The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual ...The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual loads in the research on parameter estimation of valve-controlled cylinder system.Despite the actual load information contained in the operating data of the control valve,its acquisition remains challenging.This paper proposes a method that fuses bench test and operating data for parameter estimation to address the aforementioned problems.The proposed method is based on Bayesian theory,and its core is a pool fusion of prior information from bench test and operating data.Firstly,a system model is established,and the parameters in the model are analysed.Secondly,the bench and operating data of the system are collected.Then,the model parameters and weight coefficients are estimated using the data fusion method.Finally,the estimated effects of the data fusion method,Bayesian method,and particle swarm optimisation(PSO)algorithm on system model parameters are compared.The research shows that the weight coefficient represents the contribution of different prior information to the parameter estimation result.The effect of parameter estimation based on the data fusion method is better than that of the Bayesian method and the PSO algorithm.Increasing load complexity leads to a decrease in model accuracy,highlighting the crucial role of the data fusion method in parameter estimation studies.展开更多
Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized charact...Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized characteristics of mining slopes,this study introduces a new method that fuses model data from Unmanned aerial vehicles(UAV)tilt photogrammetry and 3D laser scanning through a data alignment algorithm based on control points.First,the mini batch K-Medoids algorithm is utilized to cluster the point cloud data from ground 3D laser scanning.Then,the elbow rule is applied to determine the optimal cluster number(K0),and the feature points are extracted.Next,the nearest neighbor point algorithm is employed to match the feature points obtained from UAV tilt photogrammetry,and the internal point coordinates are adjusted through the distanceweighted average to construct a 3D model.Finally,by integrating an engineering case study,the K0 value is determined to be 8,with a matching accuracy between the two model datasets ranging from 0.0669 to 1.0373 mm.Therefore,compared with the modeling method utilizing K-medoids clustering algorithm,the new modeling method significantly enhances the computational efficiency,the accuracy of selecting the optimal number of feature points in 3D laser scanning,and the precision of the 3D model derived from UAV tilt photogrammetry.This method provides a research foundation for constructing mine slope model.展开更多
A new synergy decision method for radar and infrared search and track (IRST) data fusion is proposed, to solve such problems as how to decrease opportunities for radar suffering from being locked on by adverse electr...A new synergy decision method for radar and infrared search and track (IRST) data fusion is proposed, to solve such problems as how to decrease opportunities for radar suffering from being locked on by adverse electronic support measures (ESM), how to retrieve range information of the target during radar off, and how to detect the maneuver of the target. Firstly, polynomials used to predict target motion states are constructed. Secondly, a set of discriminants for detecting target maneuver are established by comparing the predicted values with the observations from IRST. Thirdly, a set of decisions are presented. Lastly, simulation is performed on the given scenario to test the validity of the method.展开更多
To find an effective method to estimate and remove the registration error in asynchronous multisensor system, Kalman filtering technique and least squares approach have been proposed to estimate and remove sensor bia...To find an effective method to estimate and remove the registration error in asynchronous multisensor system, Kalman filtering technique and least squares approach have been proposed to estimate and remove sensor bias and sensor frame tilt errors in multisensor systems with asynchronous data. Simulation results is presented to demonstrate the performance of these approaches. The least squares approach can compress measurements to any time. The Kalman filter algorithm can detect registration errors and use the information to converge tracks from independent sensors. This is particularly important if the data from the sensors are to be fused.展开更多
Reliability evaluation for aircraft engines is difficult because of the scarcity of failure data. But aircraft engine data are available from a variety of sources. Data fusion has the function of maximizing the amount...Reliability evaluation for aircraft engines is difficult because of the scarcity of failure data. But aircraft engine data are available from a variety of sources. Data fusion has the function of maximizing the amount of valu- able information extracted from disparate data sources to obtain the comprehensive reliability knowledge. Consid- ering the degradation failure and the catastrophic failure simultaneously, which are competing risks and can affect the reliability, a reliability evaluation model based on data fusion for aircraft engines is developed, Above the characteristics of the proposed model, reliability evaluation is more feasible than that by only utilizing failure data alone, and is also more accurate than that by only considering single failure mode. Example shows the effective- ness of the proposed model.展开更多
