRP-4-DVar approach,while the method of perturbing observations and the inflation technique can efficiently eliminate the filter divergence problem.
基金supported by the Special Project of the Meteorological Sector program Grant No GYHY(QX) 200906011the 973 project (Grant No 2004CB418304)
文摘In this study we extend the dimension-reduced projection-four dimensional variational data assimilation (DRP-4DVar) approach to allow the analysis time to be tunable, so that the intervals between analysis time and observation times can be shortened. Due to the limits of the perfect-model assumption and the tangentlinear hypothesis, the analysis-time tuning is expected to have the potential to further improve analyses and forecasts. Various sensitivity experiments using the Lorenz-96 model are conducted to test the impact of analysistime tuning on the performance of the new approach under perfect and imperfect model scenarios, respectively. Comparing three DRP-4DVar schemes having the analysis time at the start, middle, and end of the assimilation window, respectively, it is found that the scheme with the analysis time in the middle of the window outperforms the others, on the whole. Moreover, the advantage of this scheme is more pronounced when a longer assimilation window is adopted or more observations are assimilated.
基金the Ministry of Finance of China and the China Meteorological Administration for the Special Project of Meteorological Sector (Grant No. GYHY(QX)200906009)the National Natural Science Foundation of China for the innovation group project (Grant No.40821092)
文摘In this study,the authors introduce a new bogus data assimilation method based on the dimension-reduced projection 4-DVar,which can resolve the cost function directly in low-dimensional space.The authors also try a new method to improve the quality of samples,which are the base of dimension-reduced space projection bogus data assimilation (DRP-BDA).By running a number of numerical weather models with different model parameterization combinations on the typhoon Sinlaku,the authors obtained two groups of samples with different spreads and similarities.After DRP-BDA,the results show that,compared with the control runs,the simulated typhoon center pressure can be deepened by more than 20 hPa to 30 hPa and that the intensity can last as long as 60 hours.The mean track error is improved after DRP-BDA,and the structure of the typhoon is also improved.The wind near the typhoon center is enhanced dramatically,while the warm core is moderate.
基金the Ministry of Finance of Chinathe China Meteorological Administration for the Special Project of Meteorological Sector (Grant No.GYHYQX200906009)the National Natural Science Foundation of China for the Innovation Group Project (Grant No.40821092)
文摘A typhoon bogus data assimilation scheme (BDA) using dimension-reduced projection four-dimen-sional variational data assimilation (DRP-4-DVar),called DRP-BDA for short,is built in the Advanced Regional Eta Model (AREM).As an adjoint-free approach,DRP-BDA saves time,and only several minutes are taken for the full BDA process.To evaluate its performance,the DRP-BDA is applied to a case study on a landfall ty-phoon,Fengshen (2008),from the Northwestern Pacific Ocean to Guangdong province,in which the bogus sea level pressure (SLP) is assimilated as a kind of observa-tion.The results show that a more realistic typhoon with correct center position,stronger warm core vortex,and more reasonable wind fields is reproduced in the analyzed initial condition through the new approach.Compared with the control run (CTRL) initialized with NCEP Final (FNL) Global Tropospheric Analyses,the DRP-BDA leads to an evidently positive impact on typhoon track forecasting and a small positive impact on typhoon inten-sity forecasting.Furthermore,the forecast landfall time conforms to the observed landfall time,and the forecast track error at the 36th hour is 32 km,which is much less than that of the CTRL (450 km).
基金the Ministry of Finance of China and China Meteorological Administration for the Special Project of Meteorological Sector (Grant No. GYHY(QX)2007-615)the National Basic Research Program of China (Grant No. 2005CB321703)
文摘Observations of accumulated precipitation are extremely valuable for effectively improving rainfall analysis and forecast. It is, however, difficult to use such observations directly through sequential assimilation methods, such as three-dimensional variational data assimilation or an Ensemble Kalman Filter. In this study, the authors illustrate a new approach that makes effective use of precipitation data to improve rainfall forecast. The new method directly obtains an optimal solution in a reduced space by fitting observations with historical time series generated by the model; it also avoids the implementation of tangent linear model and its adjoint. A lot of historical samples are produced as the ensemble of precipitation observations with the fully nonlinear forecast model. The results show that the new approach is capable of extracting information from precipitation observations to improve the analysis and forecast. This method provides comparable performance with the standard fourdimensional variational data assimilation at a much lower computational cost.
基金We acknowledge the Ministry of Science and Technology of China (Grant No.2006BAC03B01)the Ministry of Science and Technology of China for funding the 973 project (Grant No.2005CB321703)
文摘A four dimensional variational data assimilation (4DVar) based on a dimension-reduced projection (DRP-4DVar) has been developed as a hybrid of the 4DVar and Ensemble Kalman filter (EnKF) concepts. Its good flow-dependent features are demonstrated in single-point experiments through comparisons with adjointbased 4DVar and three-dimensional variational data (3DVar) assimilations using the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5). The results reveal that DRP-4DVar can reasonably generate a background error covariance matrix (simply B-matrix) during the assimilation window from an initial estimation using a number of initial condition dependent historical forecast samples. In contrast, flow-dependence in the B-matrix of MM5 4DVar is barely detectable. It is argued that use of diagonal estimation in the B-matrix of the MM5 4DVar method at the initial time leads to this failure. The experiments also show that the increments produced by DRP-4DVar are anisotropic and no longer symmetric with respect to observation location due to the effects of the weather trends captured in its B-matrix. This differs from the MM5 3DVar which does not consider the influence of heterogeneous forcing on the correlation structure of the B-matrix, a condition that is realistic for many situations. Thus, the MM5 3DVar assimilation could only present an isotropic and homogeneous structure in its increments.
基金the National Basic Research Program (973 Program) (No.2010CB 951604)the China Meteorological Administration for the R&D Special Fund for Public Welfare Industry (meteorology) [Grant No. GYHY(QX)200906009]+1 种基金the National High Technology Research and Development Program of China (863 Program) (No. 2010AA012304)the LASG free exploration fund
文摘Accurate forecast of rainstorms associated with the mei-yu front has been an important issue for the Chinese economy and society. In July 1998 a heavy rainstorm hit the Yangzi River valley and received widespread attention from the public because it caused catastrophic damage in China. Several numerical studies have shown that many forecast models, including Pennsylvania State University National Center for Atmospheric Research’s fifth-generation mesoscale model (MM5), failed to simulate the heavy precipitation over the Yangzi River valley. This study demonstrates that with the optimal initial conditions from the dimension-reduced projection four-dimensional variational data assimilation (DRP-4DVar) system, MM5 can successfully reproduce these observed rainfall amounts and can capture many important mesoscale features, including the southwestward shear line and the low-level jet stream. The study also indicates that the failure of previous forecasts can be mainly attributed to the lack of mesoscale details in the initial conditions of the models.