期刊文献+
共找到184篇文章
< 1 2 10 >
每页显示 20 50 100
Study of inter-well interference in shale gas reservoirs by a robust production data analysis method based on deconvolution
1
作者 Wen-Chao Liu Cheng-Cheng Qiao +5 位作者 Ping Wang Wen-Song Huang Xiang-Wen Kong Yu-Ping Sun He-Dong Sun Yue-Peng Jia 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2502-2519,共18页
In order to overcome the defects that the analysis of multi-well typical curves of shale gas reservoirs is rarely applied to engineering,this study proposes a robust production data analysis method based on deconvolut... In order to overcome the defects that the analysis of multi-well typical curves of shale gas reservoirs is rarely applied to engineering,this study proposes a robust production data analysis method based on deconvolution,which is used for multi-well inter-well interference research.In this study,a multi-well conceptual trilinear seepage model for multi-stage fractured horizontal wells was established,and its Laplace solutions under two different outer boundary conditions were obtained.Then,an improved pressure deconvolution algorithm was used to normalize the scattered production data.Furthermore,the typical curve fitting was carried out using the production data and the seepage model solution.Finally,some reservoir parameters and fracturing parameters were interpreted,and the intensity of inter-well interference was compared.The effectiveness of the method was verified by analyzing the production dynamic data of six shale gas wells in Duvernay area.The results showed that the fitting effect of typical curves was greatly improved due to the mutual restriction between deconvolution calculation parameter debugging and seepage model parameter debugging.Besides,by using the morphological characteristics of the log-log typical curves and the time corresponding to the intersection point of the log-log typical curves of two models under different outer boundary conditions,the strength of the interference between wells on the same well platform was well judged.This work can provide a reference for the optimization of well spacing and hydraulic fracturing measures for shale gas wells. 展开更多
关键词 Shale gas Inter-well interference deconvolution Production data analysis Typical curves Multi-stage fractured horizontal well
下载PDF
Cryo-EM combined with image deconvolution to determine ZIF-8 crystal structure
2
作者 吴抗 杨柏松 +3 位作者 薛文华 孙大鹏 葛炳辉 王玉梅 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期44-49,共6页
Metal–organic frameworks(MOFs) are crystalline porous materials with tunable properties, exhibiting great potential in gas adsorption, separation and catalysis.[1,2]It is challenging to visualize MOFs with transmissi... Metal–organic frameworks(MOFs) are crystalline porous materials with tunable properties, exhibiting great potential in gas adsorption, separation and catalysis.[1,2]It is challenging to visualize MOFs with transmission electron microscopy(TEM) due to their inherent instability under electron beam irradiation. Here, we employ cryo-electron microscopy(cryoEM) to capture images of MOF ZIF-8, revealing inverted-space structural information at a resolution of up to about 1.7A and enhancing its critical electron dose to around 20 e^(-)/A^(2). In addition, it is confirmed by electron-beam irradiation experiments that the high voltage could effectively mitigate the radiolysis, and the structure of ZIF-8 is more stable along the [100] direction under electron beam irradiation. Meanwhile, since the high-resolution electron microscope images are modulated by contrast transfer function(CTF) and it is difficult to determine the positions corresponding to the atomic columns directly from the images. We employ image deconvolution to eliminate the impact of CTF and obtain the structural images of ZIF-8. As a result, the heavy atom Zn and the organic imidazole ring within the organic framework can be distinguished from structural images. 展开更多
关键词 cryo-electron microscopy(cryo-EM) ZIF-8 image deconvolution crystal structure determination
下载PDF
Research on a deconvolution algorithm for laser-induced fluorescence diagnosis based on the maximum entropy principle
3
作者 雷清雲 杨雄 +4 位作者 程谋森 张帆 郭大伟 李小康 肖文杰 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期93-107,共15页