An algorithm is presented for fusion of tracks created by radar and IR sensor which have different dimensional measurement data. It’s assumed that these sensors are asynchronous and the measurement data are transmitt...An algorithm is presented for fusion of tracks created by radar and IR sensor which have different dimensional measurement data. It’s assumed that these sensors are asynchronous and the measurement data are transmitted to a central station at different rates. By means of the technique of time matching, two sets of asynchronous data are fused and then the filter is updated according to the fused information. The results show that the accuracy of the filter effect has been improved.展开更多
An attempt has been made to develop a distributed software infrastructure model for onboard data fusion system simulation, which is also applied to netted radar systems, onboard distributed detection systems and advan...An attempt has been made to develop a distributed software infrastructure model for onboard data fusion system simulation, which is also applied to netted radar systems, onboard distributed detection systems and advanced C3I systems. Two architectures are provided and verified: one is based on pure TCP/IP protocol and C/S model, and implemented with Winsock, the other is based on CORBA (common object request broker architecture). The performance of data fusion simulation system, i.e. reliability, flexibility and scalability, is improved and enhanced by two models. The study of them makes valuable explore on incorporating the distributed computation concepts into radar system simulation techniques.展开更多
Multisensor data fusion (MDF) is an emerging technology to fuse data from multiple sensors in order to make a more accurate estimation of the environment through measurement and detection. Applications of MDF cross ...Multisensor data fusion (MDF) is an emerging technology to fuse data from multiple sensors in order to make a more accurate estimation of the environment through measurement and detection. Applications of MDF cross a wide spectrum in military and civilian areas. With the rapid evolution of computers and the proliferation of micro-mechanical/electrical systems sensors, the utilization of MDF is being popularized in research and applications. This paper focuses on application of MDF for high quality data analysis and processing in measurement and instrumentation. A practical, general data fusion scheme was established on the basis of feature extraction and merge of data from multiple sensors. This scheme integrates artificial neural networks for high performance pattern recognition. A number of successful applications in areas of NDI (Non-Destructive Inspection) corrosion detection, food quality and safety characterization, and precision agriculture are described and discussed in order to motivate new applications in these or other areas. This paper gives an overall picture of using the MDF method to increase the accuracy of data analysis and processing in measurement and instrumentation in different areas of applications.展开更多
Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigat...Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigated by researchers, of which Klaman filtering is one of the most important. Kalman filtering is the best-known recursive least mean-square algorithm to optimally estimate the unknown states of a dynamic system, which has found widespread application in many areas. The scope of the work is restricted to investigate the various data fusion and track fusion techniques based on the Kalman Filter methods, then a new method of state fusion is proposed. Finally the simulation results demonstrate the effectiveness of the introduced method.展开更多
The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data...The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data fusion technique is analyzed, and hereby the testplatform of recognition system is manufactured. The advantage of data fusion with the fuzzy neuralnetwork (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carriedout. The experiments show that in various conditions the method can always acquire a much higherrecognition rate than normal ones.展开更多
This paper presents a data fusion method in distributed multi-sensor system including GPS and INS sensors’ data processing. First, a residual χ 2 \|test strategy with the corresponding algorithm is designed. Then a ...This paper presents a data fusion method in distributed multi-sensor system including GPS and INS sensors’ data processing. First, a residual χ 2 \|test strategy with the corresponding algorithm is designed. Then a coefficient matrices calculation method of the information sharing principle is derived. Finally, the federated Kalman filter is used to combine these independent, parallel, real\|time data. A pseudolite (PL) simulation example is given.展开更多