Laser-induced fluorescence(LIF)spectroscopy is employed for plasma diagnosis,necessitating the utilization of deconvolution algorithms to isolate the Doppler effect from the raw spectral signal.However,direct deconvol... Laser-induced fluorescence(LIF)spectroscopy is employed for plasma diagnosis,necessitating the utilization of deconvolution algorithms to isolate the Doppler effect from the raw spectral signal.However,direct deconvolution becomes invalid in the presence of noise as it leads to infinite amplification of high-frequency noise components.To address this issue,we propose a deconvolution algorithm based on the maximum entropy principle.We validate the effectiveness of the proposed algorithm by utilizing simulated LIF spectra at various noise levels(signal-to-noise ratio,SNR=20–80 d B)and measured LIF spectra with Xe as the working fluid.In the typical measured spectrum(SNR=26.23 d B)experiment,compared with the Gaussian filter and the Richardson–Lucy(R-L)algorithm,the proposed algorithm demonstrates an increase in SNR of 1.39 d B and 4.66 d B,respectively,along with a reduction in the root-meansquare error(RMSE)of 35%and 64%,respectively.Additionally,there is a decrease in the spectral angle(SA)of 0.05 and 0.11,respectively.In the high-quality spectrum(SNR=43.96 d B)experiment,the results show that the running time of the proposed algorithm is reduced by about98%compared with the R-L iterative algorithm.Moreover,the maximum entropy algorithm avoids parameter optimization settings and is more suitable for automatic implementation.In conclusion,the proposed algorithm can accurately resolve Doppler spectrum details while effectively suppressing noise,thus highlighting its advantage in LIF spectral deconvolution applications. 展开更多
关键词 maximum entropy spectral deconvolution laser-induced fluorescence spectrum
下载PDF
Enhancing the vertical resolution of lunar penetrating radar data using predictive deconvolution
4
作者 Chao Li JinHai Zhang 《Earth and Planetary Physics》 EI CAS CSCD 2024年第4期570-578,共9页
The Yutu-2 rover onboard the Chang’E-4 mission performed the first lunar penetrating radar detection on the farside of the Moon.The high-frequency channel presented us with many unprecedented details of the subsurfac... The Yutu-2 rover onboard the Chang’E-4 mission performed the first lunar penetrating radar detection on the farside of the Moon.The high-frequency channel presented us with many unprecedented details of the subsurface structures within a depth of approximately 50 m.However,it was still difficult to identify finer layers from the cluttered reflections and scattering waves.We applied deconvolution to improve the vertical resolution of the radar profile by extending the limited bandwidth associated with the emissive radar pulse.To overcome the challenges arising from the mixed-phase wavelets and the problematic amplification of noise,we performed predictive deconvolution to remove the minimum-phase components from the Chang’E-4 dataset,followed by a comprehensive phase rotation to rectify phase anomalies in the radar image.Subsequently,we implemented irreversible migration filtering to mitigate the noise and diminutive clutter echoes amplified by deconvolution.The processed data showed evident enhancement of the vertical resolution with a widened bandwidth in the frequency domain and better signal clarity in the time domain,providing us with more undisputed details of subsurface structures near the Chang’E-4 landing site. 展开更多
关键词 Chang’E-4 lunar penetrating radar data processing predictive deconvolution irreversible migration filtering
下载PDF
Deblurring,artifact-free optical coherence tomography with deconvolution-random phase modulation
5
作者 Xin Ge Si Chen +4 位作者 Kan Lin Guangming Ni En Bo Lulu Wang Linbo Liu 《Opto-Electronic Science》 2024年第1期13-24,共12页
Deconvolution is a commonly employed technique for enhancing image quality in optical imaging methods.Unfortu-nately,its application in optical coherence tomography(OCT)is often hindered by sensitivity to noise,which ... Deconvolution is a commonly employed technique for enhancing image quality in optical imaging methods.Unfortu-nately,its application in optical coherence tomography(OCT)is often hindered by sensitivity to noise,which leads to ad-ditive ringing artifacts.These artifacts considerably degrade the quality of deconvolved images,thereby limiting its effect-iveness in OCT imaging.In this study,we propose a framework that integrates numerical random phase masks into the deconvolution process,effectively eliminating these artifacts and enhancing image clarity.The optimized joint operation of an iterative Richardson-Lucy deconvolution and numerical synthesis of random phase masks(RPM),termed as De-conv-RPM,enables a 2.5-fold reduction in full width at half-maximum(FWHM).We demonstrate that the Deconv-RPM method significantly enhances image clarity,allowing for the discernment of previously unresolved cellular-level details in nonkeratinized epithelial cells ex vivo and moving blood cells in vivo. 展开更多