Environmental perception is one of the key technologies to realize autonomous vehicles.Autonomous vehicles are often equipped with multiple sensors to form a multi-source environmental perception system.Those sensors ...Environmental perception is one of the key technologies to realize autonomous vehicles.Autonomous vehicles are often equipped with multiple sensors to form a multi-source environmental perception system.Those sensors are very sensitive to light or background conditions,which will introduce a variety of global and local fault signals that bring great safety risks to autonomous driving system during long-term running.In this paper,a real-time data fusion network with fault diagnosis and fault tolerance mechanism is designed.By introducing prior features to realize the lightweight network,the features of the input data can be extracted in real time.A new sensor reliability evaluation method is proposed by calculating the global and local confidence of sensors.Through the temporal and spatial correlation between sensor data,the sensor redundancy is utilized to diagnose the local and global confidence level of sensor data in real time,eliminate the fault data,and ensure the accuracy and reliability of data fusion.Experiments show that the network achieves state-of-the-art results in speed and accuracy,and can accurately detect the location of the target when some sensors are out of focus or out of order.The fusion framework proposed in this paper is proved to be effective for intelligent vehicles in terms of real-time performance and reliability.展开更多
Dempster-Shafer (DS) theory of evidence has been widely used in many data fusion ap- plication systems. However, how to determine basic probability assignment, which is the main and the first step in evidence theory, ...Dempster-Shafer (DS) theory of evidence has been widely used in many data fusion ap- plication systems. However, how to determine basic probability assignment, which is the main and the first step in evidence theory, is still an open issue. In this paper, a new method to obtain Basic Probability Assignment (BPA) is proposed based on the similarity measure between generalized fuzzy numbers. In the proposed method, species model can be constructed by determination of the min, average and max value to construct a fuzzy number. Then, a new Radius Of Gravity (ROG) method to determine the similarity measure between generalized fuzzy numbers is used to calculate the BPA functions of each instance. Finally, the efficiency of the proposed method is illustrated by the classi- fication of Iris data.展开更多
In order to improve detection system robustness and reliability, multi-sensors fusion is used in modern air combat. In this paper, a data fusion method based on reinforcement learning is developed for multi-sensors. I...In order to improve detection system robustness and reliability, multi-sensors fusion is used in modern air combat. In this paper, a data fusion method based on reinforcement learning is developed for multi-sensors. Initially, the cubic B-spline interpolation is used to solve time alignment problems of multisource data. Then, the reinforcement learning based data fusion(RLBDF) method is proposed to obtain the fusion results. With the case that the priori knowledge of target is obtained, the fusion accuracy reinforcement is realized by the error between fused value and actual value. Furthermore, the Fisher information is instead used as the reward if the priori knowledge is unable to be obtained. Simulations results verify that the developed method is feasible and effective for the multi-sensors data fusion in air combat.展开更多
Four data fusion methods, principle component transform (PCT), brovey transform (BT), smoothing filter-based intensity modulation(SFIM), and hue, saturation, intensity (HSI), are used to merge Landsat-7 ETM+ multispec...Four data fusion methods, principle component transform (PCT), brovey transform (BT), smoothing filter-based intensity modulation(SFIM), and hue, saturation, intensity (HSI), are used to merge Landsat-7 ETM+ multispectral bands with ETM+ panchromatic band. Each of them improves the spatial resolution effectively but distorts the original spectral signatures to some extent. SFIM model can produce optimal fusion data with respect to preservation of spectral integrity. However, it results the most blurred and noisy image if the coregistration between the multispectral and pan images is not accurate enough. The spectral integrity for all methods is preserved better if the original multispectral images are within the spectral range of ETM+ pan image.展开更多
Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data mu...Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data must be fused.In our research,self-adaptive weighted data fusion method is used to respectively integrate the data from the PH value,temperature,oxygen dissolved and NH3 concentration of water quality environment.Based on the fusion,the Grubbs method is used to detect the abnormal data so as to provide data support for estimation,prediction and early warning of the water quality.展开更多
Radar cross section(RCS)is an important attribute of radar targets and has been widely used in automatic target recognition(ATR).In a passive radar,only the RCS multiplied by a coefficient is available due to the unkn...Radar cross section(RCS)is an important attribute of radar targets and has been widely used in automatic target recognition(ATR).In a passive radar,only the RCS multiplied by a coefficient is available due to the unknown transmitting parameters.For different transmitter-receiver(bistatic)pairs,the coefficients are different.Thus,the recovered RCS in different transmitter-receiver(bistatic)pairs cannot be fused for further use.In this paper,we propose a quantity named quasi-echo-power(QEP)as well as a method for eliminating differences of this quantity among different transmitter-receiver(bistatic)pairs.The QEP is defined as the target echo power after being compensated for distance and pattern propagation factor.The proposed method estimates the station difference coefficients(SDCs)of transmitter-receiver(bistatic)pairs relative to the reference transmitter-receiver(bistatic)pair first.Then,it compensates the QEP and gets the compensated QEP.The compensated QEP possesses a linear relationship with the target RCS.Statistical analyses on the simulated and real-life QEP data show that the proposed method can effectively estimate the SDC between different stations,and the compensated QEP from different receiving stations has the same distribution characteristics for the same target.展开更多
To decrease breakdown time and improve machine operation reliability,accurate residual useful life(RUL) prediction has been playing a critical role in condition based monitoring.A data fusion method was proposed to ac...To decrease breakdown time and improve machine operation reliability,accurate residual useful life(RUL) prediction has been playing a critical role in condition based monitoring.A data fusion method was proposed to achieve online RUL prediction of slewing bearings,which consisted of a reliability based RUL prediction model and a data driven failure rate(FR) estimation model.Firstly,an RUL prediction model was developed based on modified Weibull distribution to build the relationship between RUL and FR.Secondly,principal component analysis(PCA) was introduced to process multi-dimensional life-cycle vibration signals,and continuous squared prediction error(CSPE) and its time-domain features were employed as equipment performance degradation features.Afterwards,an FR estimation model was established on basis of the degradation features and relevant FRs using simplified fuzzy adaptive resonance theory map(SFAM) neural network.Consequently,real-time FR of equipment can be obtained through FR estimation model,and then accurate RUL can be calculated through the RUL prediction model.Results of a slewing bearing life test show that CSPE is an effective indicator of performance degradation process of slewing bearings,and that by combining actual load condition and real-time monitored data,the calculation time is reduced by 87.3%and the accuracy is increased by 0.11%,which provides a potential for online RUL prediction of slewing bearings and other various machineries.展开更多
Data fusion, a new research domain, is the integration and extension of modem information techniques and many other subjects. The data fusion concept is introduced and the Dempster-Shafer evidence deduction is describ...Data fusion, a new research domain, is the integration and extension of modem information techniques and many other subjects. The data fusion concept is introduced and the Dempster-Shafer evidence deduction is described and applied to oil and gas detection. An example of the method is shown using numerical simulation data. The processing result indicates that the data fusion method can be widely used in hydrocarbon detection.展开更多
Due to the rapid development of precision manufacturing technology,much research has been conducted in the field of multisensor measurement and data fusion technology with a goal of enhancing monitoring capabilities i...Due to the rapid development of precision manufacturing technology,much research has been conducted in the field of multisensor measurement and data fusion technology with a goal of enhancing monitoring capabilities in terms of measurement accuracy and information richness,thereby improving the efficiency and precision of manufacturing.In a multisensor system,each sensor independently measures certain parameters.Then,the system uses a relevant signalprocessing algorithm to combine all of the independent measurements into a comprehensive set of measurement results.The purpose of this paper is to describe multisensor measurement and data fusion technology and its applications in precision monitoring systems.The architecture of multisensor measurement systems is reviewed,and some implementations in manufacturing systems are presented.In addition to the multisensor measurement system,related data fusion methods and algorithms are summarized.Further perspectives on multisensor monitoring and data fusion technology are included at the end of this paper.展开更多
基金Supported by National Key R&D Program of China(Grant Nos.2020YFB1709901,2020YFB1709904)National Natural Science Foundation of China(Grant Nos.51975495,51905460)+1 种基金Guangdong Provincial Basic and Applied Basic Research Foundation of China(Grant No.2021-A1515012286)Science and Technology Plan Project of Fuzhou City of China(Grant No.2022-P-022).