关键词 deconvolution random phase masks DEBLURRING
下载PDF
Prestack nonstationary deconvolution based on variable-step sampling in the radial trace domain 被引量:2
6
作者 李芳 王守东 +2 位作者 陈小宏 刘国昌 郑强 《Applied Geophysics》 SCIE CSCD 2013年第4期423-432,511,共11页
The conventional nonstationary convolutional model assumes that the seismic signal is recorded at normal incidence. Raw shot gathers are far from this assumption because of the effects of offsets. Because of such prob... The conventional nonstationary convolutional model assumes that the seismic signal is recorded at normal incidence. Raw shot gathers are far from this assumption because of the effects of offsets. Because of such problems, we propose a novel prestack nonstationary deconvolution approach. We introduce the radial trace (RT) transform to the nonstationary deconvolution, we estimate the nonstationary deconvolution factor with hyperbolic smoothing based on variable-step sampling (VSS) in the RT domain, and we obtain the high-resolution prestack nonstationary deconvolution data. The RT transform maps the shot record from the offset and traveltime coordinates to those of apparent velocity and traveltime. The ray paths of the traces in the RT better satisfy the assumptions of the convolutional model. The proposed method combines the advantages of stationary deconvolution and inverse Q filtering, without prior information for Q. The nonstationary deconvolution in the RT domain is more suitable than that in the space-time (XT) domain for prestack data because it is the generalized extension of normal incidence. Tests with synthetic and real data demonstrate that the proposed method is more effective in compensating for large-offset and deep data. 展开更多
关键词 Nonstationary deconvolution Variable-step sampling Radial trace transform Gabor transform Attenuation compensation
下载PDF
Nonstationary sparsity-constrained seismic deconvolution 被引量:3
7
作者 孙学凯 孙赞东 谢会文 《Applied Geophysics》 SCIE CSCD 2014年第4期459-467,510,共10页
The Robinson convolution model is mainly restricted by three inappropriate assumptions, i.e., statistically white reflectivity, minimum-phase wavelet, and stationarity. Modern reflectivity inversion methods(e.g., spa... The Robinson convolution model is mainly restricted by three inappropriate assumptions, i.e., statistically white reflectivity, minimum-phase wavelet, and stationarity. Modern reflectivity inversion methods(e.g., sparsity-constrained deconvolution) generally attempt to suppress the problems associated with the first two assumptions but often ignore that seismic traces are nonstationary signals, which undermines the basic assumption of unchanging wavelet in reflectivity inversion. Through tests on reflectivity series, we confirm the effects of nonstationarity on reflectivity estimation and the loss of significant information, especially in deep layers. To overcome the problems caused by nonstationarity, we propose a nonstationary convolutional model, and then use the attenuation curve in log spectra to detect and correct the influences of nonstationarity. We use Gabor deconvolution to handle nonstationarity and sparsity-constrained deconvolution to separating reflectivity and wavelet. The combination of the two deconvolution methods effectively handles nonstationarity and greatly reduces the problems associated with the unreasonable assumptions regarding reflectivity and wavelet. Using marine seismic data, we show that correcting nonstationarity helps recover subtle reflectivity information and enhances the characterization of details with respect to the geological record. 展开更多
关键词 nonstationarity sparsity constraint impedance constraint Gabor deconvolution log time–frequency domain
下载PDF
Blind Deconvolution Method Based on Precondition Conjugate Gradients 被引量:1
8
作者 朱振宇 裴江云 +2 位作者 吕小林 刘洪 李幼铭 《Petroleum Science》 SCIE CAS CSCD 2004年第3期37-40,共4页
In seismic data processing, blind deconvolution is a key technology. Introduced in this paper is a flow of one kind of blind deconvolution. The optimal precondition conjugate gradients (PCG) in Kyrlov subspace is als... In seismic data processing, blind deconvolution is a key technology. Introduced in this paper is a flow of one kind of blind deconvolution. The optimal precondition conjugate gradients (PCG) in Kyrlov subspace is also used to improve the stability of the algorithm. The computation amount is greatly decreased. 展开更多
关键词 Blind deconvolution precondition conjugate gradients (PCG) reflectivity series
下载PDF
Experimental analysis and application of sparsity constrained deconvolution 被引量:7
9
作者 李国发 秦德海 +2 位作者 彭更新 岳英 翟桐立 《Applied Geophysics》 SCIE CSCD 2013年第2期191-200,236,共11页
Sparsity constrained deconvolution can improve the resolution of band-limited seismic data compared to conventional deconvolution. However, such deconvolution methods result in nonunique solutions and suppress weak re... Sparsity constrained deconvolution can improve the resolution of band-limited seismic data compared to conventional deconvolution. However, such deconvolution methods result in nonunique solutions and suppress weak reflections. The Cauchy function, modified Cauchy function, and Huber function are commonly used constraint criteria in sparse deconvolution. We used numerical experiments to analyze the ability of sparsity constrained deconvolution to restore reflectivity sequences and protect weak reflections under different constraint criteria. The experimental results demonstrate that the performance of sparsity constrained deconvolution depends on the agreement between the constraint criteria and the probability distribution of the reflectivity sequences; furthermore, the modified Cauchy- constrained criterion protects the weak reflections better than the other criteria. Based on the model experiments, the probability distribution of the reflectivity sequences of carbonate and clastic formations is statistically analyzed by using well-logging data and then the modified Cauchy-constrained deconvolution is applied to real seismic data much improving the resolution. 展开更多
关键词 sparse deconvolution constraint criterion modified Cauchy criterion resolution
下载PDF
An improved predictive deconvolution based on maximization of non-Gaussianity 被引量:2
10
作者 刘军 陆文 《Applied Geophysics》 SCIE CSCD 2008年第3期189-196,共8页
The predictive deconvolution algorithm (PD), which is based on second-order statistics, assumes that the primaries and the multiples are implicitly orthogonal. However, the seismic data usually do not satisfy this a... The predictive deconvolution algorithm (PD), which is based on second-order statistics, assumes that the primaries and the multiples are implicitly orthogonal. However, the seismic data usually do not satisfy this assumption in practice. Since the seismic data (primaries and multiples) have a non-Gaussian distribution, in this paper we present an improved predictive deconvolution algorithm (IPD) by maximizing the non-Gaussianity of the recovered primaries. Applications of the IPD method on synthetic and real seismic datasets show that the proposed method obtains promising results. 展开更多
关键词 Multiple attenuation NON-GAUSSIANITY predictive deconvolution
下载PDF
Potential risks of spectrum whitening deconvolution——compared with well-driven deconvolution 被引量:13
11
作者 Li Guofa Zhou Hui Zhao Chao 《Petroleum Science》 SCIE CAS CSCD 2009年第2期146-152,共7页
Deconvolution is widely used to increase the resolution of seismic data. To compare the resolution ability of conventional spectrum whitening deconvolution to thin layers with that of welldriven deconvolution, a compl... Deconvolution is widely used to increase the resolution of seismic data. To compare the resolution ability of conventional spectrum whitening deconvolution to thin layers with that of welldriven deconvolution, a complex sedimentary geological model was designed, and then the simulated seismic data were processed respectively by each of the two methods. The amplitude spectrum of seismic data was almost white after spectrum whitening, but the wavelet resolution was low. The amplitude spectrum after well-driven deconvolution deviated from white spectrum, but the wavelet resolution was high. Further analysis showed that if an actual reflectivity series could not well satisfy the hypothesis of white spectrum, spectrum whitening deconvolution had a potential risk of wavelet distortion, which might lead to a pitfall in high resolution seismic data interpretation. On the other hand, the wavelet after well- driven deconvolution had higher resolution both in the time and frequency domains. It is favorable for high resolution seismic interpretation and reservoir prediction. 展开更多
关键词 Well-driven high resolution spectrum whitening deconvolution seismic wavelet
下载PDF
A predictive deconvolution method for non-white-noise refl ectivity 被引量:3
12
作者 Wang De-Ying Kong Xue +3 位作者 Dong Lie-Qian Chen Li-Hua Wang Yong-Jun Wang Xiao-Chen 《Applied Geophysics》 SCIE CSCD 2019年第1期101-115,共15页