文摘The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual loads in the research on parameter estimation of valve-controlled cylinder system.Despite the actual load information contained in the operating data of the control valve,its acquisition remains challenging.This paper proposes a method that fuses bench test and operating data for parameter estimation to address the aforementioned problems.The proposed method is based on Bayesian theory,and its core is a pool fusion of prior information from bench test and operating data.Firstly,a system model is established,and the parameters in the model are analysed.Secondly,the bench and operating data of the system are collected.Then,the model parameters and weight coefficients are estimated using the data fusion method.Finally,the estimated effects of the data fusion method,Bayesian method,and particle swarm optimisation(PSO)algorithm on system model parameters are compared.The research shows that the weight coefficient represents the contribution of different prior information to the parameter estimation result.The effect of parameter estimation based on the data fusion method is better than that of the Bayesian method and the PSO algorithm.Increasing load complexity leads to a decrease in model accuracy,highlighting the crucial role of the data fusion method in parameter estimation studies.
基金funded by National Natural Science Foundation of China(Grant Nos.42272333,42277147).
文摘Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized characteristics of mining slopes,this study introduces a new method that fuses model data from Unmanned aerial vehicles(UAV)tilt photogrammetry and 3D laser scanning through a data alignment algorithm based on control points.First,the mini batch K-Medoids algorithm is utilized to cluster the point cloud data from ground 3D laser scanning.Then,the elbow rule is applied to determine the optimal cluster number(K0),and the feature points are extracted.Next,the nearest neighbor point algorithm is employed to match the feature points obtained from UAV tilt photogrammetry,and the internal point coordinates are adjusted through the distanceweighted average to construct a 3D model.Finally,by integrating an engineering case study,the K0 value is determined to be 8,with a matching accuracy between the two model datasets ranging from 0.0669 to 1.0373 mm.Therefore,compared with the modeling method utilizing K-medoids clustering algorithm,the new modeling method significantly enhances the computational efficiency,the accuracy of selecting the optimal number of feature points in 3D laser scanning,and the precision of the 3D model derived from UAV tilt photogrammetry.This method provides a research foundation for constructing mine slope model.
文摘A new synergy decision method for radar and infrared search and track (IRST) data fusion is proposed, to solve such problems as how to decrease opportunities for radar suffering from being locked on by adverse electronic support measures (ESM), how to retrieve range information of the target during radar off, and how to detect the maneuver of the target. Firstly, polynomials used to predict target motion states are constructed. Secondly, a set of discriminants for detecting target maneuver are established by comparing the predicted values with the observations from IRST. Thirdly, a set of decisions are presented. Lastly, simulation is performed on the given scenario to test the validity of the method.
文摘To find an effective method to estimate and remove the registration error in asynchronous multisensor system, Kalman filtering technique and least squares approach have been proposed to estimate and remove sensor bias and sensor frame tilt errors in multisensor systems with asynchronous data. Simulation results is presented to demonstrate the performance of these approaches. The least squares approach can compress measurements to any time. The Kalman filter algorithm can detect registration errors and use the information to converge tracks from independent sensors. This is particularly important if the data from the sensors are to be fused.