Conventional predictive deconvolution assumes that the reflection coefficients of the earth conform to an uncorrelated white noise sequence. The Wiener-Hopf (WH) equation is constructed to solve the filter and elimina... Conventional predictive deconvolution assumes that the reflection coefficients of the earth conform to an uncorrelated white noise sequence. The Wiener-Hopf (WH) equation is constructed to solve the filter and eliminate the correlated components of the seismic records, attenuate multiples, and improve seismic resolution. However, in practice, the primary refl ectivity series of fi eld data rarely satisfy the white noise sequence assumption, with the result that the correlated components of the primary reflectivity series are also eliminated by traditional deconvolution. This results in signal distortion. To solve this problem, we have proposed an improved method for deconvolution. First, we estimated the wavelet correlation from seismic records using the spectrum-modeling method. Second, this wavelet autocorrelation was used to construct a new autocorrelation function which contains the correlated components caused by the existence of multiples and avoids the correlated components of the primary reflectivity series. Finally, the new autocorrelation function was brought into the WH equation, and the predictive fi lter operator was calculated for deconvolution. In this paper, we have applied this new method to simulated and field data processing, and we have compared its performance with that of traditional predictive deconvolution. Our results show that the new method can adapt to non-white refl ectivity series without changing the statistical characteristics of the primary reflection coefficient series. Compared with traditional predictive deconvolution, the new method reduces processing noise and improves fidelity, all while maintaining the ability to attenuate multiples and enhance seismic resolution. 展开更多
关键词 Non-white reflectivity series predictive deconvolution spectrum-modeling multiples resolution AUTOCORRELATION
下载PDF
Exploiting the point spread function for optical imaging through a scattering medium based on deconvolution method 被引量:4
13
作者 Hexiang He Xiangsheng Xie +2 位作者 Yikun Liu Haowen Liang Jianying Zhou 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2019年第4期21-31,共11页
Visual perception of humans penetrating turbid medium is hampered by scattering.Various techniques have been prompted recently to recover optical imaging through turbid materials.Among them,speckle correlation based o... Visual perception of humans penetrating turbid medium is hampered by scattering.Various techniques have been prompted recently to recover optical imaging through turbid materials.Among them,speckle correlation based on deconvolution is one of the most attractive methods taking advantage of high imaging quality,robustness,eas-of-use,and ease-of-integration.By exploiting the point spread function(PSF)of the scattering system,large Field-of-View,extended Depth-of-Field,noninvasiveness and spectral resoluation are now available as successful solutions for high quality and multifunctional image reconstruction.In this paper,we review the progress of imaging through a scattering medium based on deconvolution method,including the principle,the breakthrough of the limitation of the optical memory ffect,the improvement of the deconvolution algorithm and innovative applications. 展开更多
关键词 Speckle correlation deconvolution scattering medium imaging through turbid media
下载PDF
A new kind of wavelet-based method for spectrum deconvolution
14
作者 肖跃 崔一平 《Journal of Southeast University(English Edition)》 EI CAS 2003年第1期22-25,共4页
To subtract the slit function from the measured spectrum, a wavelet-based deconvolution method is proposed to obtain a regularized solution of the problem. The method includes reconstructing the signal from the wavele... To subtract the slit function from the measured spectrum, a wavelet-based deconvolution method is proposed to obtain a regularized solution of the problem. The method includes reconstructing the signal from the wavelet modulus maxima. For the purpose of maxima selection, the spatially selective noise filtration technique was used to distinguish modulus maxima produced by signal from the one created by noise. To test the method, sodium spectrum measured at a wide slit was deconvolved. He-Ne spectrum measured at the corresponding slit width was used as slit function. Sodium measured at a narrow slit was used as the reference spectrum. The deconvolutton result shows that this method can enhance the resolution of the degraded spectrum greatly. 展开更多
关键词 deconvolution slit function wavelet local maxima
下载PDF
Resolution Enhancement in Ultrasonic TOFD Imaging by Combining Sparse Deconvolution and Synthetic Aperture Focusing Technique(Sparse-SAFT) 被引量:2