基金Supported by the National Natural Science Foundation of China and Aviation Fund(60879001)the Natural Science Foundation of Jiangsu Province(BK2009378)+1 种基金the Fundamental Research Fund of Nanjing University of Aeronautics and Astronautics(NS2010179)the Qinglan Project of Jiangsu Province~~
文摘Reliability evaluation for aircraft engines is difficult because of the scarcity of failure data. But aircraft engine data are available from a variety of sources. Data fusion has the function of maximizing the amount of valu- able information extracted from disparate data sources to obtain the comprehensive reliability knowledge. Consid- ering the degradation failure and the catastrophic failure simultaneously, which are competing risks and can affect the reliability, a reliability evaluation model based on data fusion for aircraft engines is developed, Above the characteristics of the proposed model, reliability evaluation is more feasible than that by only utilizing failure data alone, and is also more accurate than that by only considering single failure mode. Example shows the effective- ness of the proposed model.
基金ScientificResearchFoundationfortheReturnedOverseaChineseScholars State EducationMinistry
文摘An algorithm is presented for fusion of tracks created by radar and IR sensor which have different dimensional measurement data. It’s assumed that these sensors are asynchronous and the measurement data are transmitted to a central station at different rates. By means of the technique of time matching, two sets of asynchronous data are fused and then the filter is updated according to the fused information. The results show that the accuracy of the filter effect has been improved.
文摘An attempt has been made to develop a distributed software infrastructure model for onboard data fusion system simulation, which is also applied to netted radar systems, onboard distributed detection systems and advanced C3I systems. Two architectures are provided and verified: one is based on pure TCP/IP protocol and C/S model, and implemented with Winsock, the other is based on CORBA (common object request broker architecture). The performance of data fusion simulation system, i.e. reliability, flexibility and scalability, is improved and enhanced by two models. The study of them makes valuable explore on incorporating the distributed computation concepts into radar system simulation techniques.
文摘Multisensor data fusion (MDF) is an emerging technology to fuse data from multiple sensors in order to make a more accurate estimation of the environment through measurement and detection. Applications of MDF cross a wide spectrum in military and civilian areas. With the rapid evolution of computers and the proliferation of micro-mechanical/electrical systems sensors, the utilization of MDF is being popularized in research and applications. This paper focuses on application of MDF for high quality data analysis and processing in measurement and instrumentation. A practical, general data fusion scheme was established on the basis of feature extraction and merge of data from multiple sensors. This scheme integrates artificial neural networks for high performance pattern recognition. A number of successful applications in areas of NDI (Non-Destructive Inspection) corrosion detection, food quality and safety characterization, and precision agriculture are described and discussed in order to motivate new applications in these or other areas. This paper gives an overall picture of using the MDF method to increase the accuracy of data analysis and processing in measurement and instrumentation in different areas of applications.
文摘Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigated by researchers, of which Klaman filtering is one of the most important. Kalman filtering is the best-known recursive least mean-square algorithm to optimally estimate the unknown states of a dynamic system, which has found widespread application in many areas. The scope of the work is restricted to investigate the various data fusion and track fusion techniques based on the Kalman Filter methods, then a new method of state fusion is proposed. Finally the simulation results demonstrate the effectiveness of the introduced method.
基金This project is supported by Provincial Youth Science Foundation of Shanxi China (No.20011020)National Natural Science Foundation of China (No.59975064).
文摘The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data fusion technique is analyzed, and hereby the testplatform of recognition system is manufactured. The advantage of data fusion with the fuzzy neuralnetwork (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carriedout. The experiments show that in various conditions the method can always acquire a much higherrecognition rate than normal ones.
文摘This paper presents a data fusion method in distributed multi-sensor system including GPS and INS sensors’ data processing. First, a residual χ 2 \|test strategy with the corresponding algorithm is designed. Then a coefficient matrices calculation method of the information sharing principle is derived. Finally, the federated Kalman filter is used to combine these independent, parallel, real\|time data. A pseudolite (PL) simulation example is given.
基金Supported by the National Natural Science Foundation of China(Grant U1964201,Grant 61790562 and Grant 61803120)by the Fundamental Research Fundsfor the Central Universities.