15
作者 Xu Sun Li Lin Shijie Jin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第5期141-149,共9页
The shallow subsurface defects are difficult to be identified and quantified by ultrasonic time-of-flight diffraction(TOFD)due to the low resolution induced by pulse width and beam spreading.In this paper,Sparse-SAFT ... The shallow subsurface defects are difficult to be identified and quantified by ultrasonic time-of-flight diffraction(TOFD)due to the low resolution induced by pulse width and beam spreading.In this paper,Sparse-SAFT is proposed to improve the time resolution and lateral resolution in TOFD imaging by combining sparse deconvolution and synthetic aperture focusing technique(SAFT).The mathematical model in the frequency domain is established based on the l1 and l2 norm constraints,and the optimization problem is solved for enhancing time resolution.On this basis,SAFT is employed to improve lateral resolution by delay-and-sum beamforming.The simulated and experimental results indicate that the lateral wave and tip-diffracted waves can be decoupled with Sparse-SAFT.The shallow subsurface defects with a height of 3.0 mm at the depth of 3.0 mm were detected quantitatively,and the relative measurement errors of flaw heights and depths were no more than 10.3%.Compared to conventional SAFT,the time resolution and lateral resolution are enhanced by 72.5 and 56%with Sparse-SAFT,respectively.Finally,the proposed method is also suitable for improving resolution to detect the defects beyond dead zone. 展开更多
关键词 Time resolution Lateral resolution Time-of-flight diffraction(TOFD) Sparse deconvolution Synthetic aperture focusing technique(SAFT) Sparse-SAFT
下载PDF
A Bregman adaptive sparse-spike deconvolution method in the frequency domain 被引量:2
16
作者 Pan Shu-Lin Yan Ke +1 位作者 Lan Hai-Qiang Qin Zi-Yu 《Applied Geophysics》 SCIE CSCD 2019年第4期463-472,560,共11页
To improve the anti-noise performance of the time-domain Bregman iterative algorithm,an adaptive frequency-domain Bregman sparse-spike deconvolution algorithm is proposed.By solving the Bregman algorithm in the freque... To improve the anti-noise performance of the time-domain Bregman iterative algorithm,an adaptive frequency-domain Bregman sparse-spike deconvolution algorithm is proposed.By solving the Bregman algorithm in the frequency domain,the influence of Gaussian as well as outlier noise on the convergence of the algorithm is effectively avoided.In other words,the proposed algorithm avoids data noise effects by implementing the calculations in the frequency domain.Moreover,the computational efficiency is greatly improved compared with the conventional method.Generalized cross validation is introduced in the solving process to optimize the regularization parameter and thus the algorithm is equipped with strong self-adaptation.Different theoretical models are built and solved using the algorithms in both time and frequency domains.Finally,the proposed and the conventional methods are both used to process actual seismic data.The comparison of the results confirms the superiority of the proposed algorithm due to its noise resistance and self-adaptation capability. 展开更多
关键词 deconvolution split Bregman algorithm frequency domain generalized cross validation OUTLIERS
下载PDF
Multichannel deconvolution with spatial refl ection regularization 被引量:2
17
作者 Li Hao Li Guo-Fa +3 位作者 Ma Xiong Zhang Jia-Liang Meng Qing-Long Zhang Zhu-Xin 《Applied Geophysics》 SCIE CSCD 2021年第1期85-93,130,共10页
Seismic deconvolution plays an important role in the seismic characterization of thin-layer structures and seismic resolution enhancement.However,the trace-by-trace processing strategy is applied and ignores the spati... Seismic deconvolution plays an important role in the seismic characterization of thin-layer structures and seismic resolution enhancement.However,the trace-by-trace processing strategy is applied and ignores the spatial connection along seismic traces,which gives the deconvolved result strong ambiguity and poor spatial continuity.To alleviate this issue,we developed a structurally constrained deconvolution algorithm.The proposed method extracts the refl ection structure characterization from the raw seismic data and introduces it to the multichannel deconvolution algorithm as a spatial refl ection regularization.Benefi ting from the introduction of the reflection regularization,the proposed method enhances the stability and spatial continuity of conventional deconvolution methods.Synthetic and field data examples confi rm the correctness and feasibility of the proposed method. 展开更多