文摘Environmental perception is one of the key technologies to realize autonomous vehicles.Autonomous vehicles are often equipped with multiple sensors to form a multi-source environmental perception system.Those sensors are very sensitive to light or background conditions,which will introduce a variety of global and local fault signals that bring great safety risks to autonomous driving system during long-term running.In this paper,a real-time data fusion network with fault diagnosis and fault tolerance mechanism is designed.By introducing prior features to realize the lightweight network,the features of the input data can be extracted in real time.A new sensor reliability evaluation method is proposed by calculating the global and local confidence of sensors.Through the temporal and spatial correlation between sensor data,the sensor redundancy is utilized to diagnose the local and global confidence level of sensor data in real time,eliminate the fault data,and ensure the accuracy and reliability of data fusion.Experiments show that the network achieves state-of-the-art results in speed and accuracy,and can accurately detect the location of the target when some sensors are out of focus or out of order.The fusion framework proposed in this paper is proved to be effective for intelligent vehicles in terms of real-time performance and reliability.
基金Supported by National High Technology Project (863)(No. 2006AA02Z320)the National Natural Science Founda-tion of China (No.30700154, No.60874105)+1 种基金Zhejiang Natural Science Foundation (No.Y107458, RY1080422)the School Youth Found of Shanghai Jiaotong University
文摘Dempster-Shafer (DS) theory of evidence has been widely used in many data fusion ap- plication systems. However, how to determine basic probability assignment, which is the main and the first step in evidence theory, is still an open issue. In this paper, a new method to obtain Basic Probability Assignment (BPA) is proposed based on the similarity measure between generalized fuzzy numbers. In the proposed method, species model can be constructed by determination of the min, average and max value to construct a fuzzy number. Then, a new Radius Of Gravity (ROG) method to determine the similarity measure between generalized fuzzy numbers is used to calculate the BPA functions of each instance. Finally, the efficiency of the proposed method is illustrated by the classi- fication of Iris data.
基金supported in part by the Major Projects for Science and Technology Innovation 2030(2018AA0100800)the Equipment Pre-research Foundation of Laboratory(61425040104)+1 种基金the Joint Fund of China Electronics Technology for Equipment Preresearch(6141B08231110a)the Funding for Short Visit Program of Nanjing University of Aeronautics and Astronautics(NUAA)(190915DF03)。
文摘In order to improve detection system robustness and reliability, multi-sensors fusion is used in modern air combat. In this paper, a data fusion method based on reinforcement learning is developed for multi-sensors. Initially, the cubic B-spline interpolation is used to solve time alignment problems of multisource data. Then, the reinforcement learning based data fusion(RLBDF) method is proposed to obtain the fusion results. With the case that the priori knowledge of target is obtained, the fusion accuracy reinforcement is realized by the error between fused value and actual value. Furthermore, the Fisher information is instead used as the reward if the priori knowledge is unable to be obtained. Simulations results verify that the developed method is feasible and effective for the multi-sensors data fusion in air combat.
文摘Four data fusion methods, principle component transform (PCT), brovey transform (BT), smoothing filter-based intensity modulation(SFIM), and hue, saturation, intensity (HSI), are used to merge Landsat-7 ETM+ multispectral bands with ETM+ panchromatic band. Each of them improves the spatial resolution effectively but distorts the original spectral signatures to some extent. SFIM model can produce optimal fusion data with respect to preservation of spectral integrity. However, it results the most blurred and noisy image if the coregistration between the multispectral and pan images is not accurate enough. The spectral integrity for all methods is preserved better if the original multispectral images are within the spectral range of ETM+ pan image.
基金This study was supported by National Key Research and Development Project(Project No.2017YFD0301506)National Social Science Foundation(Project No.71774052)+1 种基金Hunan Education Department Scientific Research Project(Project No.17K04417A092).
文摘Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data must be fused.In our research,self-adaptive weighted data fusion method is used to respectively integrate the data from the PH value,temperature,oxygen dissolved and NH3 concentration of water quality environment.Based on the fusion,the Grubbs method is used to detect the abnormal data so as to provide data support for estimation,prediction and early warning of the water quality.
基金supported by the National Natural Science Foundation of China(61931015,62071335)the Science and Technology Program of Shenzhen(JCYJ20170818112037398)the Technological Innovation Project of Hubei Province of China(2019AAA061).
文摘Radar cross section(RCS)is an important attribute of radar targets and has been widely used in automatic target recognition(ATR).In a passive radar,only the RCS multiplied by a coefficient is available due to the unknown transmitting parameters.For different transmitter-receiver(bistatic)pairs,the coefficients are different.Thus,the recovered RCS in different transmitter-receiver(bistatic)pairs cannot be fused for further use.In this paper,we propose a quantity named quasi-echo-power(QEP)as well as a method for eliminating differences of this quantity among different transmitter-receiver(bistatic)pairs.The QEP is defined as the target echo power after being compensated for distance and pattern propagation factor.The proposed method estimates the station difference coefficients(SDCs)of transmitter-receiver(bistatic)pairs relative to the reference transmitter-receiver(bistatic)pair first.Then,it compensates the QEP and gets the compensated QEP.The compensated QEP possesses a linear relationship with the target RCS.Statistical analyses on the simulated and real-life QEP data show that the proposed method can effectively estimate the SDC between different stations,and the compensated QEP from different receiving stations has the same distribution characteristics for the same target.
基金Projects(51375222,51175242)supported by the National Natural Science Foundation of China
文摘To decrease breakdown time and improve machine operation reliability,accurate residual useful life(RUL) prediction has been playing a critical role in condition based monitoring.A data fusion method was proposed to achieve online RUL prediction of slewing bearings,which consisted of a reliability based RUL prediction model and a data driven failure rate(FR) estimation model.Firstly,an RUL prediction model was developed based on modified Weibull distribution to build the relationship between RUL and FR.Secondly,principal component analysis(PCA) was introduced to process multi-dimensional life-cycle vibration signals,and continuous squared prediction error(CSPE) and its time-domain features were employed as equipment performance degradation features.Afterwards,an FR estimation model was established on basis of the degradation features and relevant FRs using simplified fuzzy adaptive resonance theory map(SFAM) neural network.Consequently,real-time FR of equipment can be obtained through FR estimation model,and then accurate RUL can be calculated through the RUL prediction model.Results of a slewing bearing life test show that CSPE is an effective indicator of performance degradation process of slewing bearings,and that by combining actual load condition and real-time monitored data,the calculation time is reduced by 87.3%and the accuracy is increased by 0.11%,which provides a potential for online RUL prediction of slewing bearings and other various machineries.
文摘Data fusion, a new research domain, is the integration and extension of modem information techniques and many other subjects. The data fusion concept is introduced and the Dempster-Shafer evidence deduction is described and applied to oil and gas detection. An example of the method is shown using numerical simulation data. The processing result indicates that the data fusion method can be widely used in hydrocarbon detection.
基金the financial support from Shanghai Science and Technology Committee Innovation Grand(Grant Nos.19ZR1404600,17JC1400601)National Key R&D Program of China(Project Nos.2017YFA0701200,2016YFF0102003)Science Challenging Program of CAEP(Grant No.JCKY2016212 A506-0106).
文摘Due to the rapid development of precision manufacturing technology,much research has been conducted in the field of multisensor measurement and data fusion technology with a goal of enhancing monitoring capabilities in terms of measurement accuracy and information richness,thereby improving the efficiency and precision of manufacturing.In a multisensor system,each sensor independently measures certain parameters.Then,the system uses a relevant signalprocessing algorithm to combine all of the independent measurements into a comprehensive set of measurement results.The purpose of this paper is to describe multisensor measurement and data fusion technology and its applications in precision monitoring systems.The architecture of multisensor measurement systems is reviewed,and some implementations in manufacturing systems are presented.In addition to the multisensor measurement system,related data fusion methods and algorithms are summarized.Further perspectives on multisensor monitoring and data fusion technology are included at the end of this paper.