关键词 deconvolution spatial refl ection regularization resolution sparse-spike
下载PDF
Wavelet-based deconvolution of ultrasonic signals in nondestructive evaluation 被引量:2
18
作者 HERRERA Roberto Henry OROZCO Rubén RODRIGUEZ Manuel 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第10期1748-1756,共9页
In this paper, the inverse problem of reconstructing reflectivity function of a medium is examined within a blind deconvolution framework. The ultrasound pulse is estimated using higher-order statistics, and Wiener fi... In this paper, the inverse problem of reconstructing reflectivity function of a medium is examined within a blind deconvolution framework. The ultrasound pulse is estimated using higher-order statistics, and Wiener filter is used to obtain the ultrasonic reflectivity function through wavelet-based models. A new approach to the parameter estimation of the inverse filtering step is proposed in the nondestructive evaluation field, which is based on the theory of Fourier-Wavelet regularized deconvolution (ForWaRD). This new approach can be viewed as a solution to the open problem of adaptation of the ForWaRD framework to perform the convolution kernel estimation and deconvolution interdependently. The results indicate stable solutions of the esti- mated pulse and an improvement in the radio-frequency (RF) signal taking into account its signal-to-noise ratio (SNR) and axial resolution. Simulations and experiments showed that the proposed approach can provide robust and optimal estimates of the reflectivity function. 展开更多
关键词 Blind deconvolution Ultrasonic signals processing Wavelet regularization
下载PDF
SELF-TUNING WEIGHTED MEASUREMENT FUSION WHITE NOISE DECONVOLUTION ESTIMATOR 被引量:2
19
作者 Sun Xiaojun Deng Zili 《Journal of Electronics(China)》 2010年第1期51-59,共9页
For the multi-sensor linear discrete time-invariant stochastic systems with correlated measurement noises and unknown noise statistics,an on-line noise statistics estimator is obtained using the correlation method.Sub... For the multi-sensor linear discrete time-invariant stochastic systems with correlated measurement noises and unknown noise statistics,an on-line noise statistics estimator is obtained using the correlation method.Substituting it into the optimal weighted fusion steady-state white noise deconvolution estimator based on the Kalman filtering,a self-tuning weighted measurement fusion white noise deconvolution estimator is presented.By the Dynamic Error System Analysis(DESA) method,it proved that the self-tuning fusion white noise deconvolution estimator converges to the steady-state optimal fusion white noise deconvolution estimator in a realization.Therefore,it has the asymptotically global optimality.A simulation example for the tracking system with 3 sensors and the Bernoulli-Gaussian input white noise shows its effectiveness. 展开更多
关键词 Multi-sensor information fusion Self-tuning fuser White noise deconvolution Global optimality CONVERGENCE
下载PDF
Nonstationary inversion-based directional deconvolution of airgun array signature 被引量:1
20
作者 Li Hao Li Guo-Fa +2 位作者 Guo Xiang-Hui Sun Xi-Ping Wang Jian-Fu 《Applied Geophysics》 SCIE CSCD 2019年第1期116-124,共9页
Airgun arrays are widely used in marine seismic exploration because signatures excited by airgun arrays have high energy and high-peak bubble ratio, whereas the considerable length and width of the array and ghost ref... Airgun arrays are widely used in marine seismic exploration because signatures excited by airgun arrays have high energy and high-peak bubble ratio, whereas the considerable length and width of the array and ghost reflections make the airgun array signature directional. As a result, the relation of the reflection amplitude with the incident and azimuth angles is variable. This means that the directivity of the airgun array results in a nonstationary wavelet and distorts the relation of the amplitude variation with the incident and azimuth angles. To remove the directivity effect, we propose a nonstationary inversion-based directional deconvolution. At fi rst, the signature as a function of take-off angle and azimuth angle is calculated using the spatial configuration of the airgun array and the near-field signatures. Then, based on the velocity model, the time-variant take-off angles are estimated and directional fi lters are designed using the take-off angles. Finally, the directivity-dependent signatures are shaped to the signature right below the airgun array using nonstationary inversion in the directional deconvolution. 展开更多
关键词 Airgun ARRAY airgun SIGNATURE DIRECTIVITY NONSTATIONARY deconvolution
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部